Log in

Phosphorus-doped iron-nitrogen-carbon catalyst with penta-coordinated single atom sites for efficient oxygen reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single-atomic Fe-N4 is the well-acknowledged active site in iron-nitrogen-carbon (Fe-N-C) material for oxygen reduction reaction (ORR). The adjusting of the electronic distribution of Fe-N4 is promising for further enhancing the performance of the Fe-N-C catalyst. Herein, a phosphorus (P)-doped Fe-N-C catalyst with penta-coordinated single atom sites (FeNPC) is reported for efficient oxygen reduction. Fe K-edge X-ray absorption spectroscopy (XAS) verifies the coordination environment of single Fe atom, while density functional theory (DFT) calculations reveal that the penta-coordination and neighboring doped P atoms can simultaneously change the electronic distribution of Fe-N4 and its adsorption strength of key intermediates, reducing the reaction-free energy of the potential-limiting step. Electrochemical tests validate the remarkable intrinsic ORR activity of FeNPC in alkaline media (a half-wave potential (E1/2) of 0.904 V vs. reversible hydrogen electrode (RHE) and limited current density (JL) of 6.23 mA·cm−2) and an enhanced ORR performance in neutral (E1/2 = 0.751 V, JL = 5.27 mA·cm−2) and acidic media (E1/2 = 0.735 V, JL = 5.82 mA·cm−2) with excellent stability, highlighting the benefits of optimizing the local environment of single-atomic Fe-N4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ager, J. W.; Lapkin, A. A. Chemical storage of renewable energy. Science 2018, 360, 707–708.

    Article  CAS  Google Scholar 

  2. Chong, L.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.

    Article  CAS  Google Scholar 

  3. Fu, J.; Liang, R. L.; Liu, G. H.; Yu, A. P.; Bai, Z. Y.; Yang, L.; Chen, Z. W. Recent progress in electrically rechargeable zinc-air batteries. Adv. Mater. 2019, 31, 1805230.

    Article  Google Scholar 

  4. Shui, J. L.; Wang, M.; Du, F.; Dai, L. M. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci. Adv. 2015, 1, e1400129.

    Article  Google Scholar 

  5. Yang, X. D.; Zheng, Y. P.; Yang, J.; Shi, W.; Zhong, J. H.; Zhang, C. K.; Zhang, X.; Hong, Y. H.; Peng, X. X.; Zhou, Z. Y. et al. Modeling Fe/N/C catalysts in monolayer graphene. ACS Catal. 2017, 7, 139–145.

    Article  CAS  Google Scholar 

  6. Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

    Article  CAS  Google Scholar 

  7. Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

    Article  CAS  Google Scholar 

  8. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  9. Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

    Article  CAS  Google Scholar 

  10. Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 2019, 141, 6254–6262.

    Article  CAS  Google Scholar 

  11. Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; **, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 2019, 4, 60–67.

    CAS  Google Scholar 

  12. Shang, L.; Yu, H. J.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Well-dispersed ZIF-derived Co, N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668–1674.

    Article  CAS  Google Scholar 

  13. Tobisu, M.; Yamakawa, K.; Shimasaki, T.; Chatani, N. Nickel-catalyzed reductive cleavage of aryl—oxygen bonds in alkoxy- and pivaloxyarenes using hydrosilanes as a mild reducing agent. Chem. Commun. 2011, 47, 2946–2948.

    Article  CAS  Google Scholar 

  14. Li, L. B.; Huang, B. Y.; Tang, X. N.; Hong, Y. S.; Zhai, W. J.; Hu, T.; Yuan, K.; Chen, Y. W. Recent developments of microenvironment engineering of single-atom catalysts for oxygen reduction toward desired activity and selectivity. Adv. Funct. Mater. 2021, 31, 2103857.

    Article  CAS  Google Scholar 

  15. Kumar, K.; Gairola, P.; Lions, M.; Ranjbar-Sahraie, N.; Mermoux, M.; Dubau, L.; Zitolo, A.; Jaouen, F.; Maillard, F. Physical and chemical considerations for improving catalytic activity and stability of non-precious-metal oxygen reduction reaction catalysts. ACS Catal. 2018, 8, 11264–11276.

