Log in

Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Multimetallic Pt-based alloys with excavated structures have attracted great interest owing to their compositional and morphological tunability, high specific surface areas, and impressive electro-catalytic activities. Herein, we report the first facile one-pot synthesis of trimetallic Pt-Ni-Cu highly excavated rhombic dodecahedrons (ERDs) with a yield approaching 100%. More importantly, these highly uniform nanocrystals have three-dimensionally accessible excavated surfaces, where abundant stepped atoms are observed. Benefiting from the highly excavated rhombic dodecahedral structures, electronic and synergistic effects within the trimetallic alloy, and abundant stepped atoms, the as-prepared trimetallic Pt-Ni-Cu ERDs exhibit an enhanced electro-catalytic performance for the electro-oxidation of methanol compared to commercial Pt/C and bimetallic Pt-Cu ERDs and Pt-Ni-Cu solid rhombic dodecahedrons solid rhombic dodecahedrons (SRDs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van der Vliet, D. F.; Wang, C.; Li, D. G.; Paulikas, A. P.; Greeley, J.; Rankin, R. B.; Strmcnik, D.; Tripkovic, D.; Markovic, N. M.; Stamenkovic, V. R. Unique electrochemical adsorption properties of Pt-skin surfaces. Angew. Chem., Int. Ed. 2012, 51, 3139–3142.

    Article  Google Scholar 

  2. Zhang, L.; Chen, D. Q.; Jiang, Z. Y.; Zhang, J. W.; **e, S. F.; Kuang, Q.; **e, Z. X.; Zheng, L. S. Facile syntheses and enhanced electrocatalytic activities of Pt nanocrystals with {hkk} high-index surfaces. Nano Res. 2012, 5, 181–189.

    Article  Google Scholar 

  3. Zhou, W.; Wu, J. B.; Yang, H. Highly uniform platinum icosahedra made by hot injection-assisted GRAILS method. Nano Lett. 2013, 13, 2870–2874.

    Article  Google Scholar 

  4. Dubau, L.; Asset, T.; Chattot, R.; Bonnaud, C.; Vanpeene, V.; Nelayah, J.; Maillard, F. Tuning the performance and the stability of porous hollow PtNi/C nanostructures for the oxygen reduction reaction. ACS Catal. 2015, 5, 5333–5341.

    Article  Google Scholar 

  5. **a, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W. D.; Wang, X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 3797–3801.

    Article  Google Scholar 

  6. Luo, S. P.; Shen, P. K. Concave platinum–copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano 2017, 11, 11946–11953.

    Article  Google Scholar 

  7. Liu, Z. L.; Ling, X. Y.; Su, X. D.; Lee, J. Y. Carbonsupported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J. Phys. Chem. B 2004, 108, 8234–8240.

    Article  Google Scholar 

  8. Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.

    Article  Google Scholar 

  9. Ataee-Esfahani, H.; Wang, L.; Nemoto, Y.; Yamauchi, Y. Synthesis of bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts. Chem. Mater. 2010, 22, 6310–6318.

    Article  Google Scholar 

  10. Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; **e, Z. X.; Zheng, L. S. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748–3751.

    Article  Google Scholar 

  11. Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2014, 53, 12522–12527.

    Google Scholar 

  12. Li, Y. J.; Quan, F. X.; Zhu, E. B.; Chen, L.; Huang, Y.; Chen, C. F. PtxCuy nanocrystals with hexa-pod morphology and their electrocatalytic performances towards oxygen reduction reaction. Nano Res. 2015, 8, 3342–3352.

    Article  Google Scholar 

  13. Yin, A. X.; Min, X. Q.; Zhu, W.; Liu, W. C.; Zhang, Y. W.; Yan, C. H. Pt-Cu and Pt-Pd-Cu concave nanocubes with high-index facets and superior electrocatalytic activity. Chem.—Eur. J. 2012, 18, 777–782.

    Article  Google Scholar 

  14. Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Zhu, E. B.; Li, M. F.; Duan, X. F.; Huang, Y. A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy Environ. Sci. 2014, 7, 2957–2962.

