Log in

Quantitative Methods for Metabolite Analysis in Metabolic Engineering

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We present a brief overview of metabolic engineering, depicting the necessity of exploiting microorganisms for obtaining desired metabolites and the difficulty of metabolic pathway optimization under numerous conditions. The advantages, limitations, and examples of conventional quantitative analytical methods that focus on accuracy but have low throughput rates are presented. We have also described in vivo analytical methods with high-throughput rates, which indirectly compare the yield of the reporter protein. Additionally, we have explained a few considerations for engineering in vivo analytical methods. This review also highlights the current challenges faced by the analytical methods in the metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perry, E. K., L. A. Meirelles, and D. K. Newman (2022) From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nat. Rev. Microbiol. 20: 129–142.

    PubMed  CAS  Google Scholar 

  2. Bartáková, A. and M. Nováková (2021) Secondary metabolites of plants as modulators of endothelium functions. Int. J. Mol. Sci. 22: 2533.

    PubMed  PubMed Central  Google Scholar 

  3. Chang, M. C. Y. and J. D. Keasling (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat. Chem. Biol. 2: 674–681.

    PubMed  CAS  Google Scholar 

  4. Horwitz, S. B. (1994) How to make taxol from scratch. Nature 367: 593–594.

    PubMed  CAS  Google Scholar 

  5. Khosla, C. and J. D. Keasling (2003) Metabolic engineering for drug discovery and development. Nat. Rev. Drug Discov. 2: 1019–1025.

    PubMed  CAS  Google Scholar 

  6. Atsumi, S., A. F. Cann, M. R. Connor, C. R. Shen, K. M. Smith, M. P. Brynildsen, K. J. Y. Chou, T. Hanai, and J. C. Liao (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10: 305–311.

    PubMed  CAS  Google Scholar 

  7. Wang, C., S.-H. Yoon, H.-J. Jang, Y.-R. Chung, J.-Y. Kim, E.-S. Choi, and S.-W. Kim (2011) Metabolic engineering of Escherichia coli for α-farnesene production. Metab. Eng. 13: 648–655.

    PubMed  CAS  Google Scholar 

  8. Lian, J., S. Mishra, and H. Zhao (2018) Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications. Metab. Eng. 50: 85–108.

    PubMed  CAS  Google Scholar 

  9. Liu, H., M. Marsafari, F. Wang, L. Deng, and P. Xu (2019) Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica. Metab. Eng. 56: 60–68.

    PubMed  CAS  Google Scholar 

  10. Lee, J. W., D. Na, J. M. Park, J. Lee, S. Choi, and S. Y. Lee (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8: 536–546.

    PubMed  CAS  Google Scholar 

  11. Carbonell, P., A. J. Jervis, C. J. Robinson, C. Yan, M. Dunstan, N. Swainston, M. Vinaixa, K. A. Hollywood, A. Currin, N. J. W. Rattray, S. Taylor, R. Spiess, R. Sung, A. R. Williams, D. Fellows, N. J. Stanford, P. Mulherin, R. Le Feuvre, P. Barran, R. Goodacre, N. J. Turner, C. Goble, G. G. Chen, D. B. Kell, J. Micklefield, R. Breitling, E. Takano, J.-L. Faulon, and N. S. Scrutton (2018) An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals. Commun. Biol. 1: 66.

    PubMed  PubMed Central  Google Scholar 

  12. Yim, H., R. Haselbeck, W. Niu, C. Pujol-Baxley, A. Burgard, J. Boldt, J. Khandurina, J. D. Trawick, R. E. Osterhout, R. Stephen, J. Estadilla, S. Teisan, H. B. Schreyer, S. Andrae, T. H. Yang, S. Y. Lee, M. J. Burk, and S. Van Dien (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7: 445–452.

    PubMed  CAS  Google Scholar 

  13. Ehrenworth, A. M. and P. Peralta-Yahya (2017) Accelerating the semisynthesis of alkaloid-based drugs through metabolic engineering. Nat. Chem. Biol. 13: 249–258.

    PubMed  CAS  Google Scholar 

  14. Pandit, A. V., S. Srinivasan, and R. Mahadevan (2017) Redesigning metabolism based on orthogonality principles. Nat. Commun. 8: 15188.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Kim, G. B., W. J. Kim, H. U. Kim, and S. Y. Lee (2020) Machine learning applications in systems metabolic engineering. Curr. Opin. Biotechnol. 64: 1–9.

