Log in

Hydrogeomorphic Changes Along mid-Atlantic Coastal Plain Rivers Transitioning from Non-tidal to Tidal: Implications for a Rising Sea Level

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Sea level rise is affecting reaches of coastal rivers by increasing water levels and propagating tides inland. The transition of river systems into tidal estuaries has been neglected in hydrogeomorphic studies. A better understanding of transitioning reaches is critical to understanding ecosystem dynamics, services, and develo** predictive capabilities of change as sea levels rise. We hypothesized that river-floodplain morphology changes from fluvial to tidally dominated regimes, changing suspended sediment concentrations (SSC), sediment deposition, vegetation, and landforms. We tested this using lidar, satellite imagery, and SSC and conductivity measurements along two Coastal Plain rivers of Virginia, USA. Geomorphic channel and floodplain parameters indicated breakpoints into three regimes: fluvial, mixed, and tidal. Maximum channel width occurred with minimum floodplain widths in the mixed regime. Tidal freshwater forests had considerable elevational overlap with marshes but typically were 9.5 cm higher. SSC increased with shoal width through the mixed reaches, with maxima in the tidal reaches where estuarine influences increased. Channel erosion rates indicated that modern sediment loads and hydrology produce slow changes to channel planform and geomorphology that may not be apparent from visual comparisons. Our findings indicated that tidal floodplain forests and marshes in the mixed and tidal reaches are expected to convert to marshes or open water as sea levels rise as limited gradual slo** area exists between the active floodplain and terraces. Tidal floodplain surfaces along mixed hydrology reaches, inland of the estuarine turbidity maximum may be expected to convert to open water while inland slo** floodplains could support tidal wetland migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data on which this article is based are available from the following cited references and URLs:

Bukaveckas, P.A., S. Tassone, W. Lee, and R.B. Franklin. 2020. The Influence of Storm Events on Metabolism and Water Quality of Riverine and Estuarine Segments of the James, Mattaponi, and Pamunkey Rivers. Estuaries and Coasts 43 (7): 1585–1602. https://doi.org/10.1007/s12237-020-00819-9

Doody, T.R., Kroes, D.E., Bukaveckas, P.A., Hupp, C.R., and Noe, G.B., 2023, Hydrogeomorphic data along transitioning Coastal Plain rivers (Mattaponi and Pamunkey Rivers): implications for a rising sea level: U.S. Geological Survey data release.

U.S. Geological Survey. 2020a. Chesapeake Bay Program. http://data.chesapeakebay.net/WaterQuality. Accessed 19 Oct. 2020.

U.S. Geological Survey. 2020b. Water Quality Samples. https://nwis.waterdata.usgs.gov/va/nwis/qwdata/?site_no=01674500&agency_cd=USGS. Accessed 19 Oct. 2020.

U.S. Geological Survey. 2020c. Water Quality Samples. https://nwis.waterdata.usgs.gov/va/nwis/qwdata/?site_no=01673000&agency_cd=USGS. Accessed 19 Oct. 2020.

U.S. Geological Survey. 2021a. Water-Quality Loads and Trends at Nontidal Monitoring Stations in the Chesapeake Bay Watershed. https://cbrim.er.usgs.gov/maps/. Accessed 3 August 2021.

Virginia Institute of Marine Science (VIMS). 2021. Water quality monitoring. https://www.vims.edu/cbnerr/monitoring/water_quality/index.php. Accessed May 7, 2021.

Wang, F.C. 1988. Dynamics of saltwater intrusion in coastal channels. Journal of Geophysical Research 93: 6937–6946.

References

  • Barendregt, A., and C.W. Swarth. 2013. Tidal freshwater wetlands: Variation and changes. Estuaries and Coasts 36: 445–456. https://doi.org/10.1007/s12237-013-9626-z.

    Article  CAS  Google Scholar 

  • Betti, I. and M. Morelli. 1998. Prediction of mean sea level rise in the upper Adriatic Sea. in Coastline evolution of the upper Adriatic Sea due to sea level rise and natural and anthropogenic land subsidence. ed. Gambolati G. Water Science and Technology Library, 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5147-4_1.

  • Blanchon, P., and J. Shaw. 1995. Reef drowning during the last deglaciation: Evidence for catastrophic sea-level rise and icesheet collapse. Geology 23: 4–8.

