Log in

Metabolic Flux Analysis using 13C Isotopes: III. Significance for Systems Biology and Metabolic Engineering

  • Problems, Prospects
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

At present, 13C-MFA is a primary method for quantitatively characterizing intracellular carbon fluxes in cells in vivo under steady-state conditions. The method has been successfully used to investigate both the fundamental characteristics of prokaryotic and eukaryotic cell metabolism and to improve producer strains for more than twenty years. This publication is the last in a set of reviews that describe various aspects of the method. Here, the authors highlight recent achievements that involved using 13C-MFA to elucidate bacterial metabolism. Analyses of well-characterized bacterial model strains revealed that central metabolism robustness is provided by a set of alternative metabolic pathways; these analyses also helped develop a better understanding of the physiological significance of these pathways and identified previously unknown functions of well-studied metabolic pathways. Several examples of 13C-MFA-based fundamental investigations of poorly characterized bacteria are also analyzed. In applied investigations, flux analysis of strains that produce amino acids, vitamins and antibiotics indicated targets for modifications, suggested unconventional metabolic engineering approaches, and, most importantly, confirmed their utility. In the last section of this article, 13C-MFA prospects, including the monitoring of the dynamics of metabolic flux distribution during culture growth, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CM:

central metabolism

AC:

acetate

ACALD:

acetaldehyde

ACCOA:

acetyl-coenzyme A

AKG:

2-oxoglutarate

CoA:

coenzyme A

C2/C3:

two-carbon and tri-carbon fragments involved in the enzymatic reactions catalyzed by transaldolase and transketolase of the non-oxidizing branch of the PP pathway according to the **-pong mechanism

CIT:

citrate

13C-MFA (13C-based metabolic flux analysis):

metabolic flux analysis in experiments using substrates containing 13C isotopes of carbon

E4P:

erythrose 4-phosphate

ED pathway:

Entner-Doudoroff pathway

EMP pathway:

Embden–Meyerhof–Parnas pathway

DHAP:

dihydroxyacetone phosphate

ICIT:

isocitate

F6P:

fructose 6-phosphate

FDP:

fructose 1,6-diphosphate

FUM:

fumarate

G6P:

glucose 6-phosphate

G3P:

glyceraldehyde 3-phosphate

GC–MS:

Gas chromatography–mass spectrometry

GLC:

glucose

GLX:

glyoxylate

KDPG:

2-keto-3-deoxy-phosphogluconate

LC:

liquid chromatography

LL-DAP:

L,L-diaminopimelic acid

MAL:

malate

MS/MS:

tandem mass spectrometry

MTHF:

methyltetrahydrofolate

NAD(H):

oxidized (reduced) nicotinamide dinucleotide

m so-DAP:

meso-diaminopimelic acid

OAA:

oxaloacetate

PP pathway:

pentose phosphate pathway

PRPP:

5-phosphoribosyl-1-pyrophosphate

PTS:

phosphoenolpyruvate-dependent phosphotransferase system

Pyr:

pyruvate

P5P:

phosphorylated pentasaccharide pool (R5P, Ru5P, and Xu5P)

PEP:

phosphoenolpyruvate

3PG:

3-phosphoglycerate

R5P:

ribose 5-phosphate

Ru5P:

ribulose 5-phosphate

S7P:

sedoheptulose 7-phosphate

SAKP:

N-succinyl- [alpha]amino-oxopimelate

SDAP:

succinyl-diaminopimelic acid

SUC:

succinate

SUCCOA:

succinyl-coenzyme A

TCA:

Tricarboxylic acid cycle

THDP:

tetrahydrodipicolinate

Xu5P:

xylulose 5-phosphate

6PG:

gluconate 6-phosphate

13DPG:

1,3-diphosphoglycerate. Amino acids are designated according to the three-letter code.

References

  1. Golubeva, L.I., Shupletsov, M.C., and Mashko, S.V., Metabolic flux analysis using 13C isotopes. 1. Experimental basis of the method and present stats of investigations, Biotekhndogiya, 2016, vol. 32, no. 5, pp. 10–37. doi 10.1016/0234-2734-2758-2016-32-5-10-37

    Article  Google Scholar 

  2. Shupletsov, M.C., Golubeva, L.I., and Mashko, S.V., Metabolic flux analysis using I3C isotopes II. Mathematical basis for the method, Biotekhnobgiya, 2016, vol. 32, no. 6, pp. 9–34. doi 10.1016/0234-2758-2016-32-6-9-34

    Google Scholar 

  3. Moxley, J.F., Jewett, M.C., Antoniewicz, M.R., et al., Linking high-resolution metabolite flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gen4p, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 16, pp. 6477–6482. doi 10.1073/pnas.0811091106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Junker, B.H., Flux analysis in plant metabolic networks: increasing throughput and coverage, Curr. Opin. Biotechnol., 2014, vol. 26, pp. 183–188. doi 10.1016/j.copbio.2014.01.016