    PubMed  CAS  Google Scholar 

  16. Ye, X., K. Honda, T. Sakai, K. Okano, T. Omasa, R. Hirota, A. Kuroda, and H. Ohtake (2012) Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb. Cell Fact. 11: 120.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Yan, Q. and B. F. Pfleger (2020) Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metab. Eng. 58: 35–46.

    PubMed  CAS  Google Scholar 

  18. Lin, J.-L., J. M. Wagner, and H. S. Alper (2017) Enabling tools for high-throughput detection of metabolites: metabolic engineering and directed evolution applications. Biotechnol. Adv. 35: 950–970.

    PubMed  CAS  Google Scholar 

  19. Markey, S. P., J. N. Johannessen, C. C. Chiueh, R. S. Burns, and M. A. Herkenham (1984) Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature 311: 464–467.

    PubMed  CAS  Google Scholar 

  20. Covey, T. R., J. B. Crowther, E. A. Dewey, and J. D. Henion (1985) Thermospray liquid chromatography/mass spectrometry determination of drugs and their metabolites in biological fluids. Anal. Chem. 57: 474–481.

    PubMed  CAS  Google Scholar 

  21. Lim, H. G., S. Jang, S. Jang, S. W. Seo, and G. Y. Jung (2018) Design and optimization of genetically encoded biosensors for high-throughput screening of chemicals. Curr. Opin. Biotechnol. 54: 18–25.

    PubMed  CAS  Google Scholar 

  22. Tzanavaras, P. D. and D. G. Themelis (2007) Validated high-throughput HPLC assay for nimesulide using a short monolithic column. J. Pharm. Biomed. Anal. 43: 1483–1487.

    PubMed  CAS  Google Scholar 

  23. Castro-Perez, J. M. (2007) Current and future trends in the application of HPLC-MS to metabolite-identification studies. Drug Discov. Today 12: 249–256.

    PubMed  CAS  Google Scholar 

  24. Dong, M. W. (2013) The essence of modern HPLC: advantages, limitations, fundamentals, and opportunities. LCGC North Am. 31: 482–479.

    Google Scholar 

  25. Castro-Puyana, M. and M. Herrero (2013) Metabolomics approaches based on mass spectrometry for food safety, quality and traceability. Trends Analyt. Chem. 52: 74–87.

    CAS  Google Scholar 

  26. Pedrosa, M. C., L. Lima, S. Heleno, M. Carocho, I. C. F. R. Ferreira, and L. Barros (2021) Food metabolites as tools for authentication, processing, and nutritive value assessment. Foods 10: 2213.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Gemuh, C. V., M. Macháček, P. Solich, and B. Horstkotte (2022) Renewable sorbent dispersive solid phase extraction automated by Lab-In-Syringe using magnetite-functionalized hydrophilic-lipophilic balanced sorbent coupled online to HPLC for determination of surface water contaminants. Anal. Chim. Acta 1210: 339874.

    PubMed  CAS  Google Scholar 

  28. Rubio, F., L. J. Veldhuis, B. S. Clegg, J. R. Fleeker, and J. C. Hall (2003) Comparison of a direct ELISA and an HPLC method for glyphosate determinations in water. J. Agric. Food Chem. 51: 691–696.

    PubMed  CAS  Google Scholar 

  29. Chen, T., X. Yang, S. Wang, C. Shen, H. Li, Y. Wei, S. Yan, Z. Song, F. Yang, Y. Liu, P. Hai, and Y. Li (2022) Separation of five flavone glycosides including two groups with similar polarities from Dracocephalum tanguticum by a combination of three high-speed counter-current chromatography modes. J. Sep. Sci. 45: 468–476.

    PubMed  CAS  Google Scholar 

  30. Ma, Y., X. Yang, J. Chen, J. Zhao, L. Yang, S. Yan, H. Li, C. Shen, Y. Wei, S. Wang, T. Chen, Z. Chen, and Y. Li (2020) Separation of five flavonoids with similar polarity from Caragana korshinskii Kom. by preparative high speed counter-current chromatography with recycling and heart cut mode. J. Sep. Sci. 43: 3748–3755.

    PubMed  CAS  Google Scholar 

  31. Frølund, B. and K. Keiding (1994) Implementation of an HPLC polystyrene divinylbenzene column for separation of activated sludge exopolymers. Appl. Microbiol. Biotechnol. 41: 708–716.