    Article  Google Scholar 

  • Bukaveckas, P.A., and W. Isenberg. 2013. Loading, transformation and retention of nitrogen and phosphorus in the tidal freshwater James River (Virginia). Estuaries and Coasts 36: 1219–1236.

    Article  CAS  Google Scholar 

  • Bukaveckas, P.A., S. Tassone, W. Lee, and R.B. Franklin. 2020. The influence of storm events on metabolism and water quality of riverine and estuarine segments of the James, Mattaponi, and Pamunkey Rivers. Estuaries and Coasts 43 (7): 1585–1602. https://doi.org/10.1007/s12237-020-00819-9.

    Article  CAS  Google Scholar 

  • Bukaveckas, P.A. 2022. Carbon dynamics at the river–estuarine transition: A comparison among tributaries of Chesapeake Bay. Biogeosciences 19: 4209–4226.

    Article  CAS  Google Scholar 

  • Cahoon, D.R., D.J. Reed, and J.W. Day. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology 128: 1–9.

    Article  Google Scholar 

  • Carron, M.J. 1976. Geomorphic processes of a drowned river valley, Lower York River Estuary, Virginia. Dissertations, Theses, and master’s Projects. Paper 1539617467.

  • Celik, S., C.J. Anderson, L. Kalin, and M. Rezaeianzadeh. 2021. Long-term salinity, hydrology, and forested wetlands along a tidal freshwater gradient. Estuaries and Coasts 1–15. https://doi.org/10.1007/s12237-021-00911-8.

  • Chang, C.C., and B.L. Turner. 2019. Ecological succession in a changing world. Journal of Ecology 107: 503–509. https://doi.org/10.1111/1365-2745.13132.

    Article  Google Scholar 

  • Chant, R.J. 2002. Secondary circulation in a region of flow curvature: relationship with tidal forcing and river discharge. Journal of Geophysical Research: Oceans (Vol. 107). https://doi.org/10.1029/2001JC001082

  • Connor, W.H., T.W. Doyle, and K.W. Krauss. 2007. Preface. In Ecology of tidal freshwater forested wetlands of the southeastern United States, ed. W.H. Connor, T.W. Doyle, and K.W. Krauss, 113–137. Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Craft, C. 2007. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and US tidal marshes. Limnology Oceanography. 52 (3): 1220–1230.

  • Craft, C. 2012. Tidal freshwater forest accretion does not keep pace with sea level rise. Global Change Biology 18: 3615–3623.

    Article  Google Scholar 

  • Dalrymple, Robert W., and Kyungsik Choi. 2007. Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: a schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews 81: 135–174.

  • Danielson, J., and D. Tyler. 2016. Topobathymetric model for Chesapeake Bay region - District of Columbia, States of Delaware, Maryland, Pennsylvania, and Virginia, 1859 to 2015. USGS Earth Resources Observation & Science (EROS) Center.

  • Das, V.K., K. Debnath, R. Sayahnya, K. Barman, S. Hansda, and B.S. Mazumder. 2021. Effect of turbulent structures on the riverbank erosion due to tidal influence: A case study from the Rupnarayan River, eastern India. Journal of Earth System Science. 130: 62. https://doi.org/10.1007/s12040-021-01554-w.

    Article  Google Scholar 

  • Doody, T.R., Kroes, D.E., Bukaveckas, P.A., Hupp, C.R., and G.B. Noe 2023. Hydrogeomorphic data along transitioning Coastal Plain rivers (Mattaponi and Pamunkey Rivers): implications for a rising sea level: U.S. Geological Survey data release. https://doi.org/10.5066/P9B1UCFT.

  • Duncan, W.P., and M.N. Fernandes. 2010. Physiochemical characterization of the white, black, and clearwater rivers of the Amazon Basin and its implications on the distribution of freshwater stingrays (Chondrichthyes, Potamotrygonidae). Pan-American Journal of Aquatic Sciences. 5 (3): 454–464.

    Google Scholar 

  • Dunne, K. B., and D.J. Jerolmack. 2020. What sets river width? Science Advances, 6(41), eabc1505. https://doi.org/10.1126/sciadv.abc1505

  • Eggleston, J., and J. Pope. 2013. Land subsidence and relative sea level rise in the southern Chesapeake Bay region: U.S. Geological Survey Circular. 1392.