    Article  CAS  Google Scholar 

  16. Zhang, H. G.; Chung, H. T.; Cullen, D. A.; Wagner, S.; Kramm, U. I.; More, K. L.; Zelenay, P.; Wu, G. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 2019, 12, 2548–2558.

    Article  CAS  Google Scholar 

  17. Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

    Article  CAS  Google Scholar 

  18. Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    Article  CAS  Google Scholar 

  19. Han, A.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

    Article  CAS  Google Scholar 

  20. Zhang, N.; Zhou, T. P.; Chen, M. L.; Feng, H.; Yuan, R. L.; Zhong, C. A.; Yan, W. S.; Tian, Y. C.; Wu, X. J.; Chu, W. S. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118.

    Article  CAS  Google Scholar 

  21. Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A.; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.

    Article  CAS  Google Scholar 

  22. Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C—N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.

    Article  CAS  Google Scholar 

  23. Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; **e, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.

    Article  CAS  Google Scholar 

  24. Wang, D. N.; Wu, Y. L.; Li, Z. G.; Pan, H.; Wang, Y. Q.; Yang, M. S.; Zhang, G. X. N-doped carbon nanoflower-supported Fe-N4 motifs for high-efficiency reduction of oxygen in both alkaline and acid. Chem. Eng. J. 2021, 424, 130401.

    Article  CAS  Google Scholar 

  25. Wu, Y. L.; Liang, G. F.; Chen, D.; Li, Z. L.; Xu, J. C.; Huang, G. J.; Yang, M. Z.; Zhang, H.; Chen, J.; **e, F. Y. et al. Fe-N4 doped carbon nanotube cathode catalyst for PEM fuel cells. ACS Appl. Mater. Interfaces 2021, 13, 48923–48933.

    Article  CAS  Google Scholar 

  26. Yang, Z. K.; Wang, Y.; Zhu, M. Z.; Li, Z. J.; Chen, W. X.; Wei, W. C.; Yuan, T. W.; Qu, Y. T.; Xu, Q.; Zhao, C. M. et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells. ACS Catal. 2019, 9, 2158–2163.

    Article  CAS  Google Scholar 

  27. Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn—N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

    Article  CAS  Google Scholar 

  28. Wu, G.; Zelenay, P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 2013, 46, 1878–1889.

    Article  CAS  Google Scholar 

  29. Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2020, 14, 1374–1381.

    Article  Google Scholar 

  30. Zagal, J. H.; Koper, M. T. M. Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2016, 55, 14510–14521.

    Article  CAS  Google Scholar 

  31. Peng, L. S.; Yang, J.; Yang, Y. Q.; Qian, F. R.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Mesopore-rich Fe-N-C catalyst with FeN4-O-NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 2022, 34, 2202544.

    Article  CAS  Google Scholar 

  32. Li, R. Z.; Wang, D. S. Understanding the structure—performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  33. Li, L. B.; Huang, S. H.; Cao, R.; Yuan, K.; Lu, C. B.; Huang, B. Y.; Tang, X. N.; Hu, T.; Zhuang, X. D.; Chen, Y. W. Optimizing microenvironment of asymmetric N, S-coordinated single-atom Fe via axial fifth coordination toward efficient oxygen electroreduction. Small 2022, 18, 2105387.

    Article  CAS  Google Scholar 

  34. Fu, X. G.; Li, N.; Ren, B. H.; Jiang, G. P.; Liu, Y. R.; Hassan, F. M.; Su, D.; Zhu, J. B.; Yang, L.; Bai, Z. Y. et al. Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell. Adv. Energy Mater. 2019, 9, 1803737.

    Article  Google Scholar 

  35. Wang, Q.; Yang, Y. Q.; Sun, F. F.; Chen, G. B.; Wang, J.; Peng, L. S.; Chen, W. T.; Shang, L.; Zhao, J. Q.; Sun-Waterhouse, D. et al. Molten NaCl-assisted synthesis of porous Fe-N-C electrocatalysts with a high density of catalytically accessible FeN4 active sites and outstanding oxygen reduction reaction performance. Adv. Energy Mater. 2021, 11, 2100219.

