Log in

Multifunctional protective aerogel with superelasticity over −196 to 500 °C

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Protective materials that possess superelasticity and multifunctionality over a broad temperature range are urgently needed in various advanced applications. However, under harsh work conditions, the performance of current materials may largely deteriorate to lose protective functionality. Herein, we report a bidirectionally oriented multi-walled carbon nanotubes (MWCNTs)-reinforced chitosan carbon aerogel (CS-MWCNT) that possesses superelasticity, high electromagnetic interference shielding, thermal insulation, and infrared stealth at both low temperatures (such as liquid nitrogen) and high temperatures (such as alcohol flames). Highly oriented lamellar arch structures combined with an MWCNTs-reinforced carbon skeleton act as elastic segments to disperse the stress during compression and endow CS-MWCNT with the ability to recover to almost the original size after being compressed at −196–500 °C. The lamellar structures make CS-MWCNT thermally insulating and infrared stealth with a low thermal conductivity of ∼ 0.03 W/(mK). Furthermore, a high electromagnetic interference (EMI) shielding effect of 64 dB is realized via an absorption-dominant EMI shielding mechanism derived from the successive inherently conductive carbon lamella, and the EMI shielding performance is largely maintained after treatment under extreme conditions like low temperature, high temperature, as well as cyclic compression. This work provides a new strategy for the development of temperature-invariant multifunctional aerogels for harsh environment applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao, H. L.; Zhu, Y. B.; Mao, L. B.; Wang, F. C.; Luo, X. S.; Liu, Y. Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W. et al. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 2016, 7, 12920.

    Article  CAS  Google Scholar 

  2. Chen, Z. H.; Zhuo, H.; Hu, Y. J.; Lai, H. H.; Liu, L. X.; Zhong, L. X.; Peng, X. W. Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 2020, 30, 1910292.

    Article  CAS  Google Scholar 

  3. Huang, H.; Zhao, Y. P.; Cong, T. Z.; Li, C. W.; Wen, N. X.; Zuo, X. Q.; Guo, Y.; Zhang, H.; Fan, Z.; Pan, L. J. Flexible and alternately layered high-loading film electrode based on 3D carbon nanocoils and PEDOT:PSS for high-energy-density supercapacitor. Adv. Funct. Mater. 2022, 32, 2110777.

    Article  CAS  Google Scholar 

  4. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

    Article  CAS  Google Scholar 

  5. Wang, T.; Long, M. C.; Zhao, H. B.; An, W. L.; Xu, S. M.; Deng, C.; Wang, Y. Z. Temperature-responsive intumescent chemistry toward fire resistance and super thermal insulation under extremely harsh conditions. Chem. Mater. 2021, 33, 6018–6028.

    Article  CAS  Google Scholar 

  6. Mao, X.; Zhao, L.; Zhang, K.; Wang, Y. Y.; Ding, B. Highly flexible ceramic nanofibrous membranes for superior thermal insulation and fire retardancy. Nano Res. 2022, 15, 2592–2598.

    Article  CAS  Google Scholar 

  7. Li, J.; Guo, P. L.; Hu, C. L.; Pang, S. Y.; Ma, J.; Zhao, R. D.; Tang, S. F.; Cheng, H. M. Fabrication of large aerogel-like carbon/carbon composites with excellent load-bearing capacity and thermal-insulating performance at 1800 °C. ACS Nano 2022, 16, 6565–6577.

    Article  CAS  Google Scholar 

  8. Cheng, Y.; Zhang, X.; Qin, Y. X.; Dong, P.; Yao, W.; Matz, J.; Ajayan, P. M.; Shen, J. F.; Ye, M. X. Super-elasticity at 4 K of covalently crosslinked polyimide aerogels with negative Poisson’s ratio. Nat. Commun. 2021, 12, 4092.

    Article  CAS  Google Scholar 

  9. Zhou, Y. F.; Li, W. Y.; Li, L. L.; Sun, Z. H.; Jiang, L.; Ma, J. W.; Chen, S. J.; Ning, X.; Zhou, F. L. Lightweight and highly conductive silver nanoparticles functionalized meta-aramid nonwoven fabric for enhanced electromagnetic interference shielding. J. Mater. Sci. 2021, 56, 6499–6513.