    Article  Google Scholar 

  15. Sriphathoorat, R.; Wang, K.; Luo, S. P.; Tang, M.; Du, H. Y.; Du, X. W.; Shen, P. K. Well-defined PtNiCo core–shell nanodendrites with enhanced catalytic performance for methanol oxidation. J. Mater. Chem. A 2016, 4, 18015–18021.

    Article  Google Scholar 

  16. Hwang, S. J.; Yoo, S. J.; Jang, S.; Lim, T.-H.; Hong, S. A.; Kim, S.-K. Ternary Pt−Fe−Co alloy electrocatalysts prepared by electrodeposition: Elucidating the roles of Fe and Co in the oxygen reduction reaction. J. Phys. Chem. C 2011, 115, 2483–2488.

    Article  Google Scholar 

  17. Cho, Y.-H.; Kim, O.-H.; Chung, D. Y.; Choe, H.; Cho, Y.-H.; Sung, Y.-E. PtPdCo ternary electrocatalyst for methanol tolerant oxygen reduction reaction in direct methanol fuel cell. Appl. Catal. B: Environ. 2014, 154–155, 309–315.

    Article  Google Scholar 

  18. Li, B. S.; Chan, S. H. PtFeNi tri-metallic alloy nanoparticles as electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells with ultra-low Pt loading. Int. J. Hydrogen Energ. 2013, 38, 3338–3345.

    Article  Google Scholar 

  19. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; **n, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  20. **a, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.

    Article  Google Scholar 

  21. Ding, J. B.; Zhu, X.; Bu, L. Z.; Yao, J. L.; Guo, J.; Guo, S. J.; Huang, X. Q. Highly open rhombic dodecahedral PtCu nanoframes. Chem. Commun. 2015, 51, 9722–9725.

    Article  Google Scholar 

  22. Huang, X. Q.; Zhu, E. B.; Chen, Y.; Li, Y. J.; Chiu, C. Y.; Xu, Y. X.; Lin, Z. Y.; Duan, X. F.; Huang, Y. A facile strategy to Pt3Ni nanocrystals with highly porous features as an enhanced oxygen reduction reaction catalyst. Adv. Mater. 2013, 25, 2974–2979.

    Article  Google Scholar 

  23. Nosheen, F.; Zhang, Z. C.; **ang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Threedimensional hierarchical Pt-Cu superstructures. Nano Res. 2015, 8, 832–838.

    Article  Google Scholar 

  24. Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

    Article  Google Scholar 

  25. **e, S. F.; Choi, S. I.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J. G.; Kim, M. J.; **e, Z. M. et al. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 2014, 14, 3570–3576.

    Article  Google Scholar 

  26. Zhang, P. F.; Dai, X. P.; Zhang, X.; Chen, Z. K.; Yang, Y.; Sun, H.; Wang, X. B.; Wang, H.; Wang, M. L.; Su, H. X. et al. One-pot synthesis of ternary Pt–Ni–Cu nanocrystals with high catalytic performance. Chem. Mater. 2015, 27, 6402–6410.

    Article  Google Scholar 

  27. Choi, S. I.; **e, S. F.; Shao, M. H.; Odell, J. H.; Lu, N.; Peng, H. C.; Protsailo, L.; Guerrero, S.; Park, J.; **a, X. H. et al. Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett. 2013, 13, 3420–3425.

    Article  Google Scholar 

  28. Gan, L.; Cui, C. H.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 2014, 346, 1502–1506.

    Article  Google Scholar 

  29. Wu, Y.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975–8981.

    Article  Google Scholar 

  30. Dhavale, V. M.; Kurungot, S. Cu–Pt nanocage with 3-D electrocatalytic surface as an efficient oxygen reduction electrocatalyst for a primary Zn–air battery. ACS Catal. 2015, 5, 1445–1452.

    Article  Google Scholar 

  31. Wang, W. S.; Dahl, M.; Yin, Y. D. Hollow nanocrystals through the nanoscale kirkendall effect. Chem. Mater. 2013, 25, 1179–1189.

