Log in

Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The aim of this study was to develop antimicrobial nanocomposite textile material comprising of Cu-based nanostructures synthesized on oxidized cotton fabric using Arctostaphylos uva-ursi (L.) Spreng., Ericaceae (bearberry leaves) as a green reducing agent for adsorbed Cu2+-ions. In order to provide sufficient number of carboxyl groups for complexation with Cu2+-ions a two-step oxidation process with NaIO4 and NaClO2 was carried out. The influence of NaIO4 concentration on content of carboxyl groups and Cu-based nanoparticles was studied by FTIR and AAS. HPLC analysis identified the gallic acid known as a reducing agent in bearberry leaves extract. FESEM and XRD analyses revealed that using bearberry leaves extract and gallic acid solution as reducing agents led to a formation of spherical Cu2O/CuO nanoparticles and CuO nanosheets, respectively. These nanoparticles and nanosheets provided excellent antibacterial activity against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus. Cytotoxicity on human keratinocyte cells was shown to depend on their copper content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. M. Radetić, J. Mater. Sci., 48, 95 (2013).

    Article  CAS  Google Scholar 

  2. M. Gorjanc and M. Šala, Cellulose, 23, 2199 (2016).

    Article  CAS  Google Scholar 

  3. H. Gaminian and M. Montazer, Cellulose, 24, 3179 (2017).

    Article  CAS  Google Scholar 

  4. M. Shahid, A. Ali, H. Khaleeq, M. F. Tahir, J. Militky, and J. Wiener, Fiber. Polym., doi: https://doi.org/10.1007/s12221-021-0002-5 (2021).

  5. M. Taheri, M. Montazer, and A. B. Rezaie, Fiber. Polym., doi: https://doi.org/10.1007/s12221-021-0945-6 (2021).

  6. F. Zhang, X. Wu, Y. Chen, and H. Lin, Fiber. Polym., 10, 496 (2009).

    Article  CAS  Google Scholar 

  7. A. Panáček, L. Kvítek, M. Smékalová, R. Večeřová, M. Kolář, M. Röderová, F. Dyčka, M. Šebela, R. Prucek, O. Tomanec, and R. Zboáil, Nat. Nanotechnol., 13, 65 (2018).

    Article  PubMed  CAS  Google Scholar 

  8. M. L. Ermini and V. Voliani, ACS Nano, 15, 6008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. N. C. Cady, J. L. Behnke, and A. D. Strickland, Adv. Funct. Mater., 21, 2506 (2011).

    Article  CAS  Google Scholar 

  10. M. Montazer, M. Dastjerdi, M. Azdaloo, and M. M. Rad, Cellulose, 22, 4049 (2015).

    Article  CAS  Google Scholar 

  11. A. Errokh, A. M. Ferraria, D. S. Conceição, L. F. Vieira Ferreira, A. M. Botelho de Rego, M. Rei Vilar, and S. Boufi, Carbohydr. Polym., 141, 229 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. D. Marković, C. Deeks, T. Nunney, Ž. Radovanović, M. Radoičić, Z. Šaponjić, and M. Radetić, Carbohydr. Polym., 200, 173 (2018).

    Article  PubMed  CAS  Google Scholar 

  13. S. K. Chandraker, M. Lal, M. K. Ghosh, V. Tiwari, T. K. Ghorai, and R. Shukla, Nano Express, 1, 0100033 (2020).

    Article  Google Scholar 

  14. M. K. Ghosh, S. Sahu, I. Gupta, and T. K. Ghorai, RCS Advances, 10, 22027 (2020).

    CAS  Google Scholar 

  15. S. A. Akintelu, A. S. Folorunso, F. A. Folorunso, and A. K. Oyebamiji, Helyion, 6, e04508 (2020).

    Article  Google Scholar 

  16. S. C. Mali, A. Dhaka, C. K. Githala, and R. Trivedi, Biotechnol. Rep., 27, e00518 (2020).

    Article  Google Scholar 

  17. S. Sukumar, A. Rudrasenan, and D. P. Nambiar, ACS Omega, 5, 1040 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. P. P. N. V. Kumar, U. Shameem, P. Kollu, R. L. Kalyani, and S. V. N. Pammi, Bio. Nano. Sci., 5, 135 (2015).

    Google Scholar 

  19. A. B. Rezaie, M. Montazer, and M. M. Rad, Carbohydr. Polym., 177, 1 (2017).

    Article  CAS  Google Scholar 

  20. S. Vasantharaja, S. Sathiyavimalb, M. Saravanana, P. Senthilkumara, K. Nanasekaranc, M. Shanmugaveld, E. Manikandane, and A. Pugazhendhi, J. Photochem. Photobio. B, 191, 143 (2019).

    Article  CAS  Google Scholar 

  21. B. Turakhia, M. B. Divakara, M. S. Santosh, and S. Shah, J. Coat. Technol. Res., 17, 531 (2020).

    Article  CAS  Google Scholar 

  22. J. Seetha, U. Mallavarapu, and A. Mesa, J. Appl. Pharm. Sci., 10, 104 (2020).

    Article  CAS  Google Scholar 

  23. D. Marković, M. Korica, M. Kostić, Ž. Radovanović, Z. Šaponjić, M. Mitrić, and M. Radetić, Cellulose, 25, 829 (2018).

