Log in

Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Pt-based magnetic nanocatalysts are one of the most suitable candidates for electrocatalytic materials due to their high electrochemistry activity and retrievability. Unfortunately, the inferior durability prevents them from being scaled-up, limiting their commercial applications. Herein, an antiferromagnetic element Mn was introduced into PtCo nanostructured alloy to synthesize uniform Mn-PtCo truncated octahedral nanoparticles (TONPs) by one-pot method. Our results show that Mn can tune the blocking temperature of Mn-PtCo TONPs due to its antiferromagnetism. At low temperatures, Mn-PtCo TONPs are ferromagnetic, and the coercivity increases gradually with increasing Mn contents. At room temperature, the Mn-PtCo TONPs display superparamagnetic behavior, which is greatly helpful for industrial recycling. Mn do** can not only modify the electronic structure of PtCo TONPs but also enhance electrocatalytic performance for methanol oxidation reaction. The maximum specific activity of Mn-PtCo-3 reaches 8.1 A·m-2, 3.6 times of commercial Pt/C (2.2 A·m-2) and 1.4 times of PtCo TONPs (5.6 A·m-2), respectively. The mass activity decreases by only 30% after 2,000 cycles, while it is 45% and 99% (nearly inactive) for PtCo TONPs and commercial Pt/C catalysts, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chung, D. Y.; Yoo, J. M.; Sung, Y. E. Highly durable and active Pt-based nanoscale design for fuel-cell oxygen-reduction electrocatalysts. Adv. Mater. 2018, 30, 1704123.

    Article  Google Scholar 

  2. Guo, S. J.; Zhang, S.; Sun, S. H. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 8526–8544.

    Article  CAS  Google Scholar 

  3. Liu, J. L.; **a, T. Y.; Wang, S. G.; Yang, G.; Dong, B. W.; Wang, C.; Ma, Q. D.; Sun, Y.; Wang, R. M. Oriented-assembly of hollow FePt nanochains with tunable catalytic and magnetic properties. Nanoscale 2016, 8, 11432–11440.

    Article  CAS  Google Scholar 

  4. Xue, S. F.; Deng, W. T.; Yang, F.; Yang, J. L.; Amiinu, I. S.; He, D. P.; Tang, H. L.; Mu, S. C. Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation. ACS Catal. 2018, 8, 7578–7584.

    Article  CAS  Google Scholar 

  5. Gauthier, Y.; Schmid, M.; Padovan, S.; Lundgren, E.; Buš, V.; Kresse, G.; Redinger, J.; Varga, P. Adsorption sites and ligand effect for CO on an alloy surface: A direct view. Phy. Rev. Lett. 2001, 87, 036103.

    Article  CAS  Google Scholar 

  6. Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phy. Rev. Lett. 1998, 81, 2819–2822.

    Article  Google Scholar 

  7. Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.

    Article  CAS  Google Scholar 

  8. Kaur, M.; Johnson, A.; Tian, G. X.; Jiang, W. L.; Rao, L. F.; Paszczynski, A.; Qiang, Y. Separation nanotechnology of diethylenetriaminepentaacetic acid bonded magnetic nanoparticles for spent nuclear fuel. Nano Energy 2013, 2, 124–132.

    Article  CAS  Google Scholar 

  9. Cai, Z.; Kuang, Y.; Qi, X. H.; Wang, P.; Zhang, Y.; Zhang, Z. C.; Sun, X. M. Ultrathin branched PtFe and PtRuFe nanodendrites with enhanced electrocatalytic activity. J. Mater. Chem. A 2015, 3, 1182–1187.

    Article  CAS  Google Scholar 

  10. Guerrero-Ortega, L. P. A; Manzo-Robledo, A.; Ramírez-Meneses, E. R.; Mateos-Santiago, J.; Lartundo-Rojas, L.; Garibay-Febles, V. Methanol electro-oxidation reaction at the interface of (bi)-metallic (PtNi) synthesized nanoparticles supported on carbon Vulcan. Int. J. Hydrogen Energy 2018, 43, 6117–6130.

    Article  CAS  Google Scholar 

  11. **a, T. Y.; Liu, J. L.; Wang, S. G.; Wang, C.; Sun, Y.; Wang, R. M. Nanomagnetic CoPt truncated octahedrons: Facile synthesis, superior electrocatalytic activity and stability for methanol oxidation. Sci. China Mater. 2017, 60, 57–67.

    Article  CAS  Google Scholar 

  12. **e, J.; Zhang, Q. H.; Gu, L.; Xu, S.; Wang, P.; Liu, J. G.; Ding, Y.; Yao, Y. F.; Nan, C. W.; Zhao, M. et al. Ruthenium-platinum core-shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation. Nano Energy 2016, 21, 247–257.