    Article  CAS  Google Scholar 

  36. Wang, Y.; Tang, Y. J.; Zhou, K. Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 14115–14119.

    Article  CAS  Google Scholar 

  37. Li, J. K.; Ghoshal, S.; Liang, W. T.; Sougrati, M. T.; Jaouen, F.; Halevi, B.; McKinney, S.; McCool, G.; Ma, C. R.; Yuan, X. X. et al. Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. Energy Environ. Sci. 2016, 9, 2418–2432.

    Article  CAS  Google Scholar 

  38. Wang, F. T.; Zhou, Y. P.; Lin, S.; Yang, L. J.; Hu, Z.; **e, D. Q. Axial ligand effect on the stability of Fe-N-C electrocatalysts for acidic oxygen reduction reaction. Nano Energy 2020, 78, 105128.

    Article  CAS  Google Scholar 

  39. Chen, Z. Y.; Niu, H.; Ding, J.; Liu, H.; Chen, P. H.; Lu, Y. H.; Lu, Y. R.; Zuo, W. B.; Han, L.; Guo, Y. Z. et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: Effect of iron spin-state tuning. Angew. Chem., Int. Ed. 2021, 60, 25404–25410.

    Article  CAS  Google Scholar 

  40. Yuan, K.; Sfaelou, S.; Qiu, M.; Lützenkirchen-Hecht, D.; Zhuang, X. D.; Chen, Y. W.; Yuan, C.; Feng, X. L.; Scherf, U. Synergetic contribution of boron and Fe—Nx species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. ACS Energy Lett. 2018, 3, 252–260.

    Article  CAS  Google Scholar 

  41. Li, Q. H.; Chen, W. X.; **ao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

    Article  Google Scholar 

  42. Qin, Q.; Jang, H.; Li, P.; Yuan, B.; Liu, X. E.; Cho, J. A tannic acid-derived N-, P-codoped carbon-supported iron-based nanocomposite as an advanced trifunctional electrocatalyst for the overall water splitting cells and zinc-air batteries. Adv. Energy Mater. 2019, 9, 1803312.

    Article  Google Scholar 

  43. Chen, P. Z.; Zhou, T. P.; **ng, L. L.; Xu, K.; Tong, Y.; **e, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron—nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614.

    Article  CAS  Google Scholar 

  44. Yang, D. S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J. S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 2012, 134, 16127–16130.

    Article  CAS  Google Scholar 

  45. Zhao, Z. H.; Li, M. T.; Zhang, L. P.; Dai, L. M.; **a, Z. H. Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries. Adv. Mater. 2015, 27, 6834–6840.

    Article  CAS  Google Scholar 

  46. Gao, Y.; Kong, D. B.; Liang, J. X.; Han, D. L.; Wang, B.; Yang, Q. H.; Zhi, L. J. Inside-out dual-do** effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Res. 2022, 15, 361–367.

    Article  CAS  Google Scholar 

  47. Sun, H.; Wang, M. F.; Du, X. C.; Jiao, Y.; Liu, S. S.; Qian, T.; Yan, Y. C.; Liu, C.; Liao, M.; Zhang, Q. H. et al. Modulating the d-band center of boron doped single-atom sites to boost the oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 20952–20957.

    Article  CAS  Google Scholar 

  48. **a, D. S.; Yang, X.; **e, L.; Wei, Y. P.; Jiang, W. L.; Dou, M.; Li, X. N.; Li, J.; Gan, L.; Kang, F. Y. Direct growth of carbon nanotubes doped with single atomic Fe-N4 active sites and neighboring graphitic nitrogen for efficient and stable oxygen reduction electrocatalysis. Adv. Funct. Mater. 2019, 29, 1906174.

    Article  CAS  Google Scholar 

  49. Yin, H. B.; Yuan, P. F.; Lu, B. A.; **a, H. C.; Guo, K.; Yang, G. G.; Qu, G.; Xue, D. P.; Hu, Y. F.; Cheng, J. Q. et al. Phosphorus-driven electron delocalization on edge-type FeN4 active sites for oxygen reduction in acid medium. ACS Catal. 2021, 11, 12754–12762.