    Article  CAS  Google Scholar 

  24. M. Karamać, A. Kozińska, and R. B. Pegg, Pol. J. Food. Natur. Sci., 15, 55 (2006).

    Google Scholar 

  25. R. Slaveska-Raicki, V. Rafajlovska, V. Rizova, and I. Spirevska, JPC-J. Planar. Chromat., 16, 396 (2003).

    Article  CAS  Google Scholar 

  26. M. F. Zayed, W. H. Eisa, and B. Anis, J. Clean. Prod., 279, 123826 (2021).

    Article  CAS  Google Scholar 

  27. D. Štular, E. Savio, B. Simončič, M. Šobak, I. Jerman, I. Poljanšek, A. Ferri, and B. Tomšič, Appl. Surf. Sci., 563, 150361 (2021).

    Article  CAS  Google Scholar 

  28. T. Nikolic, M. Kostic, J. Praskalo, B. Pejic, Z. Petronijevic, and P. Skundric, Carbohydr. Polym., 82, 976 (2010).

    Article  CAS  Google Scholar 

  29. T. Nikolic, M. Korica, J. Milanovic, A. Kramar, Z. Petronijevic, and M. Kostic, Cellulose, 24, 1863 (2017).

    Article  CAS  Google Scholar 

  30. E. Toshikj, A. Tarbuk, K. Grgić, B. Mangovska, and I. Jordanov, Cellulose, 26, 777 (2019).

    Article  CAS  Google Scholar 

  31. V. Kumar and T. Yang, Carbohydr. Polym., 48, 403 (2002).

    Article  CAS  Google Scholar 

  32. J. Praskalo, M. Kostic, A. Potthast, G. Popov, B. Pejic, and P. Skundric, Carbohydr. Polym., 77, 791 (2009).

    Article  CAS  Google Scholar 

  33. M. B. Hansen, S. E. Nielsen, and K. Berg, J. Immunol. Methods., 119, 203 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. H. Yang, D. Chen, and T. G. M. van de Ven, Cellulose, 22, 1743 (2015).

    Article  CAS  Google Scholar 

  35. T. Saito, M. Hirota, N. Tamura, and A. Isogai, J. Wood Sci., 56, 227 (2010).

    Article  CAS  Google Scholar 

  36. T. Saito and A. Isogai, Biomacromolecules, 5, 1983 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. L. M. Proniewicz, C. Paluszkiewicz, A. Wesełucha-Birczynska, H. Majcherczyk, A. Baranski, and A. Konieczna, J. Mol. Struct., 596, 163 (2001).

    Article  CAS  Google Scholar 

  38. C. Chung, M. Lee, and E. Choe, Carbohydr. Polym., 58, 417 (2004).

    Article  CAS  Google Scholar 

  39. D. Ciolacu, F. Ciolacu, and V. I. Popa, Cell. Chem. Technol., 45, 13 (2011).

    CAS  Google Scholar 

  40. S. Y. Oh, D. I. Yoo, Y. Shin, and G. Seo, Carbohydr. Res., 340, 417 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Z. Tang, W. Li, X. Lin, H. **ao, Q. Miao, L. Huang, L. Chen, and H. Wu, Polymers, 9, 421 (2019).

    Article  CAS  Google Scholar 

  42. B. Sun, Q. Hou, Z. Liu, and Y. Ni, Cellulose, 22, 1135 (2015).

    Article  CAS  Google Scholar 

  43. H. E. Emam, A. P. Manian, B. Široká, H. Duelli, P. Merschak, B. Redl, and T. Bechtold, Surf. Coat. Tech., 254, 344 (2014).

    Article  CAS  Google Scholar 

  44. N. Čuk, M. Šala, and M. Gorjanc, Cellulose, 28, 3215 (2021).

    Article  CAS  Google Scholar 

  45. J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, and C. Chen, Nanotechnology, 18, 1 (2007).

    CAS  Google Scholar 

  46. S. A. Moreno-Álvarez, G. A. Martínez-Castañón, N. Niño-Martínez, J. F. Reyes-Macías, N. Patiño-Marín, J. P. Loyola-Rodríguez, and F. Ruiz, J. Nanopart. Res., 12, 2741 (2010).

    Article  CAS  Google Scholar 

  47. T. Ahmad, J. Nanopart., ID 954206 (2014).

  48. M. Krzyzowska, E. Tomaszewska, K. Ranoszek-Soliwoda, K. Bien, P. Orlowski, G. Celichowski, and J. Grobelny in “Micro and Nano Technologies, Nanostructures for Oral Medicine” (E. Andronescu and A. M. Grumezescu Eds.), p.335, Elsevier, 2017.

  49. S. T. Gentry, S. J. Fredericks, and R. Krchnavek, Langmuir, 25, 2613 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. G. Socrates, “Infrared and Raman Characteristic Group Frequencies: Tables and Charts”, 3rd ed., Wiley, 2004.