  • Ensign, S.H., G.B. Noe, C.R. Hupp, and S. Fagherazzi. 2012. A meeting of the waters: Interdisciplinary challenges and opportunities in tidal rivers. EOS. Transactions of the American Geophysical Union 93 (45): 455–456.

    Article  Google Scholar 

  • Ensign, S.H., C.R. Hupp, G.B. Noe, K.W. Krauss, and C.L. Stagg. 2014. Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA. Estuar Coasts 37 (5): 1107–1119.

    Article  CAS  Google Scholar 

  • Ensign, S.H., G.B. Noe, C.R. Hupp, and K.J. Skalak. 2015. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries. Geophysical Reseach Letter 42.

  • Ensign, S.H., and G.B. Noe. 2018. Tidal extension and sea level rise: Recommendations for a research agenda. Frontiers in Ecology and the Environment 16: 37–43.

    Article  Google Scholar 

  • Environmental Protection Agency (EPA). 2021. National hydrographic dataset plus (NHDPlus). https://www.epa.gov/waterdata/nhdplus-national-hydrography-dataset-plus. Accessed May 7, 2021.

  • ESRI. 2020. ArcGIS Pro. Redlands, CA: Environmental Systems Research Institute.

  • Fagherazzi, S., M.L. Kirwan, S.M. Mudd, G.R. Guntenspergen, S. Temmerman, A. D’Alpaos, et al. 2012. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Reviews Geophysics. 50.

  • Fagherazzi, S., P.L. Wiberg, S. Temmerman, et al. 2013. Fluxes of water, sediments, and biogeochemical compounds in salt marshes. Ecological Processes 2: 3. https://doi.org/10.1186/2192-1709-2-3.

    Article  Google Scholar 

  • Fairbridge, R.W. 1960. The changing level of the sea. Scientific American 202 (5): 70–79.

    Article  Google Scholar 

  • Faulkner, S.P., P. Bhattarai, Y. Allen, J. Barras, and G. Constant. 2009. Identifying bald cypress-water tupelo regeneration classes in forested wetlands of the Atchafalaya Basin. Louisiana. Wetlands. 29: 809–817. https://doi.org/10.1672/08-211.1.

    Article  Google Scholar 

  • Finotello, A., A. D’Alpaos, M. Bogoni, M. Ghinassi, and S. Lanzoni. 2020. Remotely sensed planform morphologies reveal fluvial and tidal nature of meandering channels. Scientific Reports 10 (1): 54–13. https://doi.org/10.1038/s41598-019-56992-w.

    Article  CAS  Google Scholar 

  • Fleming, P.M., D.J. Merritts, and R.C. Walter. 2019. Legacy sediment erosion hot spots: A cost-effective approach for targeting water quality improvements. Journal of Soil and Water Conservation 74: 67A-73A.

    Article  Google Scholar 

  • Ganju, N.K., N.J. Nidzieko, and M.L. Kirwan. 2013. Inferring tidal wetland stability from channel sediment fluxes: Observations and a conceptual model. Journal of Geophysical Research, Earth Surface 118 (4): 2045–2058. https://doi.org/10.1002/jgrf.20143.

    Article  Google Scholar 

  • Giese, G.L., H.B. Wilder, and G.G. Parker. 1985. Hydrology of major estuaries and sounds of North Carolina. U.S. Geological Survey Water Supply Paper 2221.

  • Goodbred, S.L., and A.C. Hine. 1995. Coastal storm deposition: Salt-marsh response to a severe extratropical storm, March 1993, west-central Florida. Geology 23 (8): 679–682. https://doi.org/10.1130/0091-7613(1995)023%3c0679:CSDSMR>2.3.CO;2.

    Article  Google Scholar 

  • Google Earth. 2020. Imagery of Pamunkey, Mattaponi, and York rivers. Accessed 12 Jun 2020.

  • Hack, J.T. 1957. Submerged river system of Chesapeake Bay. Geological Society of America Proceedings 68: 817–883.