    Google Scholar 

  32. Vujić, Z., N. Mulavdić, M. Smajić, J. Brborić, and P. Stankovic (2012) Simultaneous analysis of irbesartan and hydrochlorothiazide: an improved HPLC method with the aid of a chemometric protocol. Molecules 17: 3461–3474.

    PubMed  PubMed Central  Google Scholar 

  33. Watabe, Y., T. Kondo, H. Imai, M. Morita, N. Tanaka, and K. Hosoya (2004) Reducing bisphenol A contamination from analytical procedures to determine ultralow levels in environmental samples using automated HPLC microanalysis. Anal. Chem. 76: 105–109.

    CAS  Google Scholar 

  34. Welch, C. J., T. Brkovic, W. Schafer, and X. Gong (2009) Performance to burn? Re-evaluating the choice of acetonitrile as the platform solvent for analytical HPLC. Green Chem. 11: 1232–1238.

    CAS  Google Scholar 

  35. Swartz, M. E. (2005) UPLC™: an introduction and review. J. Liq. Chromatogr. Relat. Technol. 28: 1253–1263.

    CAS  Google Scholar 

  36. Nováková, L., L. Matysová, and P. Solich (2006) Advantages of application of UPLC in pharmaceutical analysis. Talanta 68: 908–918.

    PubMed  Google Scholar 

  37. Gumustas, M., S. Kurbanoglu, B. Uslu, and S. A. Ozkan (2013) UPLC versus HPLC on drug analysis: advantageous, applications and their validation parameters. Chromatographia 76: 1365–1427.

    CAS  Google Scholar 

  38. van Deemter, J. J., F. J. Zuiderweg, and A. Klinkenberg (1956) Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci. 5: 271–289.

    CAS  Google Scholar 

  39. Klimczak, I. and A. Gliszczyńska-Świglo (2015) Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chem. 175: 100–105.

    PubMed  CAS  Google Scholar 

  40. Desmet, G. and K. Broeckhoven (2019) Extra-column band broadening effects in contemporary liquid chromatography: causes and solutions. Trends Analyt. Chem. 119: 115619.

    CAS  Google Scholar 

  41. **ang, P., Y. Yang, Z. Zhao, M. Chen, and S. Liu (2019) Ultrafast gradient separation with narrow open tubular liquid chromatography. Anal. Chem. 91: 10738–10743.

    PubMed  CAS  Google Scholar 

  42. Yao, Y.-F., C.-S. Wang, J. Qiao, and G.-R. Zhao (2013) Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway. Metab. Eng. 19: 79–87.

    PubMed  CAS  Google Scholar 

  43. Kim, B., R. Binkley, H. U. Kim, and S. Y. Lee (2018) Metabolic engineering of Escherichia coli for the enhanced production of l-tyrosine. Biotechnol. Bioeng. 115: 2554–2564.

    PubMed  CAS  Google Scholar 

  44. Bang, H. B., Y. H. Lee, S. C. Kim, C. K. Sung, and K. J. Jeong (2016) Metabolic engineering of Escherichia coli for the production of cinnamaldehyde. Microb. Cell Fact. 15: 16.

    PubMed  PubMed Central  Google Scholar 

  45. Breitel, D., P. Brett, S. Alseekh, A. R. Fernie, E. Butelli, and C. Martin (2021) Metabolic engineering of tomato fruit enriched in L-DOPA. Metab. Eng. 65: 185–196.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Hites, R. A. (2016) Development of gas chromatographic mass spectrometry. Anal. Chem. 88: 6955–6961.

    PubMed  CAS  Google Scholar 

  47. Koek, M. M., R. H. Jellema, J. van der Greef, A. C. Tas, and T. Hankemeier (2011) Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics 7: 307–328.

    PubMed  CAS  Google Scholar 

  48. Misra, B. B. (2021) Advances in high resolution GC-MS technology: a focus on the application of GC-Orbitrap-MS in metabolomics and exposomics for FAIR practices. Anal. Methods 13: 2265–2282.

    PubMed  CAS  Google Scholar 

  49. Van Nimmen, N. F. J., K. L. C. Poels, and H. A. F. Veulemans (2004) Highly sensitive gas chromatographic-mass spectrometric screening method for the determination of picogram levels of fentanyl, sufentanil and alfentanil and their major metabolites in urine of opioid exposed workers. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 804: 375–387.

