Log in

Roadmap of amorphous metal-organic framework for electrochemical energy conversion and storage

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs), a well-known coordination network involving potential voids, have attracted attention for energy conversion and storage. As far as is known, MOFs are not only believed to be crystalline. Emerging amorphous MOFs (aMOFs) are starting as supplementary to crystalline MOF (cMOF) in various electrochemical energy fields owing to intrinsic superiorities over crystalline states, greater ease of processing, and distinct physical and chemical properties. aMOFs retain the basic skeletons and connectivity of building units but without any long-range order. Such structural features over long range possess the isotropy without grain boundaries, resulting in fast ions flux and uniform distribution. Simultaneously, distinct short-range characteristics provide diverse pore confined environment and abundant active sites, and thus accelerate mass transport and charge transfer during electrochemical reactions. Deep understandings and controllable design of aMOF may broaden the opportunities for both scientific researches beyond crystalline materials and practical applications. To date, comprehensive reviews about aMOFs in the fields of energy conversion and storage remain woefully underrepresented. Herein, we summarize the roadmap of aMOF from the development, structural design, opportunity, application, bottleneck, and perspective. In-depth structure-activity relationships with aMOF chemistry are highlighted in the typical electrochemical energy conversion like water oxidation and energy storage, including supercapacitor and battery. The combination of disordered nature at long range and short range, alongside the dynamic structural changes, is promising to reinforce cognition of aMOF domains with MOF versatility, shedding light on the design for efficient electrochemical energy applications via amorphization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. **a, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866.

    CAS  Google Scholar 

  2. Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.

    CAS  Google Scholar 

  3. Hou, C. C.; Xu, Q. Metal-organic frameworks for energy. Adv. Energy Mater. 2019, 9, 1801307.

    Google Scholar 

  4. Li, S.; Lin, J. D.; **ong, W. M.; Guo, X. Y.; Wu, D. Y.; Zhang, Q. B.; Zhu, Q. L.; Zhang, L. Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coord. Chem. Rev. 2021, 438, 213872.

    CAS  Google Scholar 

  5. Zhu, B. J.; Wen, D. S.; Liang, Z. B.; Zou, R. Q. Conductive metal-organic frameworks for electrochemical energy conversion and storage. Coord. Chem. Rev. 2021, 446, 214119.

    CAS  Google Scholar 

  6. Jiang, Q. Y.; Xu, J.; Li, Z. Q.; Zhou, C. H.; Chen, X.; Meng, H. B.; Han, Y.; Shi, X. F.; Zhan, C. H.; Zhang, Y. Q. et al. Two-dimensional metal-organic framework nanosheet supported noble metal nanocrystals for high-efficiency water oxidation. Adv. Mater. Interfaces 2021, 8, 2002034.

    CAS  Google Scholar 

  7. Cao, X. H.; Tan, C. L.; Sindoro, M.; Zhang, H. Hybrid micro-/nanostructures derived from metal-organic frameworks: Preparation and applications in energy storage and conversion. Chem. Soc. Rev. 2017, 46, 2660–2677.

    CAS  Google Scholar 

  8. Zheng, S. S.; Li, X. R.; Yan, B. Y.; Hu, Q.; Xu, Y. X.; **ao, X.; Xue, H. G.; Pang, H. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater. 2017, 7, 1602733.

    Google Scholar 

  9. Wang, H.; Zhang, N.; Li, S. M.; Ke, Q. F.; Li, Z. Q.; Zhou, M. Metal-organic framework composites for energy conversion and storage. J. Semicond. 2020, 41, 091707.

    CAS  Google Scholar 

  10. Bennett, T. D.; Horike, S. Liquid, glass and amorphous solid states of coordination polymers and metal-organic frameworks. Nat. Rev. Mater. 2018, 3, 431–440.

    Google Scholar 

  11. Öhrström, L. Let’s talk about MOFs-topology and terminology of metal-organic frameworks and why we need them. Crystals 2015, 5, 154–162.

    Google Scholar 

  12. Batten, S. R.; Champness, N. R.; Chen, X. M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J. Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1715–1724.

    CAS  Google Scholar 

  13. Bennett, T. D.; Cheetham, A. K. Amorphous metal-organic frameworks. Acc. Chem. Res. 2014, 47, 1555–1562.

    CAS  Google Scholar 

  14. Fonseca, J.; Gong, T. H.; Jiao, L.; Jiang, H. L. Metal-organic frameworks (MOFs) beyond crystallinity: Amorphous MOFs, MOF liquids and MOF glasses. J. Mater. Chem. A 2021, 9, 10562–10611.