    Article  CAS  PubMed  Google Scholar 

  5. Mueller, D. and Heinzle, E., Stable isotope-assisted metabolomics to detect metabolic flux changes in mammalian cell cultures, Curr. Opin. Biotechnol., 2013, vol. 24, pp. 54–59. doi 10.1016/j.copbio.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  6. You, L. He, L., et al., 13c-mfa delineates the photomixotrophic metabolism of Synechocystis sp. PCC 6803 under light-and carbon-sufficient conditions, Biotechnol. J., 2014, vol. 9, pp. 684–692. doi 10.1002/biot201300477

    Article  CAS  PubMed  Google Scholar 

  7. Baba, T. Hasegawa, M., et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol. Syst. Biol., 2006, vol. 2, pp. 1–11. doi 10.1038/msb4100050

    Article  CAS  Google Scholar 

  8. Yao, R., Hirose, Y., Sarkar, D., et al., Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants, Microb. Cell Fact., 2011, vol. 10, no. 67, pp. 1–11. doi 10.1186/1475-2859-10-67

    Google Scholar 

  9. Meza, E., Becker, J., Bolivar, F., et al., Consequences of phosphoenol pyruvate:sugar phosphotransferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli, Microb. Cell. Fact., 2012, vol. 11, no. 127, pp. 1–13. doi 10.1186/1475-2859-11-127

    Google Scholar 

  10. Canonaco, F., Hess, T.A., Heri, S., et al., Metabolic flux response to phosphoglucose isomerase knock-out in Esherichia coli and impact of overexpression of the soluble transhydrogenase UdhA, FEMS Microbiol. Letts., 2001, vol. 204, pp. 247–252. doi 10.1111/j.l574-6968.2001.tbl0892jc

    Article  CAS  Google Scholar 

  11. Hua, Q. Yang, C., et al., Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucoses-phosphate dehydrogenase knockouts, J. Bacteriol., 2003, vol. 185, pp. 7053–7067. doi 10.1128/JB.185.24.7053-7067.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Emmerling, M., Dauner, M., Ponti, A., et al., Metabolic flux responses to pyruvate kinase knockout in Escherichia coli, J. Bacteriol., 2002, vol. 184, pp. 152–164. doi 10.1128/JB.184.1.152-1642002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Siddiquee, K.A.Z., Arauzo-Bravo, M.J., Shimizu, K., et al., Metabolic flux analysis of pykF gens knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations, Appl. Microbiol. Biotechnol., 2004, vol. 63, pp. 407–417. doi 10.1007/s00253-003-1357-9

    Article  CAS  Google Scholar 

  14. Ishii, N., Nakahigashi, K., Baba, T., et al., Multiple high-throughput analyses monitor the response of E. coli to perturbations, Science, 2007, vol. 316, pp. 593–597. doi 10.1126/science.1132067

    Article  CAS  PubMed  Google Scholar 

  15. Antoniewicz, M.R., Metabolic flux analysis of Escherichia coli knockouts: lessons from the keio collection and future outlook, Curr. Opin. Biotechnol., 2014, vol. 28, pp. 127–133. doi 10.1016/j.copbio. 2014.02.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Nizam, S.A. and Shimizu, K., Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under anaerobic and microaerobic conditions, Biochem. Eng. J., 2008, vol. 42, pp. 229–236. doi 10.1016/j.bej.2008.06.021

    Article  CAS  Google Scholar 

  17. Nizam, S.A., Zhu, J., Ho, P.Y., and Shimizu, K., Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under aerobic condition, Biochem. Eng J., 2009, vol. 44, pp. 240–250. doi 10.1016/j.bej.2008.12.017

    Article  CAS  Google Scholar 

  18. Fong, S.S., Nanchen, A., Palsson, B.O., and Sauer, U., Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes, J. Biol. Chem., 2006, vol. 281, pp. 8024–8033. doi 10.1074/jbc.M510016200

    Article  CAS  PubMed  Google Scholar 

  19. Sauer, U., Canonaco, F., Heri, S., et al., The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli, J. Biol. Chem., 2004, vol. 279, pp. 6613–6619. doi 10.1074/jbc.M311657200

    Article  CAS  PubMed  Google Scholar 

  20. Fischer, E. and Sauer, U., Experimental identification and quantification of glucose metabolism in seven bacterial species, J. Bacteriol., 2005, vol. 187, pp. 1581–1590. doi 10.1128/JB.187.5.1581-1590.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shupletsov, M.S., Golubeva, L.I., Rubina, S.S., et al., OpenF-LUX2:13C-MFA modeling software package adjusted for the comprehensive analysis of single and parallel labeling experiments, Microb. Cell Fact., 2014, vol. 13, no. 152, pp. 1–25. doi 10.1186/sl2934-014-0152-x