    Article  Google Scholar 

  • Halka, J.P., S.M. Colman, and C.H. Hobbs III. 1990. Quaternary geology of the Chesapeake Bay. VIMS Books and Book Chapters. 116. Available at https://scholarworks.wm.edu/vimsbooks/116

  • Hobbs, C. 2009. York river geology. Journal of Coastal Research 57: 10–16.

    Article  Google Scholar 

  • Hunt, C.B. 1967. Physiography of the United States: San Francisco, 480. W.H: Freeman and Co.

    Google Scholar 

  • Hupp, C.R. 2000. Hydrology, geomorphology, and vegetation of coastal plain rivers in the south-eastern USA. Hydrological Processes 14: 2991–3010.

    Article  Google Scholar 

  • Hupp, C.R., E.R. Schenk, D.E. Kroes, D.A. Willard, P.A. Townsend, and R.K. Peet. 2015. Patterns of floodplain sediment deposition along the regulated lower Roanoke River, North Carolina: Annual, decadal, centennial scales. Geomorphology 228: 666–680.

    Article  Google Scholar 

  • Jablonski, B.V.J., and R.W. Dalrymple. 2016. Recognition of strong seasonality and climatic cyclicity in an ancient, fluvially dominated, tidally influenced point bar: Middle McMurray Formation, Lower Steepbank River, north-eastern Alberta, Canada. Sedimentology 63: 552–585. https://doi.org/10.1111/sed.12228.

    Article  Google Scholar 

  • Jackson, C.R., J.K. Martin, D.S. Leigh, and L.T. West. 2005. A southeastern piedmont watershed sediment budget: Evidence for a multi-millennial agricultural legacy. Journal of Soil and Water Conservation 60: 298–310.

    Google Scholar 

  • James, L.A. 2013. Legacy sediment: Definitions and processes of episodically produced anthropogenic sediment. Anthropocene 2: 16–26.

    Article  Google Scholar 

  • Jones, A.E., A.K. Hardison, B.R. Hodges, J.W. McClelland, and K.B. Moffett. 2020. Defining a riverine tidal freshwater zone and its spatiotemporal dynamics. Water Resources Research 56 (4): p.e2019WR026619.

  • Kirwan, M.L., A.B. Murray, J.P. Donnelly, and D.R. Corbett. 2011. Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates. Geology 39: 507–510. https://doi.org/10.1130/G31789.1.

    Article  Google Scholar 

  • Kirwan, M.L., and K.B. Gedan. 2019. Sea level driven land conversion and the formation of ghost forests. Nature Clinical Practice Endocrinology & Metabolism 9: 450–457. https://doi.org/10.1038/s41558-019-0488-7.

    Article  Google Scholar 

  • Kitanidis, P.K., and J.F. Kennedy. 1984. Secondary current and river-meander formation. Journal of Fluid Mechanics 144: 217–230.

    Article  Google Scholar 

  • Korol, A.R., and G.B. Noe. 2020. Patterns of denitrification potential in tidal freshwater forested wetlands. Estuaries & Coasts 43: 329–346. https://doi.org/10.1007/s12237-019-00663-6.

    Article  CAS  Google Scholar 

  • Krauss, K.W., J.L. Chambers, and D. Creech. 2007. Selection for salt tolerance in tidal freshwater swamp species: Advances using bald cypress as a model for restoration. In Ecology of tidal freshwater forested wetlands of the southeastern United States, ed. W.H. Connor, T.W. Doyle, and K.W. Krauss, 385–410. Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Kroes, D.E., C.R. Hupp, and G.B. Noe. 2007. Sediment, nutrient, and vegetation trends along the tidal, forested Pocomoke River, Maryland. In Ecology of tidal freshwater forested wetlands of the southeastern United States, ed. W.H. Connor, T.W. Doyle, and K.W. Krauss, 113–137. Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Kroes, D.E., and C.R. Hupp. 2010. The effect of channelization on floodplain sediment deposition and subsidence along the Pocomoke River, Maryland. Journal of the American Water Resources Association 46 (4): 686–699.

    Article  Google Scholar 

  • Langbein, W.B., and L.B. Leopold. 1966. River meanders -- theory of minimum variance. U.S. Geol. Survey, Prof. Pap. 422-H, 15 pp.