    Article  CAS  Google Scholar 

  10. Yu, Y. Y.; Chao, Z.; Gong, Q.; Li, C. W.; Fu, H. L.; Lei, F.; Hu, D. M.; Zheng, L. X. Tailoring hierarchical carbon nanotube cellular structure for electromagnetic interference shielding in extreme conditions. Mater. Des. 2021, 206, 109783.

    Article  CAS  Google Scholar 

  11. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

    Article  Google Scholar 

  12. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan, K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

    Article  CAS  Google Scholar 

  13. Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

    Article  CAS  Google Scholar 

  14. Ma, Z. L.; **ang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

    CAS  Google Scholar 

  15. Wang, Y. Q.; Zhao, H. B.; Cheng, J. B.; Liu, B. W.; Fu, Q.; Wang, Y. Z. Hierarchical Ti3C2Tx@ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins. Nano-Micro Lett. 2022, 14, 76.

    Article  CAS  Google Scholar 

  16. Shi, H. G.; Zhao, H. B.; Liu, B. W.; Wang, Y. Z. Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 26505–26514.

    Article  CAS  Google Scholar 

  17. Zhao, W.; Zhao, H. B.; Cheng, J. B.; Li, W. X.; Zhang, J. Y.; Wang, Y. Z. A green, durable and effective flame-retardant coating for expandable polystyrene foams. Chem. Eng. J. 2022, 440, 135807.

    Article  CAS  Google Scholar 

  18. Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402.

    Article  CAS  Google Scholar 

  19. Li, J.; Wang, Y.; Yue, T. N.; Gao, Y. N.; Shi, Y. D.; Shen, J. B.; Wu, H.; Wang, M. Robust electromagnetic interference shielding, joule heating, thermal conductivity, and anti-drip** performances of polyoxymethylene with uniform distribution and high content of carbon-based nanofillers. Compos. Sci. Technol. 2021, 206, 108681.

    Article  CAS  Google Scholar 

  20. Gao, Y. N.; Wang, Y.; Yue, T. N.; Zhao, B.; Che, R. C.; Wang, M. Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding. Chem. Eng. J. 2022, 430, 132949.

    Article  CAS  Google Scholar 

  21. Xu, M.; Futaba, D. N.; Yamada, T.; Yumura, M.; Hata, K. Carbon nanotubes with temperature-invariant viscoelasticity from −196 to 1000 °C. Science 2010, 330, 1364–1368.

    Article  CAS  Google Scholar 

  22. Kim, K. H.; Tsui, M. N.; Islam, M. F. Graphene-coated carbon nanotube aerogels remain superelastic while resisting fatigue and creep over −100 to +500 °C. Chem. Mater. 2017, 29, 2748–2755.

    Article  CAS  Google Scholar 

  23. Li, C.; Ding, Y. W.; Hu, B. C.; Wu, Z. Y.; Gao, H. L.; Liang, H. W.; Chen, J. F.; Yu, S. H. Temperature-invariant superelastic and fatigue resistant carbon nanofiber aerogels. Adv. Mater. 2020, 32, 1904331.

    Article  CAS  Google Scholar 

  24. Li, M. E.; Zhao, H. B.; Cheng, J. B.; Wang, T.; Fu, T.; Zhang, A. N.; Wang, Y. Z. An effective green porous structural adhesive for thermal insulating, flame-retardant, and smoke-suppressant expandable polystyrene foam. Engineering, in press, https://doi.org/10.1016/j.eng.2020.08.032.

  25. Schaedler, T. A.; Jacobsen, A. J.; Torrents, A.; Sorensen, A. E.; Lian, J.; Greer, J. R.; Valdevit, L.; Carter, W. B. Ultralight metallic microlattices. Science 2011, 334, 962–965.

    Article  CAS  Google Scholar 

  26. Meza, L. R.; Das, S.; Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 2014, 345, 1322–1326.

    Article  CAS  Google Scholar 

  27. Lee, J. H.; Park, S. J. Recent advances in preparations and applications of carbon aerogels: A review. Carbon 2020, 163, 1–18.