    Google Scholar 

  22. Leighty, R.W. and Antoniewicz, M.R., COMPLETE-MFA: complementary parallel labeling experiments technique for metabolic flux analysis, Metab. Eng., 2013, vol. 20, pp. 49–55. doi 10.1016/j.ymben.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  23. Sauer, U. and Eikmanns, B.J., The PEP-pyruvateoxaloacetate node as the switch point for carbon flux distribution in bacteria, FEMS Microbiol. Rev., 2005, vol. 29, pp. 765–794. doi 10.1016/j.femsre.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  24. Fischer, E. and Sauer, U., A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli, J. Biol. Chem., 2003, vol. 278, pp. 46446–46451. doi 10.1074/jbc.M307968200

    Article  CAS  PubMed  Google Scholar 

  25. Sauer, U., Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism, J. Bacteriol., 2009, vol. 191, pp. 2112–2121. doi 10.1128/JB.01523-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Boghigian, B.A., Seth, G., Kiss, R., and Pfeifer, B.A., Metabolic flux analysis and pharmaceutical production, Metab. Eng., 2010, vol. 12, pp. 81–95. doi 10.1016/j.ymben.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  27. Iwatani, S., Yamada, Y., and Usuda, Y., Metabolic flux analysis in biotechnology process, Biotechnol. Lett., 2008, vol. 30, pp. 791–799. doi 10.1007/sl0529-008-9633-5

    Article  CAS  PubMed  Google Scholar 

  28. Guo, W., Sheng, J., and Feng, X., 13c-metabolic flux analysis: an accurate approach to demystify microbial metabolism for biochemical production, Bioengineering, 2016, vol. 3, no. 3, pp. 1–32. doi 10.3390toioengineering3010003

    CAS  Google Scholar 

  29. Becker, J., Reinefeld, J., Stellmacher, R., et al., Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens, Biotechnol. Bioeng., 2013, vol. 110, pp. 3013–3023. doi 10.1002/bit.24963

    Article  CAS  PubMed  Google Scholar 

  30. Berger, A., Dohnt, K., Tielen, P., et al., Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa, PLoS ONE, 2014, vol. 9, no. 4, pp. 1–14. doi 10.1371/journal. pone.0088368

    Article  CAS  Google Scholar 

  31. Schatschneider, S., Huber, C., Neuweger, H., et al., Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner–Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis, Mol. BioSyst., 2014, vol. 10, pp. 2663–2676. doi 10.1039/c4mb00198b

    Article  CAS  PubMed  Google Scholar 

  32. Swarup, A., Lu, J., DeWoody, K.C., and Antoniewicz, M.R., Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermits thermophilic HB8, Metab. Eng., 2014, vol. 24, pp. 173–180. doi 10.1016/j.ymben.2014.05.013

    Article  CAS  PubMed  Google Scholar 

  33. Au, J., Choi, J., Jones, S.W., et al., Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for 13c metabolic flux analysis, Metab. Eng., 2014, vol. 26, pp. 23–33. doi 10.1016/j.ymben.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  34. Nicolas, C., Kiefer, P., Letisse, F., et al., Response of the central metabolism of Escherichia coli to modified expression of the gene encoding the glucose-6-phosphate dehydrogenase, FEBS Lett., 2007, vol. 581, pp. 3771–3776. doi 10.1016/j.febslet.2007.06.066

    Article  CAS  PubMed  Google Scholar 

  35. Wittmann, C., Kim, H.M., and Heinzle, E., Metabolic network analysis of lysine producing Corynebacterium glutamicum at a miniaturized scale, Biotechnol. Bioeng., 2004, vol. 87, pp. 1–6. doi 10.1002/bit.20103

    Article  CAS  PubMed  Google Scholar 

  36. van Rijsewijk, B.R., Nanchen, A., Nallet, S., et al., Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli, Mol. Syst. Biol., 2011, vol. 7, no. 477, pp. 1–12. doi 10.1038/msb.2011.9

    Google Scholar 

  37. McAtee, A.G., Jazmin, L.J., and Young, J.D., Application of isotope labeling experiments and 13C flux analysis to enable rational pathway engineering, Curr. Opin. Biotechnol., 2015, vol. 36, pp. 50–56. doi 10.1016/j.copbio.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  38. He, L., **ao, Y., Gebreselassie, N., et al., Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis, Biotechnol. Bioeng., 2014, vol. 111, pp. 575–585. doi 10.1002/bit.25124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Becker, J., Zelder, O., Hafner, S., et al., From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production, Metab. Eng., 2011, vol. 13, pp. 159–168. doi 10.1016/j.ymben.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  40. Daae, E.B. and Ison, A.P., Classification and sensitivity analysis of a proposed primary metabolic reaction network for Streptomyces lividans, Metab. Eng., 1999, vol. 1, pp. 153–165. doi 10.1006/mben.l998.0112