    CAS  Google Scholar 

  15. Maspoch, D.; Ruiz-Molina, D.; Wurst, K.; Domingo, N.; Cavallini, M.; Biscarini, F.; Tejada, J.; Rovira, C.; Veciana, J. A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties. Nat. Mater. 2003, 2, 190–195.

    CAS  Google Scholar 

  16. Bennett, T. D.; Goodwin, A. L.; Dove, M. T.; Keen, D. A.; Tucker, M. G.; Barney, E. R.; Soper, A. K.; Bithell, E. G.; Tan, J. C.; Cheetham, A. K. Structure and properties of an amorphous metal-organic framework. Phys. Rev. Lett. 2010, 104, 115503.

    Google Scholar 

  17. Castel, N.; Coudert, F. X. Atomistic models of amorphous metal-organic frameworks. J. Phys. Chem. C 2022, 126, 6905–6914.

    CAS  Google Scholar 

  18. Zhou, Y.; Liu, C. J. Amorphization of metal-organic framework MOF-5 by electrical discharge. Plasma Chem. Plasma Process. 2011, 31, 499–506.

    CAS  Google Scholar 

  19. Van de Voorde, B.; Stassen, I.; Bueken, B.; Vermoortele, F.; De Vos, D.; Ameloot, R.; Tan, J. C.; Bennett, T. D. Improving the mechanical stability of zirconium-based metal-organic frameworks by incorporation of acidic modulators. J. Mater. Chem. A 2015, 3, 1737–1742.

    CAS  Google Scholar 

  20. Lee, H. J.; We, J.; Kim, J. O.; Kim, D.; Cha, W.; Lee, E.; Sohn, J.; Oh, M. Morphological and structural evolutions of metal-organic framework particles from amorphous spheres to crystalline hexagonal rods. Angew. Chem., Int. Ed. 2015, 54, 10564–10568.

    CAS  Google Scholar 

  21. Qiao, Q. Q.; Li, G. R.; Wang, Y. L.; Gao, X. P. To enhance the capacity of Li-rich layered oxides by surface modification with metal-organic frameworks (MOFs) as cathodes for advanced lithium-ion batteries. J. Mater. Chem. A 2016, 4, 4440–4447.

    CAS  Google Scholar 

  22. Li, J. T.; Huang, W. Z.; Wang, M. M.; **, S. B.; Meng, J. S.; Zhao, K. N.; **, J.; Xu, W. W.; Wang, Z. Y.; Liu, X. et al. Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution. ACS Energy Lett. 2019, 4, 285–292.

    CAS  Google Scholar 

  23. Cui, X. W.; Zhang, L.; Zhang, J. W.; Gong, L.; Gao, M. W.; Zheng, P. T.; **ang, L.; Wang, W. D.; Hu, W. J. H.; Xu, Q. et al. A novel metal-organic layered material with superior supercapacitive performance through ultrafast and reversible tetraethylammonium intercalation. Nano Energy 2019, 59, 102–109.

    CAS  Google Scholar 

  24. Liu, C.; Wang, J.; Wan, J. J.; Cheng, Y.; Huang, R.; Zhang, C. Q.; Hu, W. L.; Wei, G. F.; Yu, C. Z. Amorphous metal-organic framework-dominated nanocomposites with both compositional and structural heterogeneity for oxygen evolution. Angew. Chem., Int. Ed. 2020, 59, 3630–3637.

    CAS  Google Scholar 

  25. Gao, C. W.; Jiang, Z. J.; Qi, S. B.; Wang, P. X.; Jensen, L. R.; Johansen, M.; Christensen, C. K.; Zhang, Y. F.; Ravnsbæk, D. B.; Yue, Y. Z. Metal-organic framework glass anode with an exceptional cycling-induced capacity enhancement for lithium-ion batteries. Adv. Mater. 2022, 34, 2110048.

    CAS  Google Scholar 

  26. Chapman, K. W.; Halder, G. J.; Chupas, P. J. Pressure-induced amorphization and porosity modification in a metal-organic framework. J. Am. Chem. Soc. 2009, 131, 17546–17547.