    Article  Google Scholar 

  32. Wang, Y.; Chen, Y. G.; Nan, C. Y.; Li, L. L.; Wang, D. S.; Peng, Q.; Li, Y. D. Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes. Nano Res. 2015, 8, 140–155.

    Article  Google Scholar 

  33. Hong, J. W.; Kim, Y.; Wi, D. H.; Lee, S.; Lee, S. U.; Lee, Y. W.; Choi, S. I.; Han, S. W. Ultrathin free-standing ternary-alloy nanosheets. Angew. Chem., Int. Ed. 2016, 55, 2753–2758.

    Article  Google Scholar 

  34. Liu, X. W.; Wang, W. Y.; Li, H.; Li, L. S.; Zhou, G. B.; Yu, R.; Wang, D. S.; Li, Y. D. One-pot protocol for bimetallic Pt/Cu hexapod concave nanocrystals with enhanced electrocatalytic activity. Sci. Rep. 2013, 3, 1404.

    Article  Google Scholar 

  35. Wang, K.; Sriphathoorat, R.; Luo, S. P.; Tang, M.; Du, H. Y.; Shen, P. K. Ultrathin PtCu hexapod nanocrystals with enhanced catalytic performance for electro-oxidation reactions. J. Mater. Chem. A 2016, 4, 13425–13430.

    Article  Google Scholar 

  36. Yin, J.; Wang, J.; Li, M.; **, C.; Zhang, T. Iodine ions mediated formation of monomorphic single-crystalline platinum nanoflowers. Chem. Mater. 2012, 24, 2645–2654.

    Article  Google Scholar 

  37. Fu, G. T.; Liu, H. M.; You, N. K.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Dendritic platinum–copper bimetallic nanoassemblies with tunable composition and structure: Arginine-driven self-assembly and enhanced electrocatalytic activity. Nano Res. 2016, 9, 755–765.

    Article  Google Scholar 

  38. Zhang, H.; **, M. S.; Liu, H. Y.; Wang, J. G.; Kim, M. J.; Yang, D. R.; **e, Z. X.; Liu, J. Y.; **a, Y. N. Facile synthesis of Pd–Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. ACS Nano 2011, 5, 8212–8222.

    Article  Google Scholar 

  39. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; **e, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.

    Article  Google Scholar 

  40. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; **n, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  41. Wang, Q.; Zhao, Z. L.; Jia, Y. L.; Wang, M. P.; Qi, W. H.; Pang, Y.; Yi, J.; Zhang, Y. F.; Li, Z.; Zhang, Z. Unique Cu@CuPt core–shell concave octahedron with enhanced methanol oxidation activity. ACS Appl. Mater. Interfaces 2017, 9, 36817–36827.

    Article  Google Scholar 

  42. Wang, Z. N.; Wang, H.; Zhang, Z. R.; Yang, G.; He, T.; Yin, Y. D.; **, M. S. Synthesis of Pd nanoframes by excavating solid nanocrystals for enhanced catalytic properties. ACS Nano 2017, 11, 163–170.

    Article  Google Scholar 

  43. Lee, H. E.; Yang, K. D.; Yoon, S. M.; Ahn, H. Y.; Lee, Y. Y.; Chang, H. J.; Jeong, D. H.; Lee, Y. S.; Kim, M. Y.; Nam, K. T. Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction. ACS Nano 2015, 9, 8384–8393.

    Article  Google Scholar 

  44. Zhou, Z. Y.; Huang, Z. Z.; Chen, D. J.; Wang, Q.; Tian, N.; Sun, S. G. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew. Chem., Int. Ed. 2010, 49, 411–414.

    Article  Google Scholar 

  45. Tian, N.; Zhou, Z. Y.; Sun, S. G. Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles. J. Phys. Chem. C 2008, 112, 19801–19817.

    Article  Google Scholar 

  46. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    Article  Google Scholar 

  47. Chen, M.; Wu, B. H.; Yang, J.; Zheng, N. F. Small adsorbateassisted shape control of Pd and Pt nanocrystals. Adv. Mater. 2012, 24, 862–879.