  • Langland, M.J. 2015. Sediment transport and capacity change in three reservoirs, lower Susquehanna River basin, Pennsylvania and Maryland, 1900–2012. U.S. Geological Survey Open-File Report 2014–1235. Reston, VA, USA. https://doi.org/10.3133/ofr20141235.

  • Larsen, C.I., G. Clark, G. Guntenspergen, D.R. Cahoon, V. Caruso, C. Hupp, and T. Yanosky. 2004. The Blackwater NWR inundation model. Rising sea level on a low-lying coast: land use planning for wetlands. U.S. Geological Survey Open-File Report 2004–1302. Reston, VA.

  • Lawler, D.M., J.R. West, J.S. Couperthwaite, and S.B. Mitchell. 2001. Application of a novel automatic erosion and deposition monitoring system at a channel bank site on the tidal River Trent, U.K. Estuarine, Coastal and Shelf Science. 53(2). https://doi.org/10.1006/ecss.2001.0779.

  • Leopold, L.B. 2006. Up a lazy river. Interview by Hayes, B. American Scientist 94: 6. https://doi.org/10.1511/2006.62.490.

  • Leopold, L.B., and M.G. Wolman. 1957. River channel patterns—braided, meandering, and straight, 39–85. U. S. Geol. Survey Prof. Paper 282B. https://doi.org/10.3133/pp282B.

    Book  Google Scholar 

  • Leopold, L.B., W.G. Wolman, and J.P. Miller. 1964. Fluvial processes in geomorphology. San Francisco, California: W. H. Freeman and Company.

  • Leuven, J.R.F.W., B.V. Maanen, B.R. Lexmond, B.V.V.D. Hoek, M.J. Spruijt, and M.G. Kleinhans. 2018. Dimensions of fluvial-tidal meanders: Are they disproportionally large? Geology 46: 923–926. https://doi.org/10.1130/G45144.1/4332136/g45144.pdf.

    Article  Google Scholar 

  • Lokhorst, I.R., L. Braat, J.R.F.W. Leuven, A.W. Baar, M. van Oorschot, S. Selaković, and M.G. Kleinhans. 2018. Morphological effects of vegetation on the tidal–fluvial transition in Holocene estuaries. Earth Surf. Dynam. 6: 883–901. https://doi.org/10.5194/esurf-6-883-2018.

    Article  Google Scholar 

  • Loomis, M.J., and B.C. Craft. 2010- Carbon sequestration and nutrient (nitrogen, phosphorous) accumulation in river-dominated tidal marshes, Georgia, USA. Wetland Soils, 74(3), 1028– 1036. Available from: https://doi.org/10.2136/sssaj2009.0171

  • Magolan, J.L., and J.N. Halls. 2020. A multi-decadal investigation of tidal creek wetland changes, water level rise, and ghost forests. Remote Sensing 12: 1141.

    Article  Google Scholar 

  • Meade, R.H. 1982. Sources, sinks and storage of river sediment in the Atlantic drainage of the United States. The Journal of Geology 90: 235–252. https://doi.org/10.1086/628677.

    Article  Google Scholar 

  • Minella, J.P.G., D.E. Walling, and G.H. Merten. 2008. Combining sediment source tracing techniques with traditional monitoring to assess the impact of improved land management on catchment sediment yields. Journal of Hydrology 348: 546–563.

    Article  Google Scholar 

  • Newell, W.L., I. Clark, and O. Bricker. 2004. Distribution of Holocene sediment in the Chesapeake Bay as interpreted from submarine geomorphology of submerged landforms, selected core holes, bridge borings, and seismic profiles. U.S. Geological Survey Open File Report 2004–1235. Reston, VA, USA.

  • Noe, G.B., and C.R. Hupp. 2009. Retention of riverine sediment and nutrient loads by coastal plain floodplains. Ecosystems 12: 728–746.

    Article  CAS  Google Scholar 

  • Noe, G.B., K. Boomer, J.L. Gillespie, C.R. Hupp, M. Martin-Alciati, K. Floro, et al. 2019. The effects of restored hydrologic connectivity on floodplain trap** vs. release of phosphorus, nitrogen, and sediment along the Pocomoke River, Maryland USA. Ecological Engineering 138: 334–352. https://doi.org/10.1016/j.ecoleng.2019.08.002.