    PubMed  CAS  Google Scholar 

  50. Murphy, C., T. Fotsis, P. Pantzar, H. Adlercreut, and F. Martin (1987) Analysis of tamoxifen and its metabolites in human plasma by gas chromatography-mass spectrometry (GC-MS) using selected ion monitoring (SIM). J. Steroid Biochem. 26: 547–555.

    PubMed  CAS  Google Scholar 

  51. Fang, M., J. Ivanisevic, H. P. Benton, C. H. Johnson, G. J. Patti, L. T. Hoang, W. Uritboonthai, M. E. Kurczy, and G. Siuzdak (2015) Thermal degradation of small molecules: a global metabolomic investigation. Anal. Chem. 87: 10935–10941.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Tsujikawa, K., K. Kuwayama, T. Kanamori, Y. T. Iwata, and H. Inoue (2013) Thermal degradation of α-pyrrolidinopentiophenone during injection in gas chromatography/mass spectrometry. Forensic Sci. Int. 231: 296–299.

    PubMed  CAS  Google Scholar 

  53. Tsujikawa, K., T. Yamamuro, K. Kuwayama, T. Kanamori, Y. T. Iwata, and H. Inoue (2014) Thermal degradation of a new synthetic cannabinoid QUPIC during analysis by gas chromatography—mass spectrometry. Forensic Toxicol. 32: 201–207.

    CAS  Google Scholar 

  54. Jonsson, P., A. I. Johansson, J. Gullberg, J. Trygg, J. A, B. Grung, S. Marklund, M. Sjöström, H. Antti, and T. Moritz (2005) High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Anal. Chem. 77: 5635–5642.

    PubMed  CAS  Google Scholar 

  55. Aharoni, A., M. A. Jongsma, T.-Y. Kim, M.-B. Ri, A. P. Giri, F. W. A. Verstappen, W. Schwab, and H. J. Bouwmeester (2006) Metabolic engineering of terpenoid biosynthesis in plants. Phytochem. Rev. 5: 49–58.

    CAS  Google Scholar 

  56. Korfmacher, W. A. (2005) Foundation review: principles and applications of LC-MS in new drug discovery. Drug Discov. Today 10: 1357–1367.

    PubMed  CAS  Google Scholar 

  57. Abdel-Hamid, M. E. (2000) Comparative LC-MS and HPLC analyses of selected antiepileptics and beta-blocking drugs. Farmaco 55: 136–145.

    PubMed  CAS  Google Scholar 

  58. Lee, C. R., M. Hubert, C. N. Van Dau, D. Peter, and A. M. Krstulovic (2000) Determination of N,N-dimethylaminoethyl chloride and the dimethylaziridinium ion at sub-ppm levels in diltiazem hydrochloride by LC-MS with electrospray ionisation. Analyst 125: 1255–1259.

    PubMed  CAS  Google Scholar 

  59. Farina, A., G. Gostoli, E. Bossù, A. Montinaro, C. Lestingi, and R. Lecce (2005) LC-MS determination of MPTP at sub-ppm level in pethidine hydrochloride. J. Pharm. Biomed. Anal. 37: 1089–1093.

    PubMed  CAS  Google Scholar 

  60. Alfredsson, G., C. Branzell, K. Granelli, and Å. Lundström (2005) Simple and rapid screening and confirmation of tetracyclines in honey and egg by a dipstick test and LC—MS/MS. Anal. Chim. Acta 529: 47–51.

    CAS  Google Scholar 

  61. Peitzsch, M., T. Dekkers, M. Haase, F. C. G. J. Sweep, I. Quack, G. Antoch, G. Siegert, J. W. M. Lenders, J. Deinum, H. S. Willenberg, and G. Eisenhofer (2015) An LC-MS/MS method for steroid profiling during adrenal venous sampling for investigation of primary aldosteronism. J. Steroid Biochem. Mol. Biol. 145: 75–84.

    PubMed  CAS  Google Scholar 

  62. Lagerwerf, F. M., W. D. van Dongen, R. J. J. M. Steenvoorden, M. Honing, and J. H. G. Jonkman (2000) Exploring the boundaries of bioanalytical quantitative LC—MS—MS. Trends Analyt. Chem. 19: 418–427.

    CAS  Google Scholar 

  63. Palma, P., G. Famiglini, H. Trufelli, E. Pierini, V. Termopoli, and A. Cappiello (2011) Electron ionization in LC-MS: recent developments and applications of the direct-EI LC-MS interface. Anal. Bioanal. Chem. 399: 2683–2693.