    Article  CAS  Google Scholar 

  13. Zhu, H.; Cai, Y. Z.; Wang, F. H.; Gao, P.; Cao, J. D. Scalable preparation of the chemically ordered Pt-Fe-Au Nanocatalysts with high catalytic reactivity and stability for oxygen reduction reactions. ACS Appl. Mater. Interfaces 2018, 10, 22156–22166.

    Article  CAS  Google Scholar 

  14. Guedes-Sobrinho, D.; Nomiyama, R. K.; Chaves, A. S.; Piotrowski, M. J.; Da Silva, J. L. F. Structure, electronic, and magnetic properties of binary PtnTM55-n (TM = Fe, Co, Ni, Cu, Zn) nanoclusters: A density functional theory investigation. J. Phys. Chem. C 2015, 119, 15669–15679.

    Article  CAS  Google Scholar 

  15. Park, J. I.; Kim, M. G.; Jun, Y. W.; Lee, J. S.; Lee, W. R.; Cheon, J. Characterization of superparamagnetic “core-shell” nanoparticles and monitoring their anisotropic phase transition to ferromagnetic “solid solution” nanoalloys. J. Am. Chem. Soc. 2004, 126, 9072–9078.

    Article  CAS  Google Scholar 

  16. Arán-Ais, R. M.; Dionigi, F.; Merzdorf, T.; Gocyla, M.; Heggen, M.; Dunin-Borkowski R. E.; Gliech, M.; Solla-Gullón, J.; Herrero, E.; Feliu, J. M. et al. Elemental anisotropic growth and atomic-scale structure of shape-controlled octahedral Pt-Ni-Co alloy nanocatalysts. Nano Lett. 2015, 15, 7473–7480.

    Article  Google Scholar 

  17. Wang, Y. N.; Liu, Q.; Sun, Y. H.; Wang, R. M. Magnetic field modulated SERS enhancement of CoPt hollow nanoparticles with sizes below 10 nm. Nanoscale 2018, 10, 12650–12656.

    Article  CAS  Google Scholar 

  18. Kang, J. X.; Chen, T. W.; Zhang, D. F.; Guo, L. PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation. Nano Energy 2016, 23, 145–152.

    Article  CAS  Google Scholar 

  19. Tang, M.; Luo, S. P.; Wang, K.; Du, H. Y.; Sriphathoorat R.; Shen P. K. Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction. Nano Res. 2018, 11, 4786–4795.

    Article  CAS  Google Scholar 

  20. Lim, J.; Shin, H.; Kim, M. J.; Lee, H.; Lee, K. S.; Kwon, Y.; Song, D.; Oh, S.; Kim, H.; Cho, E. Ga-doped Pt-Ni octahedral nanoparticles as a highly active and durable electrocatalyst for oxygen reduction reaction. Nano Lett. 2018, 18, 2450–2458.

    Article  CAS  Google Scholar 

  21. Wu, Y. J.; Zhao, Y. G.; Liu, J. J.; Wang, F. Adding refractory 5d transition metal W into PtCo system: An advanced ternary alloy for efficient oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 10700–10709.

    Article  CAS  Google Scholar 

  22. **a, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 3797–3801.

    Article  CAS  Google Scholar 

  23. Chen, L. X.; Zhu, J.; Xuan, C. J.; **ao, W. P.; **a, K. D.; **a, W. W.; Lai, C. L.; **n, H. L.; Wang, D. L. Effects of crystal phase and composition on structurally ordered Pt-Co-Ni/C ternary intermetallic electrocatalysts for the formic acid oxidation reaction. J. Mater. Chem. A 2018, 6, 5848–5855.

    Article  CAS  Google Scholar 

  24. Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Modification of the surface electronic and chemical properties of Pt (111) by subsurface 3d transition metals. J. Chem. Phys. 2004, 120, 10240–10246.

    Article  CAS  Google Scholar 

  25. Tian, X. L.; Luo, J. M.; Nan, H. X.; Zou, H. B.; Chen, R.; Shu, T.; Li, X. H.; Li, Y. W.; Song, H. Y.; Liao, S. J. et al. Transition metal nitride coated with atomic layers of Pt as a Low-Cost, highly stable electrocatalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 2016, 138, 1575–1583.

    Article  CAS  Google Scholar 

  26. Zhang, Z. J.; Chen, X. Y.; Zhang, X. F.; Shi, C. W. Synthesis and magnetic properties of nickel and cobalt nanoparticles obtained in DMF solution. Solid State Commun. 2006, 139, 403–405.

    Article  CAS  Google Scholar 

  27. Wang, D. S., Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.

    Article  CAS  Google Scholar 

  28. Gan, L.; Cui, C. H.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 2014, 346, 1502–1506.

    Article  CAS  Google Scholar 

  29. Barmparis, G. D.; Remediakis, I. N. Dependence on CO adsorption of the shapes of multifaceted gold nanoparticles: A density functional theory. Phys. Rev. B 2012, 86, 085457.