    Article  Google Scholar 

  • Noe, G.B., C.R. Hupp, C.E. Bernhardt, and K.W. Krauss. 2016. Contemporary deposition and long-term accumulation of sediment and nutrients by tidal freshwater forested wetlands impacted by sea level rise. Estuaries and Coasts 39 (4): 1006–1019. https://doi.org/10.1007/s12237-016-0066-4.

    Article  Google Scholar 

  • Noe, G.B., M.J. Cashman, K. Skalak, A. Gellis, K.G. Hopkins, D. Moyer, J. Webber et al. 2020. Sediment dynamics and implications for management: state of the science from long‐term research in the Chesapeake Bay watershed, USA. WIREs Water 7 (4). https://doi.org/10.1002/wat2.1454.

  • Noe, G.B., N. Bourg, K. Krauss, J. Duberstein, and C.R. Hupp. 2021. Watershed and estuarine controls both influence plant community and tree growth changes in tidal freshwater forested wetlands along two U.S. mid-Atlantic rivers. Forests 12: 1182. https://doi.org/10.3390/f12091182.

  • Nowacki, D.J., and N.K. Ganju. 2021. Sediment dynamics of a divergent bay–marsh complex. Estuaries and Coasts 44: 1216–1230. https://doi.org/10.1007/s12237-020-00855-5.

    Article  Google Scholar 

  • Osterkamp, W.R., and C.R. Hupp. 1984. Geomorphic and vegetative characteristics along three northern Virginia streams. Geological Society of America Bulletin 95: 1093–1101.

    Article  Google Scholar 

  • Pearce-Higgins, J.W., D.J. Brown, D.J.T. Douglas, et al. 2017. A global threats overview for Numeniini populations: Synthesizing expert knowledge for a group of declining migratory birds. Bird Conservation International 27: 6–34.

    Article  Google Scholar 

  • Phillips, J.D. 2011. Emergence and pseudo-equilibrium in geomorphology. Geomorphology 132: 319–326.

    Article  Google Scholar 

  • Phillips, J.D. 1997. Human agency, Holocene sea level, and floodplain accretion in coastal plain rivers. Journal of Coastal Research 13: 854–866.

    Google Scholar 

  • Phillips, J.D., and M.C. Slattery. 2007. Downstream trends in discharge, slope, and stream power in a lower coastal plain river. Journal of Hydrology 334: 290–303.

    Article  Google Scholar 

  • Phillips, J.D., and M.C. Slattery. 2008. Antecedent alluvial morphology and sea level controls on form-process transition zones in the lower Trinity River, Texas. River Research and Applications 24: 293–309.

    Article  Google Scholar 

  • Phillips, J.D. 2022. Geomorphology of the fluvial-estuarine transition zone, Neuse River, North Carolina. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.5362.

  • Powars, D.S. 2000. The effects of the Chesapeake Bay impact crater on the geological framework and correlation of hydrogeologic units of the lower York-James peninsula. U.S. Geological Survey Professional Paper 1622. Reston, VA.

  • Rheinhardt, R. 1992. A multivariate analysis of vegetation patterns in tidal freshwater swamps of lower Chesapeake Bay, USA. Bulletin of the Torrey Botanical Club 119: 192–207.

    Article  Google Scholar 

  • Rheinhardt, R. 2007. Tidal freshwater swamps of a lower Chesapeake Bay subestuary. In Ecology of tidal freshwater forested wetlands of the southeastern United States, ed. W.H. Connor, T.W. Doyle, and K.W. Krauss, 161–181. Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Rodriguez, A.B., B.A. McKee, C.B. Miller, et al. 2020. Coastal sedimentation across North America doubled in the 20th century despite river dams. Nature Communications 11: 3249. https://doi.org/10.1038/s41467-020-16994-z.

    Article  CAS  Google Scholar 

  • Scheider, N.W., D.C. Walters, and M.L. Kirwan. 2018. Massive upland to wetland conversion compensated for historical marsh loss in Chesapeake Bay, USA. Estuaries and Coasts 4: 940–951. https://doi.org/10.1007/s12237-017-0336-9.