    Article  CAS  Google Scholar 

  28. Yu, S.; Song, S. L.; Li, R.; Fang, B. Z. The lightest solid meets the lightest gas: An overview of carbon aerogels and their composites for hydrogen related applications. Nanoscale 2020, 12, 19536–19556.

    Article  CAS  Google Scholar 

  29. Liu, B. W.; Zhao, H. B.; Wang, Y. Z. Advanced flame-retardant methods for polymeric materials. Adv. Mater., in press, https://doi.org/10.1002/adma.202107905.

  30. Torres, C. E. I.; Quezada, T. E. S.; Kharissova, O. V.; Kharisov, B. I.; De La Fuente, M. I. G. Carbon-based aerogels and xerogels: Synthesis, properties, oil sorption capacities, and DFT simulations. J. Environ. Chem. Eng. 2021, 9, 104886.

    Article  Google Scholar 

  31. Liu, Y.; Liu, J. Q.; Song, P. A. Recent advances in polysaccharide-based carbon aerogels for environmental remediation and sustainable energy. Sustain. Mater. Technol. 2021, 27, e00240.

    CAS  Google Scholar 

  32. Liu, H. Y.; Xu, T.; Cai, C. Y.; Liu, K.; Liu, W.; Zhang, M.; Du, H. S.; Si, C. L.; Zhang, K. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 2022, 32, 2113082.

    Article  CAS  Google Scholar 

  33. Wang, J.; Xu, Z.; Eloi, J. C.; Titirici, M. M.; Eichhorn, S. J. Ice-templated, sustainable carbon aerogels with hierarchically tailored channels for sodium- and potassium-ion batteries. Adv. Funct. Mater. 2022, 32, 2110862.

    Article  CAS  Google Scholar 

  34. Guo, P. L.; Li, J.; Pang, S. Y.; Hu, C. L.; Tang, S. F.; Cheng, H. M. Ultralight carbon fiber felt reinforced monolithic carbon aerogel composites with excellent thermal insulation performance. Carbon 2021, 183, 525–529.

    Article  CAS  Google Scholar 

  35. Zhang, X. S.; Wang, B.; Wu, N.; Han, C.; Wang, Y. D. Multi-phase SiZrOC nanofibers with outstanding flexibility and stability for thermal insulation up to 1400 °C. Chem. Eng. J. 2021, 410, 128304.

    Article  CAS  Google Scholar 

  36. Wu, K. D.; Zhou, Q.; Cao, J. X.; Qian, Z.; Niu, B.; Long, D. H. Ultrahigh-strength carbon aerogels for high temperature thermal insulation. J. Colloid Interface Sci. 2022, 609, 667–675.

    Article  CAS  Google Scholar 

  37. Zhou, B.; Han, G. J.; Zhang, Z.; Li, Z. Y.; Feng, Y. Z.; Ma, J. M.; Liu, C. T.; Shen, C. Y. Aramid nanofiber-derived carbon aerogel film with skin-core structure for high electromagnetic interference shielding and solar-thermal conversion. Carbon 2021, 184, 562–570.

    Article  CAS  Google Scholar 

  38. Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

    Article  CAS  Google Scholar 

  39. Zhuo, H.; Hu, Y. J.; Tong, X.; Chen, Z. H.; Zhong, L. X.; Lai, H. H.; Liu, L. X.; **g, S. S.; Liu, Q. Z.; Liu, C. F. et al. A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv. Mater. 2018, 30, 1706705.

    Article  Google Scholar 

  40. Feng, J. Z.; Zhang, C. R.; Feng, J. Carbon fiber reinforced carbon aerogel composites for thermal insulation prepared by soft reinforcement. Mater. Lett. 2012, 67, 266–268.

    Article  CAS  Google Scholar 

  41. Kim, K. H.; Oh, Y.; Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 2012, 7, 562–566.

    Article  CAS  Google Scholar 

  42. Wang, P. Y.; Lei, Y.; Yue, Z. F. Experimental and numerical evaluation of the flexural properties of stitched foam core sandwich structure. Compos. Struct. 2013, 100, 243–248.