    PubMed  CAS  Google Scholar 

  64. Hanold, K. A., S. M. Fischer, P. H. Cormia, C. E. Miller, and J. A. Syage (2004) Atmospheric pressure photoionization. 1. General properties for LC/MS. Anal. Chem. 76: 2842–2851.

    PubMed  CAS  Google Scholar 

  65. Niessen, W. M. A. (2003) Progress in liquid chromatography-mass spectrometry instrumentation and its impact on high-throughput screening. J. Chromatogr. A 1000: 413–436.

    PubMed  CAS  Google Scholar 

  66. Ermer, J. (1998) The use of hyphenated LC-MS technique for characterisation of impurity profiles during drug development. J. Pharm. Biomed. Anal. 18: 707–714.

    PubMed  CAS  Google Scholar 

  67. Sato, F., T. Hashimoto, A. Hachiya, K. Tamura, K.-B. Choi, T. Morishige, H. Fujimoto, and Y. Yamada (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 98: 367–372.

    PubMed  CAS  Google Scholar 

  68. Schnarr, N. A., A. Y. Chen, D. E. Cane, and C. Khosla (2005) Analysis of covalently bound polyketide intermediates on 6-deoxyerythronolide B synthase by tandem proteolysis-mass spectrometry. Biochemistry 44: 11836–11842.

    PubMed  CAS  Google Scholar 

  69. Galievsky, V. A., A. S. Stasheuski, and S. N. Krylov (2015) Capillary electrophoresis for quantitative studies of biomolecular interactions. Anal. Chem. 87: 157–171.

    PubMed  CAS  Google Scholar 

  70. Polson, N. A. and M. A. Hayes (2000) Electroosmotic flow control of fluids on a capillary electrophoresis microdevice using an applied external voltage. Anal. Chem. 72: 1088–1092.

    PubMed  CAS  Google Scholar 

  71. Tagliaro, F., G. Manetto, F. Crivellente, and F. P. Smith (1998) A brief introduction to capillary electrophoresis. Forensic Sci. Int. 92: 75–88.

    CAS  Google Scholar 

  72. Swinney, K. and D. J. Bornhop (2002) Quantification and evaluation of Joule heating in on-chip capillary electrophoresis. Electrophoresis 23: 613–620.

    PubMed  CAS  Google Scholar 

  73. Hjertén, S., L. Valtcheva, K. Elenbring, and J.-L. Liao (1995) Fast, high-resolution (capillary) electrophoresis in buffers designed for high field strengths. Electrophoresis 16: 584–594.

    PubMed  Google Scholar 

  74. Paegel, B. M., C. A. Emrich, G. J. Wedemayer, J. R. Scherer, and R. A. Mathies (2002) High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor. Proc. Natl. Acad. Sci. U. S. A. 99: 574–579.

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Lu, Q., C. L. Copper, and G. E. Collins (2006) Ultraviolet absorbance detection of colchicine and related alkaloids on a capillary electrophoresis microchip. Anal. Chim. Acta 572: 205–211.

    PubMed  CAS  Google Scholar 

  76. Li, M., L.-Y. Fan, W. Zhang, and C.-X. Cao (2007) Stacking and quantitative analysis of lovastatin in urine samples by the transient moving chemical reaction boundary method in capillary electrophoresis. Anal. Bioanal. Chem. 387: 2719–2725.

    PubMed  CAS  Google Scholar 

  77. Sursyakova, V. V., G. V. Burmakina, and A. I. Rubaylo (2017) Composition and stability constants of copper(II) complexes with succinic acid determined by capillary electrophoresis. J. Coord. Chem. 70: 431–440.

    CAS  Google Scholar 

  78. Hoult, D. I. and B. Bhakar (1997) NMR signal reception: virtual photons and coherent spontaneous emission. Concepts Magn. Reson. 9: 277–297.

    CAS  Google Scholar 

  79. Nagana Gowda, G. A. and D. Raftery (2015) Can NMR solve some significant challenges in metabolomics?. J. Magn. Reson. 260: 144–160.

    PubMed  CAS  Google Scholar 

  80. Soriano, N. U., Jr., V. P. Migo, and M. Matsumura (2003) Functional group analysis during ozonation of sunflower oil methyl esters by FT-IR and NMR. Chem. Phys. Lipids 126: 133–140.