    Article  CAS  PubMed  Google Scholar 

  41. Marx, A. Wiechert, W., et al., Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing, Biotechnol. Bioeng., 1996, vol. 49, pp. 111–129. doi 10.1002/(SICI)1097-0290(19960120)49:2<111::AID-BIT1>3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  42. Wittmann, C. and Heinzle, E., Mass spectrometry for metabolic flux analysis, Biotechnol. Bioeng., 1999, vol. 62, pp. 739–750. doi 10.1002/(SICI)1097-0290(19990320)62:6<739::AID-BIT13>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  43. Hatzimanikatis, V. Bailey, J.E., et al., Metabolic fluxes in riboflavin-producing bacillus subtilis, Nat. Biotechnol., 1997, vol. 15, pp. 448–452. doi 10.1038/hbt0597-448

    Article  PubMed  Google Scholar 

  44. Antoniewicz, M.R., Kelleher, J.K., and Stephanopoulos, G., Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements, Metab. Eng., 2006, vol. 8, pp. 324–337. doi 10.1016/j.ymben.2006.01.004

    Article  CAS  PubMed  Google Scholar 

  45. Suthers, P.F., Burgard, A.P., Dasika, M.S., et al., Metabolic flux elucidation for large-scale models using 13c labeled isotopes, Metab. Eng., 2007, vol. 9, pp. 387–405. doi 10.1016/j.ymben.2007.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stephanopoulos, G., Metabolic fluxes and metabolic engineering, Metab. Eng., 1999, vol. 1, pp. 1–11. doi 10.1006/mben.l998.0101

    Article  CAS  PubMed  Google Scholar 

  47. Yang, C. Hua, Q., et al., Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout, Biotechnol. Bioeng., 2003, vol. 84, pp. 129–144. doi 10.1002/bit.l0692

    Article  PubMed  CAS  Google Scholar 

  48. Yang, C.Y., Hua, Q., and Shimizu, K., Quantitative analysis of intracellular metabolic fluxes using GC-MS and two-dimensional NMR spectroscopy, J. Biosci. Bioeng., 2002, vol. 93, pp. 78–87. doi 10.1016/S1389-1723(02)80058-5

    Article  CAS  PubMed  Google Scholar 

  49. Schmidt, K., Nielsen, J., and Villadsen, J., Quantitative analysis of metabolic fluxes in Escherichia coli, using two-dimensional NMR spectroscopy and complete isotopomer models, J. Biotechnol., 1999, vol. 279, pp. 175–190. doi 10.1016/S0168-1656(99)00021-8

    Article  Google Scholar 

  50. Nielsen, J., Isotopomer analysis using GC-MS, Metab. Eng., 1999, vol. 1, pp. 282–290. doi 10.1006/mben.l999.0117

    Article  PubMed  Google Scholar 

  51. Varma, A., Boesch, B.W., and Palsson, B.O., Biochemical production capabilities of Escherichia coli, Biotechnol. Bioeng., 1993, vol. 42, pp. 59–73. doi 10.1002/bit260420109

    Article  CAS  PubMed  Google Scholar 

  52. Vallino, J.J. and Stephanopoulos, G., Metabolic flux distribution in Corynebacterium glutamicum during growth and lysine overproduction, Biotechnol. Bioeng., 1993, vol. 41, pp. 633–646. doi 10.1002/bit.260410606

    Article  CAS  PubMed  Google Scholar 

  53. Pramanik, J. and Keasling, J.D., Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements, Biotechnol. Bioeng., 1997, vol. 56, pp. 398–421. doi 10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  54. Zupke, C. and Stephanopoulos, G., Modeling of isotope distributions and intracellular fluxes in metabolic networks using atom map** matrices, Biotechnol. Prog., 1994, vol. 10, pp. 489–498. doi 10.1021/bp00029a006

    Article  CAS  Google Scholar 

  55. Coze, F., Gilard, F., Tcherkez, G., et al., Carbon-flux distribution within streptomyces coelicolor metabolism: a comparison between the actinorhodin-producing strain M145 and its non-producing derivative M1146, PLoS ONE, 2013, vol. 8, no. 12, pp. 1–15. doi 10.1371/journal.pone.0084151

    Article  CAS  Google Scholar 

  56. Hwang, K.-S., Kim, H.U., Charusanti, P., et al., Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites, Biotechnol. Adv., 2014, vol. 32, pp. 255–268. doi 10.1016/j.biotechadv.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  57. Sonntag, K., Schwinde, J., de Graaf, A.A., et al., 13C NMR studies of the fluxes in the central metabolism of Corynebacterium glutamicum during growth and overproduction of amino acids in batch cultures, Appl. Microbiol. Biotechnol., 1995, vol. 44, pp. 489–495. doi 10.1007/BF00169949

    Article  CAS  Google Scholar 

  58. Wittmann, C. and Heinzle, E., Application of MALDI-TOF to lysine-producing Corynebacterium glutamicum. A novel approach for metabolic flux analysis, Eur. J. Biochem., 2001, vol. 268, pp. 2441–2455. doi 10.1046/j.l432-1327.2001.02129.x

    Article  CAS  PubMed  Google Scholar 

  59. Kalinowski, K. Battels, D., et al., The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins, J. Biotechnol., 2003, vol. 104, pp. 5–25. doi 10.1016/S0168-1656(03)00154-8

    Article  CAS  PubMed  Google Scholar 

  60. Kieldsen, K.R. and Nielsen, J., In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network, Biotechnol. Bioeng., 2009, vol. 102, pp. 583–597.