    CAS  Google Scholar 

  27. Moggach, S. A.; Bennett, T. D.; Cheetham, A. K. The effect of pressure on ZIF-8: Increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. Angew. Chem., Int. Ed. 2009, 48, 7087–7089.

    CAS  Google Scholar 

  28. Colodrero, R. M. P.; Papathanasiou, K. E.; Stavgianoudaki, N.; Olivera-Pastor, P.; Losilla, E. R.; Aranda, M. A. G.; León-Reina, L.; Sanz, J.; Sobrados, I.; Choquesillo-Lazarte, D. et al. Multifunctional luminescent and proton-conducting lanthanide carboxyphosphonate open-framework hybrids exhibiting crystalline-to-amorphous-to-crystalline transformations. Chem. Mater. 2012, 24, 3780–3792.

    CAS  Google Scholar 

  29. Joarder, B.; Lin, J. B.; Romero, Z.; Shimizu, G.; K. H. Single crystal proton conduction study of a metal organic framework of modest water stability. J. Am. Chem. Soc. 2017, 139, 7176–7179.

    CAS  Google Scholar 

  30. Zhang, X. D.; Song, L.; Bi, F. K.; Zhang, D. F.; Wang, Y. X.; Cui, L. F. Catalytic oxidation of toluene using a facile synthesized Ag nanoparticle supported on UiO-66 derivative. J. Colloid Interface Sci. 2020, 571, 38–47.

    CAS  Google Scholar 

  31. Ohtsu, H.; Bennett, T. D.; Kojima, T.; Keen, D. A.; Niwa, Y.; Kawano, M. Amorphous-amorphous transition in a porous coordination polymer. Chem. Commun. 2017, 53, 7060–7063.

    CAS  Google Scholar 

  32. Conrad, S.; Kumar, P.; Xue, F.; Ren, L. M.; Henning, S.; **ao, C. H.; Mkhoyan, K. A.; Tsapatsis, M. Controlling dissolution and transformation of zeolitic imidazolate frameworks by using electron-beam-induced amorphization. Angew. Chem., Int. Ed. 2018, 57, 13592–13597.

    CAS  Google Scholar 

  33. Chen, Z. H. Y.; Chen, Z.; Farha, O. K.; Chapman, K. W. Mechanistic insights into nanoparticle formation from bimetallic metal-organic frameworks. J. Am. Chem. Soc. 2021, 143, 8976–8980.

    CAS  Google Scholar 

  34. Fischer, H. E.; Barnes, A. C.; Salmon, P. S. Neutron and X-ray diffraction studies of liquids and glasses. Rep. Prog. Phys. 2006, 69, 233–299.

    CAS  Google Scholar 

  35. Rehr, J. J.; Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621–654.

    CAS  Google Scholar 

  36. Moran, R. F.; Dawson, D. M.; Ashbrook, S. E. Exploiting NMR spectroscopy for the study of disorder in solids. Int. Rev. Phys. Chem. 2017, 36, 39–115.

    CAS  Google Scholar 

  37. Hu, Y. H.; Zhang, L. Amorphization of metal-organic framework MOF-5 at unusually low applied pressure. Phys. Rev. B 2010, 81, 174103.

    Google Scholar 

  38. McMillan, P. Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. Am. Mineral. 1984, 69, 622–644.

    CAS  Google Scholar 

  39. Zacharia, R.; Cossement, D.; Lafi, L.; Chahine, R. Volumetric hydrogen sorption capacity of monoliths prepared by mechanical densification of MOF-177. J. Mater. Chem. 2010, 20, 2145–2151.

    CAS  Google Scholar 

  40. Zhang, H. J.; Chen, Z. Q.; Wang, S. J. Monolayer dispersion of NiO in NiO/Al2O3 catalysts probed by positronium atom. J. Chem. Phys. 2012, 136, 034701.

    CAS  Google Scholar 

  41. Ma, N.; Horike, S. Metal-organic network-forming glasses. Chem. Rev. 2022, 122, 4163–4203.

    CAS  Google Scholar 

  42. Wu, X. L.; Yue, H.; Zhang, Y. Y.; Gao, X. Y.; Li, X. Y.; Wang, L. C.; Cao, Y. F.; Hou, M.; An, H. X.; Zhang, L. et al. Packaging and delivering enzymes by amorphous metal-organic frameworks. Nat. Commun. 2019, 10, 5165.