    Article  Google Scholar 

  30. **a, T. Y.; Liu, J. L.; Wang, S. G.; Wang, C.; Sun, Y.; Gu, L.; Wang, R. M. Enhanced catalytic activities of NiPt truncated octahedral nanoparticles toward ethylene glycol oxidation and oxygen reduction in alkaline electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 10841–10849.

    Article  CAS  Google Scholar 

  31. Zhu, K.; Ju, Y. M.; Xu, J. J.; Yang, Z. Y.; Gao, S.; Hou, Y. L. Magnetic nanomaterials: Chemical design, synthesis, and potential applications. Acc. Chem. Res. 2018, 51, 404–413.

    Article  CAS  Google Scholar 

  32. Dai, J. T.; Du, Y. K.; Wang, F. W.; Yang, P. PtCo/Au nanocomposite: Synthesis, characterization, and magnetic properties. Physica E 2007, 39, 271–276.

    Article  CAS  Google Scholar 

  33. Du, X. Y.; Inokuchi, M.; Toshima, N. Preparation and characterization of Co-Pt bimetallic magnetic nanoparticles. J. Magn. Magn. Mater. 2006, 299, 21–28.

    Article  CAS  Google Scholar 

  34. Fan, H. S.; Cheng, M.; Wang, L.; Song, Y. J.; Cui, Y. M.; Wang, R. M. Extraordinary electrocatalytic performance for formic acid oxidation by the synergistic effect of Pt and Au on carbon black. Nano Energy 2018, 48, 1–9.

    Article  CAS  Google Scholar 

  35. Lv, H. F.; Peng, T.; Wu, P.; Pan, M.; Mu, S. C. Nano-boron carbide supported platinum catalysts with much enhanced methanol oxidation activity and CO tolerance. J. Mater. Chem. 2012, 22, 9155–9160.

    Article  CAS  Google Scholar 

  36. Cohen, J. L.; Volpe, D. J.; Abruña, H. D. Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys. Chem. Chem. Phys. 2007, 9, 49–77.

    Article  CAS  Google Scholar 

  37. Ding, L. X.; Wang, A. L.; Li, G. R.; Liu, Z. Q.; Zhao, W. X.; Su, C. Y.; Tong, Y. X. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation. J. Am. Chem. Soc. 2012, 134, 5730–5733.

    Article  CAS  Google Scholar 

  38. Rodriguez, J. A., Goodman, D. W. The nature of the metal-metal bond in bimetallic surfaces. Science 1992, 257, 897–903.

    Article  CAS  Google Scholar 

  39. Lokanathan, M.; Patil, I. M.; Navaneethan, M.; Parey, V.; Thapa, R.; Kakade, B. Designing of stable and highly efficient ordered Pt2CoNi ternary alloy electrocatalyst: The origin of dioxygen reduction activity. Nano Energy 2018, 43, 219–227.

    Article  CAS  Google Scholar 

  40. Vidakovi, T.; Christov, M.; Sundmacher, K. The use of CO strip** for in situ fuel cell catalyst characterization. Electrochim. Acta 2007, 52, 5606–5613.

    Article  Google Scholar 

  41. Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K.; Uchida, H.; Watanabe, M. Electronic structures of Pt-Co and Pt-Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS. J. Phys. Chem. B 2006, 110, 23489–23496.

    Article  CAS  Google Scholar 

  42. Zhang, Z. C.; Tian, X. C.; Zhang, B. W.; Huang, L.; Zhu, F. C.; Qu, X. M.; Liu, L.; Liu, S.; Jiang, Y. X.; Sun, S. G. Engineering phase and surface composition of Pt3Co nanocatalysts: A strategy for enhancing CO tolerance. Nano Energy 2017, 34, 224–232.

    Article  CAS  Google Scholar 

  43. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metaldoped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1233.

    Article  CAS  Google Scholar 

  44. Liu, J. L.; Liu, W.; Sun, Q.; Wang, S. G.; Sun, K.; Schwank, J.; Wang, R. M. In situ tracing of atom migration in Pt/NiPt hollow spheres during catalysis of CO oxidation. Chem. Commun. 2014, 50, 1804–1807.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation (Nos. 51625101, 51431009, 51801188, and 51701202), the State Key Development Program for Basic Research of China (No. 2015CB921401), the Fundamental Research Funds for the Central University Universities of China (No. FRF-TP-16-001C2), the China Postdoctoral Science Foundation (No. 2018M632792), Startup Research Fund of Zhengzhou University (No. 32210815), and Be**g Natural Science Foundation (No. Z180014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianyu **a or Shouguo Wang.

Electronic supplementary material

12274_2019_2479_MOESM1_ESM.pdf

Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Liu, J., **a, T. et al. Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells. Nano Res. 12, 2520–2527 (2019). https://doi.org/10.1007/s12274-019-2479-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2479-4

Keywords

Navigation