    PubMed  CAS  Google Scholar 

  81. Breton, R. C. and W. F. Reynolds (2013) Using NMR to identify and characterize natural products. Nat. Prod. Rep. 30: 501–524.

    PubMed  CAS  Google Scholar 

  82. Lewis, I. A., S. C. Schommer, B. Hodis, K. A. Robb, M. Tonelli, W. M. Westler, M. R. Sussman, and J. L. Markley (2007) Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra. Anal. Chem. 79: 9385–9390.

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Nakamura, T., D. Tamada, Y. Yanagi, Y. Itoh, T. Nemoto, H. Utumi, and K. Kose (2015) Development of a superconducting bulk magnet for NMR and MRI. J. Magn. Reson. 259: 68–75.

    PubMed  CAS  Google Scholar 

  84. Blümich, B. (2016) Introduction to compact NMR: a review of methods. Trends Analyt. Chem. 83(Pt A): 2–11.

    Google Scholar 

  85. Dona, A. C., B. Jiménez, H. Schäfer, E. Humpfer, M. Spraul, M. R. Lewis, J. T. M. Pearce, E. Holmes, J. C. Lindon, and J. K. Nicholson (2014) Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenoty**. Anal. Chem. 86: 9887–9894.

    PubMed  CAS  Google Scholar 

  86. Malz, F. and H. Jancke (2005) Validation of quantitative NMR. J. Pharm. Biomed. Anal. 38: 813–823.

    PubMed  CAS  Google Scholar 

  87. Hollis, D. P. (1963) Quantitative analysis of aspirin, phenacetin, and caffeine mixtures by nuclear magnetic resonance spectrometry. Anal. Chem. 35: 1682–1684.

    CAS  Google Scholar 

  88. Dhali, D., F. Coutte, A. A. Arias, S. Auger, V. Bidnenko, G. Chataigné, M. Lalk, J. Niehren, J. de Sousa, C. Versari, and P. Jacques (2017) Genetic engineering of the branched fatty acid metabolic pathway of Bacillus subtilis for the overproduction of surfactin C14 isoform. Biotechnol. J. 12: 1600574.

    Google Scholar 

  89. Roberts, S. G. E. and M. R. Green (1994) Activator-induced conformational change in general transcription factor TFIIB. Nature 371: 717–720.

    PubMed  CAS  Google Scholar 

  90. Hisatomi, O., K. Takeuchi, K. Zikihara, Y. Ookubo, Y. Nakatani, F. Takahashi, S. Tokutomi, and H. Kataoka (2013) Blue light-induced conformational changes in a light-regulated transcription factor, aureochrome-1. Plant Cell Physiol. 54: 93–106.

    PubMed  CAS  Google Scholar 

  91. Wan, X., M. Marsafari, and P. Xu (2019) Engineering metabolite-responsive transcriptional factors to sense small molecules in eukaryotes: current state and perspectives. Microb. Cell Fact. 18: 61.

    PubMed  PubMed Central  Google Scholar 

  92. Chubukov, V., L. Gerosa, K. Kochanowski, and U. Sauer (2014) Coordination of microbial metabolism. Nat. Rev. Microbiol. 12: 327–340.

    PubMed  CAS  Google Scholar 

  93. Mukherjee, K., S. Bhattacharyya, and P. Peralta-Yahya (2015) GPCR-based chemical biosensors for medium-chain fatty acids. ACS Synth. Biol. 4: 1261–1269.

    PubMed  CAS  Google Scholar 

  94. Wong, L., J. Engel, E. **, B. Holdridge, and P. Xu (2017) YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica. Metab. Eng. Commun. 5: 68–77. (Erratum published 2019, Metab. Eng. Commun. 9: e00099)

    PubMed  PubMed Central  Google Scholar 

  95. Xu, P. (2018) Production of chemicals using dynamic control of metabolic fluxes. Curr. Opin. Biotechnol. 53: 12–19.

    PubMed  CAS  Google Scholar 

  96. Tanenbaum, M. E., L. A. Gilbert, L. S. Qi, J. S. Weissman, and R. D. Vale (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159: 635–646.