    Article  CAS  Google Scholar 

  61. Analysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum, Adv. Biochem. Eng. Biotechnol., 2010, vol. 120, pp. 21–49. doi 0.1007/10_2009_58

  62. Van Ooyen, J., Noack, S., Bott, M., et al., Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity, Biotechnol. Bioeng., 2012, vol. 109, pp. 2070–2081. doi 10.1002/bit.24486

    Article  PubMed  CAS  Google Scholar 

  63. Nakato, A. Izutani, N., et al., Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria, Metab. Eng., 2005, vol. 7, pp. 59–69. doi 10.1016/j.ymben.2004.10.001

    Article  PubMed  CAS  Google Scholar 

  64. Fujimura, K. Furusawa, C., et al., Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis, Microb. Cell Fact., 2007, vol. 6, no. 19, pp. 1–19. doi 10.1186/1475-2859-6-19

    Google Scholar 

  65. Wahl, A., Massaoudi, M.El., Schipper, D., et al., Serial 13C-ba-sed flux analysis of an L-phenylalanineproducing E. coli strain using the sensor reactor, Biotechnol. Prog., 2004, vol. 20, no. 3, pp. 706–714. doi 10.1021/bp0342755

    Article  CAS  PubMed  Google Scholar 

  66. Krdmer, J.O., Wittmann, C., Schrrjder, H., and Heinzle, E., Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum, Metab. Eng., 2006, vol. 8, pp. 353–369. doi 10.1016/j.ym-ben.2006.02.001

    Article  CAS  Google Scholar 

  67. Bartek, T., Blombach, B., Lang, S., et al., Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum, Appl. Environ. Microbiol., 2011, vol. 77, pp. 6644–6652. doi 10.1128/AEM.00575-11

    Article  CAS  PubMed  Google Scholar 

  68. Antoniewicz, M.R., Kraynie, D.F., Laffend, L.A., et al., Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of e. coli producing 1,3-propanediol., Metab. Eng., 2007, vol. 9, pp. 277–292. doi 10.1016/j.femsyr.2004.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blank, L.M., Lehmbeck, F., and Sauer, U., Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts, FEMS Yeast Res., 2005, vol. 5, pp. 545–558. doi 10.1016/j.femsyr.2004.09.008

    Article  CAS  PubMed  Google Scholar 

  70. Frick, O., Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis, Microb. Cell Fact., 2005, vol. 4, no. 30, pp. 1–16. doi 10.1186/1475-2859-4-30

    Google Scholar 

  71. Fredlund, E., Blank, L.M., Schnurer, J., et al., Oxygen-and glucose-dependent regulation of central carbon metabolism in Pichia anomala, Appl. Environ. Microbiol., 2004, vol. 70, pp. 5905–5911. doi 10.1128/AEM.70.10.5905-5911.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kleijn, R.J., Geertman, J.M., Nfor, B.K., et al., Metabolic flux analysis of a glycerol-overproducing Saccharomyces cerevisiae strain based on GC-MS, LC-MS and NMR-derived 13C-labeling data, FEMS Yeast Res., 2007, vol. 7, pp. 216–231. doi 10.1111/J.1567-1364.2006.00180.X

    CAS  Google Scholar 

  73. McKinlay, J.B., Shachar-Hill, Y., Zeikus, J.G., and Vieille, C., Determining Actinobaciuus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers, Metab. Eng., 2007, pp. 177–192. doi 10.1016/j.ymben.2006.10.006

    Google Scholar 

  74. Zamboni, N., Fischer, E., Muffler, A., et al., Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis, Biotechnol. Bioeng., 2005, vol. 89, pp. 219–232.

    Article  CAS  PubMed  Google Scholar 

  75. Cannizzaro, C., Christensen, B., Nielsen, J., and von Stockar, U., Metabolic network analysis on Pphaffla rhodozyma yeast using 13C-labeled glucose and gas chromatography–mass spectrometry, Metab. Eng., 2004, vol. 6, pp. 340–351. doi 10.1016/j.ymben.2004.06.001

    Article  CAS  PubMed  Google Scholar 

  76. Kleijn, R.J., van Winden, W.A., Ras, C., et al., 13C-labeled gluconate tracing as a direct and accurate method for determining the pentose phosphate pathway split ratio in Penicillium chysogenum, Appl. Environ. Microbiol., 2006, vol. 72, pp. 4743–4754. doi 10.1128/AEM.02955-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kleijn, R.J., Liu, F., van Winden, W.A., et al., Cytosolic NADPH metabolism in penicillin-G producing and non-producing chemostat cultures of Penicillium chrysogenum, Metab. Eng., 2007, vol. 9, pp. 112–123. doi 10.1016/j.ymbea2006.08.004