    Article  Google Scholar 

  43. Wang, T.; Long, M. C.; Zhao, H. B.; Liu, B. W.; Shi, H. G.; An, W. L.; Li, S. L.; Xu, S. M.; Wang, Y. Z. An ultralow-temperature superelastic polymer aerogel with high strength as a great thermal insulator under extreme conditions. J. Mater. Chem. A 2020, 8, 18698–18706.

    Article  CAS  Google Scholar 

  44. Yu, Z. L.; Qin, B.; Ma, Z. Y.; Huang, J.; Li, S. C.; Zhao, H. Y.; Li, H.; Zhu, Y. B.; Wu, H. A.; Yu, S. H. Superelastic hard carbon nanofiber aerogels. Adv. Mater. 2019, 31, 1900651.

    Article  Google Scholar 

  45. Xu, X.; Zhang, Q. Q.; Hao, M. L.; Hu, Y.; Lin, Z. Y.; Peng, L. L.; Wang, T.; Ren, X. X.; Wang, C.; Zhao, Z. P. et al. Double-negativeindex ceramic aerogels for thermal superinsulation. Science 2019, 363, 723–727.

    Article  CAS  Google Scholar 

  46. Zhao, H. B.; Cheng, J. B.; Zhu, J. Y.; Wang, Y. Z. Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness. J. Mater. Chem. C 2019, 7, 441–448.

    Article  CAS  Google Scholar 

  47. Cao, M.; Liu, B. W.; Zhang, L.; Peng, Z. C.; Zhang, Y. Y.; Wang, H.; Zhao, H. B.; Wang, Y. Z. Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications. Compos. Part B: Eng. 2021, 225, 109309.

    Article  CAS  Google Scholar 

  48. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Flexible Ti3C2Tx/(aramid nanofiber/PVA) composite films for superior electromagnetic interference shielding. Research 2022, 2022, 9780290.

    CAS  Google Scholar 

  49. Zeng, Z. H.; Wang, C. X.; Siqueira, G.; Han, D. X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. F.; Nyström, G. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 2020, 7, 2000979.

    Article  CAS  Google Scholar 

  50. Su, L.; Li, M. Z.; Wang, H. J.; Niu, M.; Lu, D.; Cai, Z. X. Resilient Si3N4 nanobelt aerogel as fire-resistant and electromagnetic wave-transparent thermal insulator. ACS Appl. Mater. Interfaces 2019, 11, 15795–15803.

    Article  CAS  Google Scholar 

  51. Wan, Y. J.; Zhu, P. L.; Yu, S. H.; Sun, R.; Wong, C. P.; Liao, W. H. Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 2017, 115, 629–639.

    Article  CAS  Google Scholar 

  52. Zeng, Z. H.; Wang, C. X.; Zhang, Y. F.; Wang, P. Y.; Shahabadi, S. I. S.; Pei, Y. M.; Chen, M. J.; Lu, X. H. Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 2018, 10, 8205–8213.

    Article  CAS  Google Scholar 

  53. Deng, Z. M.; Tang, P. P.; Wu, X. Y.; Zhang, H. B.; Yu, Z. Z. Superelastic, ultralight, and conductive Ti3C2Tx MXnne/ccidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 20539–20547.

    Article  CAS  Google Scholar 

  54. Zhang, L.; Liu, B. W.; Wang, Y. Z.; Fu, T.; Zhao, H. B. P-doped PANI/AgMWs nano/micro coating towards high-efficiency flame retardancy and electromagnetic interference shielding. Compos. Part B: Eng. 2022, 238, 109944.

    Article  CAS  Google Scholar 

  55. Geetha, S.; Kumar, K. K. S.; Rao, C. R. K.; Vijayan, M.; Trivedi, D. C. EMI shielding: Methods and materials—A review. J. Appl. Polym. Sci. 2009, 112, 2073–2086.

    Article  CAS  Google Scholar 

  56. Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52122302, 51991351, 22175123, and 51790504), Fundamental Research Funds for the Central Universities, Young Elite Scientists Sponsorship Program by CAST, and financial support by the 111 project (No. B20001) is sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Bo Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, BW., Cao, M., Zhang, YY. et al. Multifunctional protective aerogel with superelasticity over −196 to 500 °C. Nano Res. 15, 7797–7805 (2022). https://doi.org/10.1007/s12274-022-4699-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4699-2

Keywords

Navigation