    Google Scholar 

  43. Horike, S.; Ma, N.; Fan, Z. Y.; Kosasang, S.; Smedskjaer, M. M. Mechanics, ionics, and optics of metal-organic framework and coordination polymer glasses. Nano Lett. 2021, 21, 6382–6390.

    CAS  Google Scholar 

  44. Gao, Z. H.; Xu, B. Y.; Fan, Y. Q.; Zhang, T. J.; Chen, S. W.; Yang, S.; Zhang, W. G.; Sun, X.; Wei, Y. H.; Wang, Z. F. et al. Topological-distortion-driven amorphous spherical metal-organic frameworks for high-quality single-mode microlasers. Angew. Chem., Int. Ed. 2021, 60, 6362–6366.

    CAS  Google Scholar 

  45. Morris, R. E.; Brammer, L. Coordination change, lability and hemilability in metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 5444–5462.

    CAS  Google Scholar 

  46. Liu, J.; Cao, G. Z.; Yang, Z. G.; Wang, D. H.; Dubois, D.; Zhou, X. D.; Graff, G. L.; Pederson, L. R.; Zhang, J. G. Oriented nanostructures for energy conversion and storage. ChemSusChem 2008, 1, 676–697.

    CAS  Google Scholar 

  47. Zhou, M.; Xu, Y.; Lei, Y. Heterogeneous nanostructure array for electrochemical energy conversion and storage. Nano Today 2018, 20, 33–57.

    Google Scholar 

  48. Jiang, Q. Y.; Zhou, C. H.; Meng, H. B.; Han, Y.; Shi, X. F.; Zhan, C. H.; Zhang, R. F. Two-dimensional metal-organic framework nanosheets: Synthetic methodologies and electrocatalytic applications. J. Mater. Chem. A 2020, 8, 15271–15301.

    CAS  Google Scholar 

  49. Zhou, M.; Xu, Y.; Wang, C. L.; Li, Q. W.; **ang, J. X.; Liang, L. Y.; Wu, M. H.; Zhao, H. P.; Lei, Y. Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. Nano Energy 2017, 31, 514–524.

    CAS  Google Scholar 

  50. Zhang, X. M.; Li, G. R.; Zhang, Y. G.; Luo, D.; Yu, A. P.; Wang, X.; Chen, Z. W. Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. Nano Energy 2021, 86, 106094.

    CAS  Google Scholar 

  51. Ko, M.; Mendecki, L.; Mirica, K. A. Conductive two-dimensional metal-organic frameworks as multifunctional materials. Chem. Commun. 2018, 54, 7873–7891.

    CAS  Google Scholar 

  52. Minami, T. Fast ion conducting glasses. J. Non-Cryst. Solids 1985, 73, 273–284.

    CAS  Google Scholar 

  53. Jiang, G. S.; Qu, C. Z.; Xu, F.; Zhang, E.; Lu, Q. Q.; Cai, X. R.; Hausdorf, S.; Wang, H. Q.; Kaskel, S. Glassy metal-organic-framework-based quasi-solid-state electrolyte for high-performance lithium-metal batteries. Adv. Funct. Mater. 2021, 31, 2104300.

    CAS  Google Scholar 

  54. Zhang, S. S.; Liu, Z. J.; Li, L.; Tang, Y. D.; Li, S. K.; Huang, H. T.; Zhang, H. Y. Electrochemical activation strategies of a novel high entropy amorphous V-based cathode material for high-performance aqueous zinc-ion batteries. J. Mater. Chem. A 2021, 9, 18488–18497.

    CAS  Google Scholar 

  55. Dawson, J. A.; Canepa, P.; Famprikis, T.; Masquelier, C.; Islam, M. S. Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 2018, 140, 362–368.

    CAS  Google Scholar 

  56. To, T.; Sørensen, S. S.; Stepniewska, M.; Qiao, A.; Jensen, L. R.; Bauchy, M.; Yue, Y. Z.; Smedskjaer, M. M. Fracture toughness of a metal-organic framework glass. Nat. Commun. 2020, 11, 2593.

    CAS  Google Scholar 

  57. Hou, X. B.; Han, Z. K.; Xu, X. J.; Sarker, D.; Zhou, J.; Wu, M.; Liu, Z. C.; Huang, M. H.; Jiang, H. Q. Controllable amorphization engineering on bimetallic metal-organic frameworks for ultrafast oxygen evolution reaction. Chem. Eng. J. 2021, 418, 129330.