    Article  CAS  PubMed  Google Scholar 

  78. Jonsbu, E. and Nielsen, J., Changes of in vivo fluxes through central metabolic pathways during the production of nystatin by Streptomyces noursei in batch culture, Appl. Microbiol. Biotechnol., 2001, vol. 56, pp. 93–100. doi 10.1007/s002530100613

    Article  CAS  PubMed  Google Scholar 

  79. Borodina, I., Scholler, C., Eliasson, A., and Nielsen, J., Metabolic network analysis of Streptomyces tenebrarius, a Streptomyces species with an active Entner–Doudoroff pathway, Appl. Environ. Microbiol., 2005, vol. 71, pp. 2294–2302. doi 10.1128/AEM.71.5.2294-2302.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Borodina, I., Siebring, J., Zhang, J., et al., Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion, J. Biol. Chem., 2008, vol. 283, pp. 25186–25199. doi 10.1074/jbc.M803105200

    Article  CAS  PubMed  Google Scholar 

  81. Weber, J., Hoffmann, F., and Rinas, U., Metabolic adaptation of Escherichia coli during temperatureinduced recombinant protein production: 2. redirection of metabolic fluxes, Biotechnol. Bioeng., 2002, vol. 80, pp. 320–330. doi 10.1002/bit.l0380

    Article  CAS  PubMed  Google Scholar 

  82. Wittmann, C., Weber, J., Betiku, E., et al., Response of fluxome and metabolome to temperature-induced recombinant protein synthesis in Escherichia coli, J. Biotechnol., 2007, vol. 132, pp. 375–384. doi 10.1016/j.jbiotec.2007.07.495

    Article  CAS  PubMed  Google Scholar 

  83. Hermann, T., Industrial production of amino acids by coryneform bacteria, J. Biotechnol., 2003, vol. 104, pp. 155–172. doi 10.1016/S0168-1656(03)00149-4

    Article  CAS  PubMed  Google Scholar 

  84. Becker, J., Bio-based production of chemicals, materials and fuels—Corynebacterium glutamicum as versatile cell factory, Curr. Opin. Biotechnol., 2012, vol. 23, pp. 631–640. doi 10.1016/j.copbio.2011.11.012

    Article  CAS  PubMed  Google Scholar 

  85. Becker, J., Systems and synthetic metabolic engineering for amino acid production—the heartbeat of industrial strain development, Curr. Opin. Biotechnol., 2012, vol. 23, pp. 718–726. doi 10.1016/j.copbio.2011.12.025

    Article  CAS  PubMed  Google Scholar 

  86. Wendisch, V.F., Bott, M., and Eikmanns, B.J., Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids, Curr. Opin. Microbiol., 2006, vol. 9, pp. 268–274. doi 10.1016/j.mib.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  87. Noh, K. and Wiechert, W., The benefits of being transient: isotope-based metabolic flux analysis at the short time scale, Appl. Microbiol. Biotechnol., 2011, vol. 91, pp. 1247–1265. doi 10.1007/s00253-011-3390-4

    Article  PubMed  CAS  Google Scholar 

  88. Hara, Y., Kadotani, N., Izui, H., et al., The complete genome sequence of Ppantoea ananatis AJ13355, an organism with great biotechnological potential, Appl. Microb. Biotechnol., 2012, vol. 93, pp. 331–341. doi 10.1007/s00253-011-3713-5

    Article  CAS  Google Scholar 

  89. Tsujimoto, N., Gunji, Y., Ogawa-Miyata, Y., et al., L-lysine bio-synthetic pathway of Methylophilus methylotrophus and construction of an L-lysine producer, J. Biotechnol., 2006, vol. 124, pp. 327–337. doi 10.1016/j.jbiotec.2005.12.026

    Article  CAS  PubMed  Google Scholar 

  90. Petersen, S., de Graaf, A.A., Eggeling, L., et al., In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum, J. Biol. Chem., 2000, vol. 275, pp. 35932–35941. doi 10.1074/jbc.M908728199

    Article  CAS  PubMed  Google Scholar 

  91. Wiechert, W., 13C metabolic flux analysis, Metab. Eng., 2001, vol. 3, pp. 195–206. doi 10.1006/mben.2001.0187

    Article  CAS  PubMed  Google Scholar 

  92. Becker, J., Klopprogge, C., Zelder, O., et al., Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources, Appl. Environ. Microbiol., 2005, vol. 71, pp. 8587–8596. doi 10.1128/AEM.71.12.8587-8596.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kind, S. and Becker, J., Increased lysine production by flux coupling of the tricaboxy lie acid cycle and the lysine biosynthetic pathway—metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum, Metab. Eng., 2013, vol. 15, pp. 184–195. doi 10.1016/j.ymben.2012.07.00