    Article  Google Scholar 

  • Sisson, G. M., J. Shen, S. Kim, & J.D. Boon. 1997. VIMS three-dimensional hydrodynamic-eutrophication model (HEM-3D): application of the hydrodynamic model to the York River system. Special reports in applied marine science and ocean engineering (SRAMSOE) No. 341. Virginia Institute of Marine Science, College of William and Mary. https://doi.org/10.21220/V5ZB3N

  • Sulaiman, Z.A., E. Viparelli, R. Torres, A. Yankovsky, and J. Grego. 2021. The Influence of tides on Coastal Plain channel geomorphology: Altamaha River, Georgia, USA. Journal of Geophysical Research: Earth Surface, 126: e2020JF005839. https://doi.org/10.1029/2020JF005839

  • Torres, R. 2017. Channel geomorphology along fluvial-tidal transition, Santee River, USA. Geological Society of America Bulletin 129: 1681–1691. https://doi.org/10.1130/B31649.

    Article  Google Scholar 

  • United States Coast Guard (USCG). 2021. Station 8637688 Yorktown USCG training center, VA. https://tidesandcurrents.noaa.gov/ports/ports.html?id=8637689. Accessed May 7, 2021.

  • U. S. Geological Survey. 2006. “National field manual for the collection of water-quality data: U.S. Geological Survey techniques and methods 09-A4. https://doi.org/10.3133/twri09A4.

  • U.S. Geological Survey 2020a. Chesapeake Bay Program. http://data.chesapeakebay.net/WaterQuality. Accessed 19 Oct. 2020.

  • U.S. Geological Survey. 2020b. Water quality samples. https://nwis.waterdata.usgs.gov/va/nwis/qwdata/?site_no=01674500&agency_cd=USGS. Accessed 19 Oct. 2020.

  • U.S. Geological Survey. 2020c. Water quality samples. https://nwis.waterdata.usgs.gov/va/nwis/qwdata/?site_no=01673000&agency_cd=USGS. Accessed 19 Oct. 2020.

  • U.S. Geological Survey. 2021a. Water-quality loads and trends at nontidal monitoring stations in the Chesapeake Bay watershed. https://cbrim.er.usgs.gov/maps/. Accessed 3 August 2021.

  • Virginia Institute of Marine Science (VIMS). 2021. Water quality monitoring. https://www.vims.edu/cbnerr/monitoring/water_quality/index.php. Accessed 7 May, 2021

  • Wang, F.C. 1988. Dynamics of saltwater intrusion in coastal channels. Journal of Geophysical Research 93: 6937–6946.

    Article  Google Scholar 

  • Ward, L.W. 1985. Stratigraphy and characteristic mollusks of the Pamunkey Group (lower Tertiary) and the Old Church Formation of the Chesapeake Group; Virginia Coastal Plain. U.S. Geological Survey Professional Paper: 1346. https://doi.org/10.3133/pp1346. ISSN 2330–7102.

  • Weinstein, M.P. 1979. Shallow marsh habitats as primary nurseries for fishes and shellfish, Cape Fear River. North Carolina. Bulletin 77 (2): 339–357.

    Google Scholar 

  • Wells, J.T. 1995. Tide-dominated estuaries and tidal rivers. In Geomorphology and Sedimentology of Estuaries (Developments in Sedimentology), vol. 53, ed. G.M.E. Perillo, 179–205. New York: Elsevier.

    Chapter  Google Scholar 

  • White, E., D. Kaplan. 2021. Identifying the effects of chronic saltwater intrusion in coastal floodplain swamps using remote sensing. Remote Sensing of Environment 258. https://doi.org/10.1016/j.rse.2021.112385.

  • Wolman, M.G., and J.P. Miller. 1960. Magnitude and frequency of forces in geomorphic processes. The Journal of Geology 68: 54–74.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to all the landowners and people who have worked on these projects over the years.

Funding

This study was funded in part by USGS Climate Research and Development Program and USGS Chesapeake Bay Activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Kroes.

Ethics declarations

Disclaimer

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Additional information

Communicated by Stijn Temmerman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kroes, D.E., Noe, G.B., Hupp, C.R. et al. Hydrogeomorphic Changes Along mid-Atlantic Coastal Plain Rivers Transitioning from Non-tidal to Tidal: Implications for a Rising Sea Level. Estuaries and Coasts 46, 1438–1458 (2023). https://doi.org/10.1007/s12237-023-01226-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-023-01226-6

Keywords

Navigation