    CAS  Google Scholar 

  58. Ma, J. C.; Bai, X. J.; He, W. X.; Wang, S.; Li, L L.; Chen, H.; Wang, T. Q.; Zhang, X. M.; Li, Y. N.; Zhang, L. Y. et al. Amorphous FeNi-bimetallic infinite coordination polymers as advanced electrocatalysts for the oxygen evolution reaction. Chem. Commun. 2019, 55, 12567–12570.

    CAS  Google Scholar 

  59. Wei, K. L.; Wang, X.; Jiao, X. L.; Li, C.; Chen, D. R. Self-supported three-dimensional macroporous amorphous NiFe bimetallic-organic frameworks for enhanced water oxidation. Appl. Surf. Sci. 2021, 550, 149323.

    CAS  Google Scholar 

  60. Lin, C.; Zhao, W.; Yan, X. R.; Liu, B.; Fang, X. Z.; Wang, J. X.; **a, N. N.; Tian, J. Y. Fishnet-like superstructures constructed from ultrafine and ultralong Ni-MOF nanowire arrays directionally grown on highly rough and conductive scaffolds: Synergistic activating effect for efficient and robust alkaline water oxidation activity. Appl. Surf. Sci. 2020, 529, 147030.

    CAS  Google Scholar 

  61. Pan, S. J.; Kong, X. B.; Zhang, Q. X.; Xu, Q. J.; Wang, M. J.; Wei, C. C.; Zhao, Y.; Zhang, X. D. Rational modulating electronegativity of substituents in amorphous metal-organic frameworks for water oxidation catalysis. Int. J. Hydrogen Energy 2020, 45, 9723–9732.

    CAS  Google Scholar 

  62. Li, L.; Li, G. L.; Zhang, Y. P.; Ouyang, W. J.; Zhang, H. W.; Dong, F. F.; Gao, X. H.; Lin, Z. Fabricating nano-IrO2@amorphous Ir-MOF composites for efficient overall water splitting: A one-pot solvothermal approach. J. Mater. Chem. A 2020, 8, 25687–25695.

    CAS  Google Scholar 

  63. Zhao, Q. Y.; Lin, X.; Zhou, J.; Zhao, C.; Zheng, D. H.; Song, S. Z.; **g, C.; Zhang, L. J.; Wang, J. Q. A tunable amorphous heteronuclear iron and cobalt imidazolate framework analogue for efficient oxygen evolution reactions. Eur. J. Inorg. Chem. 2021, 2021, 702–707.

    CAS  Google Scholar 

  64. Yang, F.; Li, W. Y.; Tang, B. H. J. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. J. Alloys Compd. 2018, 733, 8–14.

    CAS  Google Scholar 

  65. Zhao, M. M.; Zhao, Q. X.; Qiu, J. Q.; Lu, X.; Zhang, G. X.; Xue, H, G.; Pang, H. Amorphous cobalt coordination nanolayers incorporated with silver nanowires: A new electrode material for supercapacitors. Part. Part. Syst. Charact. 2017, 34, 1600412.

    Google Scholar 

  66. Xu, F.; Chen, N.; Fan, Z. Y.; Du, G. P. Ni/Co-based metal organic frameworks rapidly synthesized in ambient environment for high energy and power hybrid supercapacitors. Appl. Surf. Sci. 2020, 528, 146920.

    CAS  Google Scholar 

  67. Xu, F.; Zhou, Y. P.; Zhai, X. W.; Zhang, H. J.; Liu, H. D.; Ang, E. H.; Lu, Y. F.; Nie, Z. T.; Zhou, M.; Zhu, J. X. Ultrafast universal fabrication of metal-organic complex nanosheets by Joule heating engineering. Small Methods 2022, 6, 2101212.

    CAS  Google Scholar 

  68. Han, J.; Gao, S.; Wang, R. X.; Wang, K. L.; Jiang, M.; Yan, J.; Jiang, K. Thermal modulation of MOF and its application in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 46792–46799.

    CAS  Google Scholar 

  69. Feng, L.; Wang, K. Y.; Day, G. S.; Ryder, M. R.; Zhou, H. C. Destruction of metal-organic frameworks: Positive and negative aspects of stability and lability. Chem. Rev. 2020, 120, 13087–13133.

    CAS  Google Scholar 

  70. Gao, C. W.; Wang, P. X.; Wang, Z. Y.; Kær, S. K.; Zhang, Y. F.; Yue, Y. Z. The disordering-enhanced performances of the Al-MOF/graphene composite anodes for lithium ion batteries. Nano Energy 2019, 65, 104032.