    Article  CAS  PubMed  Google Scholar 

  94. Bommareddy, R.R., Chen, Z., Rappert, S., and Zeng, A.-P., A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehydes 3-phosphate dehydrogenase, Metab. Eng., 2014, vol. 25, pp. 30–37. doi 10.1016/j.ymben.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  95. Iwatani, S., Van Dien, S., Shimbo, K., et al., Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS, J. Biotechnol., 2007, vol. 128, pp. 93–111. doi 10.1016/j.ymben.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  96. Kromer, O., Sorgenfiei, O., Klopprogge, K., et al., Indepth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome, J. Bacteriol., 2004, vol. 186, pp. 1769–1784. doi 10.1016/j.jbiotec.2006.09.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Patnaik, R. and Liao, J.C., Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield, Appl. Environ. Microbiol., 1994, vol. 60, pp. 3903–3908.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Fu, Y., Yoon, J.M., Jarboe, L., and Shanks, J.V., Metabolic flux analysis of Escherichia coli MG1655 under octanoic acid (C8) stress, Appl. Microbiol. Biotechnol., 2015, vol. 99, pp. 4397–4408. doi 10.1007/s00253-015-6387-6

    Article  CAS  PubMed  Google Scholar 

  99. Bentley, S.D., Chater, K.F., Cerdeco-Torraga, A.M., et al., Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2), Nature, 2002, vol. 417, pp. 141–147. doi 10.1038/417141a

    Article  PubMed  Google Scholar 

  100. Nieselt, K., Battke, F., Herbig, A., et al., The dynamic architecture of the metabolic switch in Streptomyces coelicolor, BMC Genomics, 2010, vol. 11, pp. 10–18. 10.118671471-2164-11-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Thomas, L., Hogson, D.A., Wentzel, A., et al., Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture, Mol. Cell. Proteomics, 2012, vol. 11, pp. 1–17. doi 10.1074/mcp.Ml11.013797

    Article  CAS  Google Scholar 

  102. Toya, Y. Ishii, N., et al., Direct measurement of isotopomer of intracellular metabolites using capillary electrophoresis time-of-flight mass spectrometry for efficient metabolic flux analysis, J. Chromatogr., A, 2007, vol. 1159, pp. 134–141. doi 10.1016/j.chroma.2007.04.011

    Article  CAS  Google Scholar 

  103. Riihl, M. Noh, K., et al., Collisional fragmentation of central metabolites in LC-MS/MS increases precision of 13C metabolic flux analysis, Biotechnol. Bioeng., 2012, vol. 109, pp. 763–771. doi 10.1002/bit.24344

    Article  CAS  Google Scholar 

  104. Kohlstedt, M. and Becker, J., Metabolic fluxes and beyond—systems biology understanding and engineering of microbial metabolism, Appl. Microbiol. Biotechnol., 2010, vol. 88, pp. 1065–1075. doi 10.1007/s00253-010-2854-2

    Article  CAS  PubMed  Google Scholar 

  105. Fischer, E. and Sauer, U., Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS, Eur. J. Biochem., 2003, vol. 270, pp. 880–891. doi 10.1046/j.l432-1033.2003.03448.x

    Article  CAS  PubMed  Google Scholar 

  106. Metabolic flux analysis using mass spectrometry, Adv. Biochem. Eng. Biotechnol., 2002, vol. 74, pp. 39–64. doi 10.1007/3-540-45736-4_3

  107. Antoniewicz, M.R., Kelleher, J.K., and Stephanopoulos, G., Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis, Anal. Chem., 2007, vol. 79, pp. 7554–7559. doi 10.1021/ac0708893

    Article  CAS  PubMed  Google Scholar 

  108. Fluxome analysis using GC-MS, Microb. Cell Fact., 2007, no. 6, pp. 1–17. doi 10.1186/1475-2859-6-6

  109. Choi, J., Grossbach, M.T., and Antoniewicz, R.R., Measuring complete isotopomer distribution of aspartate using gas chromatography/tandem mass spectrometry, Anal. Chem., 2012, vol. 84, pp. 4628–4632. doi 10.1021/ac300611n

    Article  CAS  PubMed  Google Scholar 

  110. Jeffrey, F.M.H., Roach, J.S., Storey, C.J., et al., 13C isotopomer analysis of glutamate by tandem mass spectrometry, Anal. Biochem., 2002, vol. 300, pp. 192–205. doi 10.1006/abio.2001.5457

    Article  CAS  PubMed  Google Scholar 

  111. Choi, J. and Antoniewicz, M.R., Tandem mass spectrometry: a novel approach for metabolic flux analysis, Metab. Eng., 2011, vol. 13, pp. 225–233. doi 10.1016/j.ymben.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  112. Toya, Y., Ishii, N., Nakahigashi, K., et al., 13c-metabolic flux analysis for batch culture of Escherichia coli and its pyk and pgi gene knockout mutants based on mass isotopomer distribution of intracellular metabolites, Biotechnol. Prog., 2010, vol. 26, pp. 975–992. doi 10.1002/btpr.420