    Article  CAS  Google Scholar 

  50. Cheng, W. Z.; Yuan, P. F.; Lv, Z. R.; Guo, Y. Y.; Qiao, Y. Y.; Xue, X. Y.; Liu, X.; Bai, W. L.; Wang, K. X.; Xu, Q. et al. Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Appl. Catal. B: Environ. 2020, 260, 118198.

    Article  CAS  Google Scholar 

  51. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  52. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  53. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the dam** function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

    Article  CAS  Google Scholar 

  54. Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.

    Article  Google Scholar 

  55. Mathew, K.; Kolluru, V. S. C.; Mula, S.; Steinmann, S. N.; Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 2019, 151, 234101.

    Article  Google Scholar 

  56. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  57. Wei, X. Q.; Luo, X.; Wang, H. J.; Gu, W. L.; Cai, W. W.; Lin, Y. H.; Zhu, C. Z. Highly-defective Fe-N-C catalysts towards pH-universal oxygen reduction reaction. Appl. Catal. B:Environ. 2020, 263, 118347.

    Article  CAS  Google Scholar 

  58. Yuan, K.; Lutzenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

    Article  CAS  Google Scholar 

  59. Han, J. X.; Bao, H. L.; Wang, J. Q.; Zheng, L. R.; Sun, S. R.; Wang, Z. L.; Sun, C. W. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B:Environ. 2021, 280, 119411.

    Article  CAS  Google Scholar 

  60. Chai, G. L.; Qiu, K. P.; Qiao, M.; Titirici, M. M.; Shang, C. X.; Guo, Z. X. Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N co-doped graphene frameworks. Energy Environ. Sci. 2017, 10, 1186–1195.

    Article  CAS  Google Scholar 

  61. Li, C. L.; Chen, Z. Y.; Kong, A. G.; Ni, Y. Y.; Kong, F. T.; Shan, Y. K. High-rate oxygen electroreduction over metal-free graphene foams embedding P—N coupled moieties in acidic media. J. Mater. Chem. A 2018, 6, 4145–4151.

    Article  CAS  Google Scholar 

  62. Zhu, X. F.; Zhang, D. T.; Chen, C. J.; Zhang, Q. R.; Liu, R. S.; **a, Z. H.; Dai, L. M.; Amal, R.; Lu, X. Y. Harnessing the interplay of Fe—Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 2020, 71, 104597.

    Article  CAS  Google Scholar 

  63. Chen, Y. F.; Li, Z. J.; Zhu, Y. B.; Sun, D. M.; Liu, X. E.; Xu, L.; Tang, Y. W. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1806312.

    Article  Google Scholar 

  64. Song, L. T.; Wu, Z. Y.; Zhou, F.; Liang, H. W.; Yu, Z. Y.; Yu, S. H. Sustainable hydrothermal carbonization synthesis of iron/nitrogen-doped carbon nanofiber aerogels as electrocatalysts for oxygen reduction. Small 2016, 12, 6398–6406.

    Article  CAS  Google Scholar 

  65. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

    Article  CAS  Google Scholar 

  66. Sakaushi, K.; Eckardt, M.; Lyalin, A.; Taketsugu, T.; Behm, R. J.; Uosaki, K. Microscopic electrode processes in the four-electron oxygen reduction on highly active carbon-based electrocatalysts. ACS Catal. 2018, 8, 8162–8176.

    Article  CAS  Google Scholar 

  67. Zhao, M. Q.; Liu, H. R.; Zhang, H. W.; Chen, W.; Sun, H. Q.; Wang, Z. H.; Zhang, B.; Song, L.; Yang, Y.; Ma, C. et al. A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn-air batteries. Energy Environ. Sci. 2021, 14, 6455–6463.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21875285, 22171288, and 22005340), the Key Research and Development Projects of Shandong Province (No. 2019JZZY010331), and the Natural Science Foundation of Shandong Province (No. ZR2020MB017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Fan or Daofeng Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Wei, X., Li, X. et al. Phosphorus-doped iron-nitrogen-carbon catalyst with penta-coordinated single atom sites for efficient oxygen reduction. Nano Res. 16, 1810–1819 (2023). https://doi.org/10.1007/s12274-022-4939-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4939-5

Keywords

Navigation