    CAS  Google Scholar 

  71. Liu, J. W.; **e, D. X.; Xu, X. F.; Jiang, L. Z.; Si, R.; Shi, W.; Cheng, P. Reversible formation of coordination bonds in Sn-based metal-organic frameworks for high-performance lithium storage. Nat. Commun. 2021, 12, 3131.

    CAS  Google Scholar 

  72. Zhou, M.; Xu, Y.; **ang, J. X.; Wang, C. L.; Liang, L. Y.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Lei, Y. Understanding the orderliness of atomic arrangement toward enhanced sodium storage. Adv. Energy Mater. 2016, 6, 1600448.

    Google Scholar 

  73. Zheng, W. R.; Lee, L. Y. S. Metal-organic frameworks for electrocatalysis: Catalyst or precatalyst? ACS Energy Lett. 2021, 6, 2838–2843.

    CAS  Google Scholar 

  74. Liu, Z. J.; Zheng, F. F.; **ong, W. W.; Li, X. G.; Yuan, A. H.; Pang, H. Strategies to improve electrochemical performances of pristine metal-organic frameworks-based electrodes for lithium/sodium-ion batteries. SmartMat 2021, 2, 488–518.

    CAS  Google Scholar 

  75. Yang, C.; **n, S.; Mai, L. Q.; You, Y. Materials design for high-safety sodium-ion battery. Adv. Energy Mater. 2021, 11, 2000974.

    CAS  Google Scholar 

  76. Wang, B. Q.; Han, X.; Guo, C.; **g, J.; Yang, C.; Li, Y. P.; Han, A. J.; Wang, D. S.; Liu, J. F. Structure inheritance strategy from MOF to edge-enriched NiFe-LDH array for enhanced oxygen evolution reaction. Appl. Catal. B: Environ. 2021, 298, 120580.

    CAS  Google Scholar 

  77. Wang, B. Q.; Shang, J.; Guo, C.; Zhang, J. Z.; Zhu, F. N.; Han, A. J.; Liu, J. F. A general method to ultrathin bimetal-MOF nanosheets arrays via in situ transformation of layered double hydroxides arrays. Small 2019, 15, 1804761.

    Google Scholar 

  78. Vogt, C.; Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 2022, 6, 89–111.

    Google Scholar 

  79. Zhao, E. W.; Jónsson, E.; Jethwa, R. B.; Hey, D.; Lyu, D.; Brookfield, A.; Klusener, P. A. A.; Collison, D.; Grey, C. P. Coupled in situ NMR and EPR studies reveal the electron transfer rate and electrolyte decomposition in redox flow batteries. J. Am. Chem. Soc. 2021, 143, 1885–1895.

    CAS  Google Scholar 

  80. Zhang, W.; Peng, J.; Hua, W. B.; Liu, Y.; Wang, J. S.; Liang, Y. R.; Lai, W. H.; Jiang, Y.; Huang, Y.; Zhang, W. et al. Architecting amorphous vanadium oxide/MXene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries. Adv. Energy Mater. 2021, 11, 2100757.

    CAS  Google Scholar 

  81. Liu, X.; Tong, Y.; Wu, Y. J.; Zheng, J. F.; Sun, Y. J.; Li, H. Y. In-depth mechanism understanding for potassium-ion batteries by electroanalytical methods and advanced in situ characterization techniques. Small Methods 2021, 5, 2101130.

    CAS  Google Scholar 

  82. Yan, Y.; Cheng, C.; Zhang, L.; Li, Y.; Lu, J. Deciphering the reaction mechanism of lithium-sulfur batteries by in situ/operando synchrotron-based characterization techniques. Adv. Energy Mater. 2019, 9, 1900148.

    Google Scholar 

  83. Zhang, J.; Liu, Y. C.; Liu, H.; Song, Y. Z.; Sun, S. D.; Li, Q.; **ng, X. R.; Chen, J. Urchin-like Fe3Se4 hierarchitectures: A novel pseudocapacitive sodium-ion storage anode with prominent rate and cycling properties. Small 2020, 16, 2000504.

    CAS  Google Scholar 

  84. Li, M.; Liu, W. W.; Luo, D.; Chen, Z. W.; Amine, K.; Lu, J. Evidence of morphological change in sulfur cathodes upon irradiation by synchrotron X-rays. ACS Energy Lett. 2022, 7, 577–582.