  51. D. Marković, H. H. Tseng, T. Nunney, M. Radoičić, T. Ilic-Tomic, and M. Radetić, Appl. Surf. Sci., 527, 146829 (2020).

    Article  CAS  Google Scholar 

  52. P. Yugandhar, T. Vasavi, P. U. M. Devi, and N. Savithramma, Appl. Nanosci., 7, 417 (2017).

    Article  CAS  Google Scholar 

  53. A. K. Mittal, Y. Chisti, and U. C. Banerjee, Biotechnol. Adv., 31, 346 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. M. K. S. Ballo, S. Rtimi, J. Kiwi, C. Pulgarin, J. M. Entenza, and A. Bizzini, J. Photochem. Photobio. B, 174, 229 (2017).

    Article  CAS  Google Scholar 

  55. S. Rtimi, D. D. Dionysiou, S. C. Pillai, and J. Kiwi, Appl. Catal. B, 240, 291 (2019).

    Article  CAS  Google Scholar 

  56. A. Torres, C. Ruales, C. Pulgarin, P. Aimable, V. Bowen, V. Sarria, and J. Kiwi, ACS Appl. Mater. Interfaces, 2, 2547 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. C. Castro, R. San**es, C. Pulgarin, P. Osorio, S. A. Giraldo, and J. Kiwi, J. Photochem. Photobiol. A., 216, 295 (2010).

    Article  CAS  Google Scholar 

  58. L. Rio, E. Kusiak-Nejman, J. Kiwi, C. Pulgarin, A. Trampuz, and A. Bizzini, Appl. Environ. Microb., 78, 8176 (2012).

    Article  CAS  Google Scholar 

  59. S. Rtimi, R. San**es, C. Pulgarin, and J. Kiwi, Biointerphases, 9, 029012 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. S. Rtimi, C. Pulgarin, R. San**es, and J. Kiwi, Coatings, 7, 20 (2017).

    Article  CAS  Google Scholar 

  61. S. Rtimi and J. Kiwi, Catal. Today, 340, 347 (2020).

    Article  CAS  Google Scholar 

  62. H. E. Emam, H. B. Ahmed, and T. Bechtold, Carbohydr. Polym., 165, 255 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. D. Marković, J. Vasiljević, J. Ašanin, T. Ilic-Tomic, B. Tomšič, B. Jokić, B. Simončič, D. Mišić, and M. Radetić, J. Appl. Polym. Sci., 137, e49194 (2020).

    Article  CAS  Google Scholar 

  64. A. Wongrakpanich, I. A. Mudunkotuwa, S. M. Geary, A. M. Morris, K. A. Mapuskar, D. R. Spitz, V. H. Grassiand, and A. K. Salem, Environ. Sci. Nano., 3, 365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. S. Naz, A. Gul, and M. Zia, IET Nanobiotechnology, 14, 1 (2020).

    Article  PubMed  Google Scholar 

  66. K. Dharmalingam, D. Bordoloi, A. B. Kunnumakkara, and R. Anandalakshmi, J. Appl. Polym. Sci., 137, 49216 (2020).

    Article  CAS  Google Scholar 

  67. A. L. Kubo, G. Vasiliev, H. Vija, J. Krishtal, V. Tõugu, M. Visnapuu, V. Vambola Kisand, A. Kahru, and O. M. Bondarenko, Arch. Toxicol., 94, 1561 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. S. Alarifi, D. Ali, A. Verma, S. Alakhtani, and B. A. Ali, Int. J. Toxicol., 32, 296 (2013).

    Article  PubMed  CAS  Google Scholar 

  69. T. Andreani, V. Nogueir, V. V. Pintoa, M. J. Ferreira, M. G. Rasteiro, A. M. Silva, R. Pereira, and C. M. Pereira, Sci. Total. Environ., 607–608, 1264 (2017).

    Article  PubMed  CAS  Google Scholar 

  70. H. Li, P. Z. Toh, J. Y. Tan, M. T. Zin, C. Y. Lee, B. Li, M. Leolukman, H. Bao, and L. Kang, Sci. Rep.-UK, 28, 37664 (2016).

    Article  CAS  Google Scholar 

  71. C. Luo, Y. Li, L. Yang, Y. Zheng, J. Long, J. Jia, S. **ao, and J. Liu, Int. J. Nanomed., 9, 4763 (2014).

    Article  CAS  Google Scholar 

  72. J. López-García, M. Lehocký, P. Humpolíček, and P. Sáha, J. Funct. Biomater., 5, 43 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. T. I. Shaheen, A. Fouda, and S. S. Salem, Ind. Eng. Chem. Res., 60, 1553 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract No. 451-03-9/2021-14/200135, 451-03-68/2021-14/200287 and 451-03-9/2021-14/200017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Radetić.

Supplementary Material

12221_2022_4639_MOESM1_ESM.pdf

Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krkobabić, A., Marković, D., Kovačević, A. et al. Antimicrobial Nanocomposites Based on Oxidized Cotton Fabric and in situ Biosynthesized Copper Oxides Nanostructures Using Bearberry Leaves Extract. Fibers Polym 23, 954–966 (2022). https://doi.org/10.1007/s12221-022-4639-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4639-5

Keywords

Navigation