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Johnson, A. O., M. Gonzalez-Villanueva, L. Wong, A. Steinbüchel, K. L. Tee, P. Xu, and T. S. Wong (2017) Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories. Metab. Eng. 44: 253–264. (Erratum published 2020, Metab. Eng. 61: 437)

    PubMed  CAS  Google Scholar 

  98. Wang, Y., Q. Li, P. Zheng, Y. Guo, L. Wang, T. Zhang, J. Sun, and Y. Ma (2016) Evolving the L-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method. J. Ind. Microbiol. Biotechnol. 43: 1227–1235.

    PubMed  Google Scholar 

  99. Machado, F. M. L., A. Currin, and N. Dixon (2019) Directed evolution of the PcaV allosteric transcription factor to generate a biosensor for aromatic aldehydes. J. Biol. Eng. 13: 91.

    CAS  Google Scholar 

  100. Taylor, N. D., A. S. Garruss, R. Moretti, S. Chan, M. A. Arbing, D. Cascio, J. K. Rogers, F. J. Isaacs, S. Kosuri, D. Baker, S. Fields, G. M. Church, and S. Raman (2016) Engineering an allosteric transcription factor to respond to new ligands. Nat. Methods 13: 177–183.

    PubMed  CAS  Google Scholar 

  101. Jha, R. K., T. L. Kern, Y. Kim, C. Tesar, R. Jedrzejczak, A. Joachimiak, and C. E. M. Strauss (2016) A microbial sensor for organophosphate hydrolysis exploiting an engineered specificity switch in a transcription factor. Nucleic Acids Res. 44: 8490–8500.

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Jiang, L., E. A. Althoff, F. R. Clemente, L. Doyle, D. Röthlisberger, A. Zanghellini, J. L. Gallaher, J. L. Betker, F. Tanaka, C. F. Barbas 3rd, D. Hilvert, K. N. Houk, B. L. Stoddard, and D. Baker (2008) De novo computational design of retro-aldol enzymes. Science 319: 1387–1391.

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Röthlisberger, D., O. Khersonsky, A. M. Wollacott, L. Jiang, J. DeChancie, J. Betker, J. L. Gallaher, E. A. Althoff, A. Zanghellini, O. Dym, S. Albeck, K. N. Houk, D. S. Tawfik, and D. Baker (2008) Kemp elimination catalysts by computational enzyme design. Nature 453: 190–195.

    PubMed  Google Scholar 

  104. Reverdatto, S., D. S. Burz, and A. Shekhtman (2015) Peptide aptamers: development and applications. Curr. Top. Med. Chem. 15: 1082–1101.

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Li, J.-W., X.-Y. Zhang, H. Wu, and Y.-P. Bai (2020) Transcription factor engineering for high-throughput strain evolution and organic acid bioproduction: a review. Front. Bioeng. Biotechnol. 8: 98.

    PubMed  PubMed Central  Google Scholar 

  106. Ellington, A. D. and J. W. Szostak (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355: 850–852.

    PubMed  CAS  Google Scholar 

  107. Ellington, A. D. and J. W. Szostak (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822.

    PubMed  CAS  Google Scholar 

  108. Jayasena, S. D. (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45: 1628–1650.

    PubMed  CAS  Google Scholar 

  109. Zhou, J. and J. Rossi (2017) Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16: 181–202. (Erratum published 2017, Nat. Rev. Drug Discov. 16: 440)

    PubMed  CAS  Google Scholar 

  110. Ali, M. H., M. E. Elsherbiny, and M. Emara (2019) Updates on aptamer research. Int. J. Mol. Sci. 20: 2511.

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Wishart, D. S., D. Tzur, C. Knox, R. Eisner, A. C. Guo, N. Young, D. Cheng, K. Jewell, D. Arndt, S. Sawhney, C. Fung, L. Nikolai, M. Lewis, M.-A. Coutouly, I. Forsythe, P. Tang, S. Shrivastava, K. Jeroncic, P. Stothard, G. Amegbey, D. Block, D. D. Hau, J. Wagner, J. Miniaci, M. Clements, M. Gebremedhin, N. Guo, Y. Zhang, G. E. Duggan, G. D. Macinnis, A. M. Weljie, R. Dowlatabadi, F. Bamforth, D. Clive, R. Greiner, L. Li, T. Marrie, B. D. Sykes, H. J. Vogel, and L. Querengesser (2007) HMDB: the human metabolome database. Nucleic Acids Res. 35: D521–D526.

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Mandal, M. and R. R. Breaker (2004) Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 5: 451–463.