    CAS  Google Scholar 

  85. Zhang, Y. R.; Katayama, Y.; Tatara, R.; Giordano, L.; Yu, Y.; Fraggedakis, D.; Sun, J. G.; Maglia, F.; Jung, R.; Bazant, M. Z. et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy. Energy Environ. Sci. 2020, 13, 183–199.

    Google Scholar 

  86. Garcia, A. C.; Touzalin, T.; Nieuwland, C.; Perini, N.; Koper, M. T. M. Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations. Angew. Chem., Int. Ed. 2019, 58, 12999–13003.

    CAS  Google Scholar 

  87. Zheng, Z. M.; Wu, H. H.; Liu, H. D.; Zhang, Q. B.; He, X.; Yu, S. C.; Petrova, V.; Feng, J.; Kostecki, R.; Liu, P. et al. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano 2020, 14, 9545–9561.

    CAS  Google Scholar 

  88. Zhang, P.; Han, B.; Yang, X. M.; Zou, Y. C.; Lu, X. Z.; Liu, X.; Zhu, Y. M.; Wu, D. J.; Shen, S. C.; Li, L. et al. Revealing the intrinsic atomic structure and chemistry of amorphous LiO2-containing products in Li−O2 batteries using cryogenic electron microscopy. J. Am. Chem. Soc. 2022, 144, 2129–2136.

    CAS  Google Scholar 

  89. Özdogru, B.; Cha, Y.; Gwalani, B.; Murugesan, V.; Song, M. K.; Çapraz, Ö. Ö. In situ probing potassium-ion intercalation-induced amorphization in crystalline iron phosphate cathode materials. Nano Lett. 2021, 21, 7579–7586.

    Google Scholar 

  90. Palaniselvam, T.; Mukundan, C.; Hasa, I.; Santhosha, A. L.; Goktas, M.; Moon, H.; Ruttert, M.; Schmuch, R.; Pollok, K.; Langenhorst, F. et al. Assessment on the use of high capacity “Sn4P3”/NHC composite electrodes for sodium-ion batteries with ether and carbonate electrolytes. Adv. Funct. Mater. 2020, 30, 2004798.

    CAS  Google Scholar 

  91. Liu, X. S.; Zheng, B. Z.; Zhao, J.; Zhao, W. M.; Liang, Z. T.; Su, Y.; **e, C. P.; Zhou, K.; **ang, Y. X.; Zhu, J. P. et al. Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries. Adv. Energy Mater. 2021, 11, 2003583.

    CAS  Google Scholar 

  92. Lyu, Y.; Zheng, J. Y.; **ao, Z. H.; Zhao, S. Y.; Jiang, S. P.; Wang, S. Y. Identifying the intrinsic relationship between the restructured oxide layer and oxygen evolution reaction performance on the cobalt Pnictide catalyst. Small 2020, 16, 1906867.

    CAS  Google Scholar 

  93. Deng, C.; Wang, H. Q.; Wang, S. P. Clarifying the lithium storage behavior of MoS2 with in situ electrochemical impedance spectroscopy. J. Mater. Chem. A 2021, 9, 15734–15743.

    CAS  Google Scholar 

  94. Zhang, W.; Seo, D. H.; Chen, T.; Wu, L. J.; Topsakal, M.; Zhu, Y. M.; Lu, D. Y.; Ceder, G.; Wang, F. Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 2020, 367, 1030–1034.

    CAS  Google Scholar 

  95. Gong, X. Y.; Gnanasekaran, K.; Ma, K. K.; Forman, C. J.; Wang, X. J.; Su, S. Y.; Farha, O. K.; Gianneschi, N. C. Rapid generation of metal-organic framework phase diagrams by high-throughput transmission electron microscopy. J. Am. Chem. Soc. 2022, 144, 6674–6680.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge supports from the National Key R&D Program of China (No. 2021YFA1501502), the National Natural Science Foundation of China (Nos. 22075263 and 52002366), and the Fundamental Research Funds for the Central Universities (No. WK2060000039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yang, Q., Zheng, N. et al. Roadmap of amorphous metal-organic framework for electrochemical energy conversion and storage. Nano Res. 16, 4107–4118 (2023). https://doi.org/10.1007/s12274-022-5114-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5114-8

Keywords

Navigation