    Article  Google Scholar 

  48. Zhou, Z. Y.; Tian, N.; Li, J. T.; Broadwell, I.; Sun, S. G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 2011, 40, 4167–4185.

    Article  Google Scholar 

  49. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

    Article  Google Scholar 

  50. Stephens, I. E. L.; Bondarenko, A. S.; Perez-Alonso, F. J.; Calle-Vallejo, F.; Bech, L.; Johansson, T. P.; Jepsen, A. K.; Frydendal, R.; Knudsen, B. P.; Rossmeisl, J. et al. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 2011, 133, 5485–5491.

    Article  Google Scholar 

  51. **a, Y. N.; **ong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.

    Article  Google Scholar 

  52. Lee, Y. W.; Kim, M.; Kang, S. W.; Han, S. W. Polyhedral bimetallic alloy nanocrystals exclusively bound by {110} facets: Au-Pd rhombic dodecahedra. Angew. Chem., Int. Ed.. 2011, 50, 3466–3470.

    Article  Google Scholar 

  53. Zhou, S.; Mesina, D. S.; Organt, M. A.; Yang, T. H.; Yang, X.; Huo, D.; Zhao, M.; **a, Y. N. Site-selective growth of Ag nanocubes for sharpening their corners and edges, followed by elongation into nanobars through symmetry reduction. J. Mater. Chem. C 2018, 6, 1384–1392.

    Article  Google Scholar 

  54. Zhang, H.; **, M. S.; **a, Y. N. Noble-metal nanocrystals with concave surfaces: Synthesis and applications. Angew. Chem., Int. Ed. 2012, 51, 7656–7673.

    Article  Google Scholar 

  55. Tian, N.; Zhou, Z. Y.; Sun, S. G. Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles. J. Phys. Chem. C 2008, 112, 19801–19817.

    Google Scholar 

  56. Lee, Y. W.; Kim, M.; Kang, S. W.; Han, S. W. Polyhedral bimetallic alloy nanocrystals exclusively bound by {110} facets: Au-Pd rhombic dodecahedra. Angew. Chem., Int. Ed.. 2011, 50, 3466–3470.

    Article  Google Scholar 

  57. Personick, M. L.; Langille, M. R.; Zhang, J.; Harris, N.; Schatz, G. C.; Mirkin, C. A. Synthesis and isolation of {110}-faceted gold bipyramids and rhombic dodecahedra. J. Am. Chem. Soc. 2011, 133, 6170–6173.

    Article  Google Scholar 

  58. Ferreira, P. J.; la O’, G. J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H. A. Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells—A mechanistic investigation. J. Electrochem. Soc. 2005, 152, A2256–A2271.

    Article  Google Scholar 

  59. Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; **a, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

    Article  Google Scholar 

  60. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    Article  Google Scholar 

  61. Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.

    Article  Google Scholar 

  62. Zhang, C. L.; Sandorf, W.; Peng, Z. M. Octahedral Pt2CuNi uniform alloy nanoparticle catalyst with high activity and promising stability for oxygen reduction reaction. ACS Catal. 2015, 5, 2296–2300.

    Article  Google Scholar 

  63. Liu, L. C.; Samjeské, G.; Takao, S.; Nagasawa, K.; Iwasawa, Y. Fabrication of PtCu and PtNiCu multi-nanorods with enhanced catalytic oxygen reduction activities. J. Power Sources 2014, 253, 1–8.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major International (Regional) Joint Research Project (No. 51210002), the National Basic Research Program of China (No. 2015CB932304) and the Natural Science Foundation of Guangdong province (No. 2015A030312007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peikang Shen.

Electronic supplementary material

12274_2018_2063_MOESM1_ESM.pdf

Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M., Luo, S., Wang, K. et al. Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction. Nano Res. 11, 4786–4795 (2018). https://doi.org/10.1007/s12274-018-2063-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2063-3

Keywords

Navigation