    PubMed  CAS  Google Scholar 

  113. Cress, B. F., E. A. Trantas, F. Ververidis, R. J. Linhardt, and M. A. Koffas (2015) Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways. Curr. Opin. Biotechnol. 36: 205–214.

    PubMed  CAS  Google Scholar 

  114. Link, K. H. and R. R. Breaker (2009) Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther. 16: 1189–1201.

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Jang, S., B. Lee, H.-H. Jeong, S. H. **, S. Jang, S. G. Kim, G. Y. Jung, and C.-S. Lee (2016) On-chip analysis, indexing and screening for chemical producing bacteria in a microfluidic static droplet array. Lab Chip 16: 1909–1916.

    PubMed  CAS  Google Scholar 

  116. **u, Y., S. Jang, J. A. Jones, N. A. Zill, R. J. Linhardt, Q. Yuan, G. Y. Jung, and M. A. G. Koffas (2017) Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures. Biotechnol. Bioeng. 114: 2235–2244.

    PubMed  CAS  Google Scholar 

  117. Yu, H., O. Alkhamis, J. Canoura, Y. Liu, and Y. **ao (2021) Advances and challenges in small-molecule DNA aptamer isolation, characterization, and sensor development. Angew. Chem. Int. Ed. Engl. 60: 16800–16823.

    PubMed  PubMed Central  CAS  Google Scholar 

  118. McKeague, M. and M. C. DeRosa (2012) Challenges and opportunities for small molecule aptamer development. J. Nucleic Acids 2012: 748913.

    PubMed  PubMed Central  Google Scholar 

  119. Yang, K.-A., M. Barbu, M. Halim, P. Pallavi, B. Kim, D. M. Kolpashchikov, S. Pecic, S. Taylor, T. S. Worgall, and M. N. Stojanovic (2014) Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors. Nat. Chem. 6: 1003–1008.

    PubMed  PubMed Central  CAS  Google Scholar 

  120. Coonahan, E. S., K.-A. Yang, S. Pecic, M. De Vos, T. E. Wellems, M. P. Fay, J. F. Andersen, J. Tarning, and C. A. Long (2021) Structure-switching aptamer sensors for the specific detection of piperaquine and mefloquine. Sci. Transl. Med. 13: eabe1535.

    PubMed  CAS  Google Scholar 

  121. Yang, K.-A., R. Pei, and M. N. Stojanovic (2016) In vitro selection and amplification protocols for isolation of aptameric sensors for small molecules. Methods 106: 58–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Yang, K.-A., H. Chun, Y. Zhang, S. Pecic, N. Nakatsuka, A. M. Andrews, T. S. Worgall, and M. N. Stojanovic (2017) High-affinity nucleic-acid-based receptors for steroids. ACS Chem. Biol. 12: 3103–3112.

    PubMed  PubMed Central  CAS  Google Scholar 

  123. Yu, H., Y. Luo, O. Alkhamis, J. Canoura, B. Yu, and Y. **ao (2021) Isolation of natural DNA aptamers for challenging small-molecule targets, cannabinoids. Anal. Chem. 93: 3172–3180.

    PubMed  PubMed Central  CAS  Google Scholar 

  124. Jang, S. and G. Y. Jung (2018) Systematic optimization of L-tryptophan riboswitches for efficient monitoring of the metabolite in Escherichia coli. Biotechnol. Bioeng. 115: 266–271.

    PubMed  CAS  Google Scholar 

  125. Zadeh, J. N., C. D. Steenberg, J. S. Bois, B. R. Wolfe, M. B. Pierce, A. R. Khan, R. M. Dirks, and N. A. Pierce (2011) NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32: 170–173.

    PubMed  CAS  Google Scholar 

  126. Boumezbeur, A.-H., M. Bruer, G. Stoecklin, and M. Mack (2020) Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis. Metab. Eng. 61: 58–68.

    PubMed  CAS  Google Scholar 

  127. Rogers, J. K. and G. M. Church (2016) Genetically encoded sensors enable real-time observation of metabolite production. Proc. Natl. Acad. Sci. U. S. A. 113: 2388–2393.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program [20009356] funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science & ICT (2022M3A9B6082670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheulhee Jung.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, C., Lee, MK. & Jung, C. Quantitative Methods for Metabolite Analysis in Metabolic Engineering. Biotechnol Bioproc E 28, 949–961 (2023). https://doi.org/10.1007/s12257-022-0200-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0200-z

Keywords

Navigation