    CAS  PubMed  Google Scholar 

  113. Kiefer, P., Nicolas, C., Letisse, F., and Portais, J.C., Determination of carbon labeling distribution of intracellular metabolites from single fragment ions by ion chromatography tandem mass spectrometry, Anal. Biochem., 2007, vol. 360, pp. 182–188. doi 10.1016/j.ab.2006.06.032

    Article  CAS  PubMed  Google Scholar 

  114. Kajihata, S., Furasawa, C., Matsuda, F., and Shimizu, H., Openmebius: an open source software for isotopically non-stationary 13C-based metabolic flux analysis, Bio. Med Res. Intern, 2014, vol. 2014, pp. 1–10. doi 10.1155/2014/627014

    Article  Google Scholar 

  115. Noh, K. Gronke, K., et al., Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments, J. Biotechnol., 2007, vol. 129, pp. 249–267. doi 10.1016/j.jbiotec.2006.11.015

    Article  PubMed  CAS  Google Scholar 

  116. Noack, S., Nob, K., Moch, M., et al., Stationary versus non-stationary 13C-MFA: a comparison using a consistent dataset, J. Biotechnol., 2011, vol. 154, pp. 179–190. doi 10.1016/j.jbiotec.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  117. Zamboni, N., 13C metabolic flux analysis in complex systems, Curr. Opin. Biotechnol., 2011, vol. 22, pp. 103–108. doi 10.1016/j.copbio.2010.08.009

    Article  CAS  PubMed  Google Scholar 

  118. Papini, M., Nookaew, I., Siewers, V., and Nielsen, J., Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis, Appl. Microbiol. Biotechnol., 2012, vol. 95, pp. 1001–1010. doi 10.1007/s00253-012-3936-0

    Article  CAS  PubMed  Google Scholar 

  119. Feng, X. and Zhao, H., Investigating xylose metabolism in recombinant saccharomyces cerevisiae via 13C metabolic flux analysis, Microb. Cell Fact., 2013, vol. 12, no. 114, pp. 1–12. doi 10.1186/1475-2859-12-114

    Google Scholar 

  120. Meyer, F.M., Gerwig, J., Hammer, E., et al., Physical interactions between tricarboxylic acid cycle enzymes in bacillus subtilis: evidence for a metabolon, Metab. Eng., 2011, vol. 13, pp. 18–27. doi 10.1016/j.ymben.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  121. Saks, V., On the origin of intracellular compartmentation and organized metabolic systems, Mol. Cell. Biochem., 2004, vol. 256-257, nos. 1–2, pp. 5–12. doi 10.1023/B:MCBI.0000009855.14648.2c

    PubMed  Google Scholar 

  122. Dueber, J.E., Wu, G.C., Malmirchegini, G.R., et al., Synthetic protein scaffolds provide modular control over metabolic flux, Nature Biotechnol., 2009, vol. 27, pp. 753–759. doi 10.1038/nbt.l557

    Article  CAS  Google Scholar 

  123. Lee, H., DeLoache, W.C., and Dueber, J.E., Spatial organization of enzymes for metabolic engineering, Metab. Eng., 2012, vol. 14, pp. 242–251. doi 10.1016/j.ymben.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  124. Lee, J.H., Jung, S.-C., Bui, L.M., et al., Improved production of L-threonine in Escherichia coli by use of a DNA scaffold system, Appl. Environ. Microbiol., 2013, vol. 79, pp. 774–782. doi 10.1128/AEM.02578-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Avalos, J.L., Fink, G.R., and Stephanopoulos, G., Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branchedchain alcohols, Nat. Biotechnol., 2013, vol. 31, no. 4, pp. 335–341. doi 10.1038/nbt2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Melzer, G., Esfandabadi, M.E., and Franco-Lara, E., Flux design: in silico design of cell factories based on correlation of pathway fluxes to desired properties, BMC Systems Biology, 2009, vol. 3, no. 120, pp. 1–16. doi 10.1186/1752-0509-3-120

    Google Scholar 

  127. Ranganathan, S., Suthers, P.F., and Maranas, C.D., OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions, PLoS Comput. Biol., 2010, vol. 6, no. 4, pp. 1–11. doi 10.1371/journal.pcbi.l000744

    Article  CAS  Google Scholar 

  128. Ranganathan, S., Tee, T.W., Chowdhury, A., et al., An integrated computational and experimental study for overproducing fatty acids in Escherichia coli, Metab. Eng., 2012, vol. 14, pp. 687–704. doi 10.1016/j.ymben.2012.08.008

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Golubeva.

Additional information

Original Russian Text © L.I. Golubeva, M.S. Shupletsov, S.V. Mashko, 2017, published in Biotekhnologiya, 2017, Vol. 33, No. 2, pp. 9–28.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubeva, L.I., Shupletsov, M.S. & Mashko, S.V. Metabolic Flux Analysis using 13C Isotopes: III. Significance for Systems Biology and Metabolic Engineering. Appl Biochem Microbiol 53, 827–841 (2017). https://doi.org/10.1134/S0003683817090058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817090058

Keywords

Navigation