Log in

Simultaneous synthesis and fabrication of nano Cu2O on cellulosic fabric using copper sulfate and glucose in alkali media producing safe bio- and photoactive textiles without color change

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nano-Cu2O particles were synthesized on cotton fabric using CuSO4 as a precursor and glucose as a reducing and cap** agent in alkali. The morphology, crystal phase and chemical structure of the fabrics were characterized by scanning electron microscope, X-ray diffraction, Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy. The colorimetric values of the treated fabrics were also measured using reflectance spectra. The treated fabrics showed significant photocatalytic activity toward the degradation of methylene blue under daylight. Excellent antibacterial activity of the treated samples against Staphylococcus aureus and Escherichia coli was also confirmed. Moreover, treated fabrics were proven to have no adverse effects (low toxicity) on human dermal fibroblasts based on the MTT test. Findings suggested the potential of the proposed method in producing a fabric with high antibacterial efficiency, excellent self-cleaning properties, faster wetting time and negligible color change. Bleached cotton fabric treated with 0.02 w/w% copper sulfate and 0.35 w/w% glucose in alkali media (0.35 w/w% sodium hydroxide) at 70 °C for 1 h was found to be the optimum sample, with many applications in various fields including clothing, medical clothing and bedding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B (2013) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4:571–576

    Google Scholar 

  • Aladpoosh R, Montazer M, Samadi N (2014) In situ green synthesis of silver nanoparticles on cotton fabric using Seidlitzia rosmarinus ashes. Cellulose 21:3755–3766

    Article  CAS  Google Scholar 

  • Allahyarzadeh V, Montazer M, Hemmati Nejad N, Samadi N (2013) In situ synthesis of nano silver on polyester using NaOH/nano TiO2. J Appl Polym Sci 129:892–900

    Article  CAS  Google Scholar 

  • Anyaogu K, Fedorov A, Neckers D (2008) Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles. Langmuir 24:4340–4346

    Article  CAS  Google Scholar 

  • Behzadnia A, Montazer M, Rashidi A, Mahmoudi Rad M (2014) Sonosynthesis of nano TiO2 on wool using titanium isopropoxide or butoxide in acidic media producing multifunctional fabric. Ultrason Sonochem 21:1815–1826

    Article  CAS  Google Scholar 

  • Chen LQ, Kang B, Ling J (2013) Cytotoxicity of cuprous oxide nanoparticles to fish blood cells: hemolysis and internalization. J Nanopart Res 15(3). doi:10.1007/s11051-013-1507-7

  • Courrol LC, Oliveira Silva FR, de Gomes L (2007) A simple method to synthesize silver nanoparticles by photo-reduction. Colloids Surf A 305:54–57

    Article  CAS  Google Scholar 

  • Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC (2011) Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv Nat Sci 2:015009

    Google Scholar 

  • Dastjerdi R, Montazer M, Shahsavan Sh (2009) A new method to stabilize nanoparticles on textile surfaces. Colloids Surf A 345:202–210

    Article  CAS  Google Scholar 

  • Dastjerdi R, Montazer M, Shahsavan Sh (2010) A novel technique for producing durable multifunctional textiles using nanocomposite coating. Colloids Surf B 81:32–41

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3:133–149

    Article  Google Scholar 

  • Deng X, Zhang Q, Zhao Q, Ma L, Ding M, Xu X (2015) Effects of architectures and H2O2 addition on the photocatalytic performance of hierarchical Cu2O nanostructures. Nanoscale Res Lett 10:8–17

    Article  Google Scholar 

  • Ghule K, Ghule AV, Chen BJ, Ling YC (2006) Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem 8:1034–1041

    Article  CAS  Google Scholar 

  • Gopalakrishnan K, Ramesh C, Ragunathan V, Thamilselvan M (2012) Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from tridaxprocumbens leaf extract and surface coating with polyaniline. Dig J Nanomater Bios 7:833–839

    Google Scholar 

  • Harifi T, Montazer M (2012) Past, present and future prospects of cotton cross-linking: new insight into nanoparticles. Carbohydr Polym 88:1125–1140

    Article  CAS  Google Scholar 

  • Harifi T, Montazer M (2014) Fe3+:Ag/TiO2 nanocomposite: synthesis, characterization and photocatalytic activity under UV and visible light irradiation. Appl Catal A 473:104–115

    Article  CAS  Google Scholar 

  • Hrenovic J, Milenkovic J, Daneu N, Kepcija R, Rajic N (2012) Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite. Chemosphere 88:1103–1107

    Article  CAS  Google Scholar 

  • Kangwansupamonkon W, Lauruengtana V, Surassmo S, Ruktanonchai U (2009) Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomed Nanotech Biol Med 5:240–249

    Article  CAS  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732

    Article  CAS  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118

    Article  CAS  Google Scholar 

  • Kim J, Kwon S, Ostler E (2009) Antimicrobial effect of silver-impregnated cellulose: potential for antimicrobial therapy. J Biol Eng 3:1–9

    Article  Google Scholar 

  • Komeili-Nia Z, Montazer M, Latifi M (2013) Synthesis of nano copper/nylon composite using ascorbic acid and CTAB. Colloids Surf A 439:167–175

    Article  Google Scholar 

  • Lazary A, Weinberg I, Vatine JJ, Jefidoff A, Bardenstein R, Borkow G, Ohana N (2014) Reduction of healthcare-associated infections in a long-term care brain injury ward by replacing regular linens with biocidal copper oxide impregnated linens. Int J Infect Dis 24:23–29

    Article  CAS  Google Scholar 

  • Li Y, Liang J, Tao Z, Chen J (2008) CuO particles and plates: synthesis and gas-sensor application. Mater Res Bull 43:2380–2385

  • Longano D, Ditaranto N, Sabbatini L, Torsi L, Cioffi N (2012) Synthesis and antimicrobial activity of copper nanomaterials. In: Cioffi N, Rai M (eds) Nano-antimicrobials: progress and prospects, Chapter 3. Springer, New York, pp 85–117

  • Montazer M, Pakdel E (2011) Functionality of nano titanium dioxide on textiles with future aspects: focus on wool. J Photochem Photobiol C: Photochem Rev 12:293–303

  • Montazer M, Nazari A, Moghadam MB, Anary-Abbasinejad M (2010) Self-cleaning properties of bleached and cationized cotton using nano TiO2: a statistical approach. Carbohydr Polym 83:1119–1127

  • Montazer M, Alimohammadi F, Shamei A, Rahimi M (2012a) Durable antibacterial and cross-linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing. Colloids Surf B 89:196–202

  • Montazer M, Alimohammadi F, Shamei A, Rahimi M (2012b) In situ synthesis of nano silver on cotton using Tollens’ reagent. Carbohydr Polym 87:1706–1712

    Article  CAS  Google Scholar 

  • Nobumasa H, Hirofusa Sh, Sadao H (2007) Complex formation between poly(vinyl alcohol) and metallic ions in aqueous solution. J Polym Sci 47:299–307

    Google Scholar 

  • Pawar MJ, Chaure SS (2009) Synthesis of CdS nanoparticles using glucose as a cap** agent. Chalcogenide Lett 6:689–693

    CAS  Google Scholar 

  • Pena MMO, Koch KA, Thiele DJ (1998) Dynamic regulation of copper uptake and detoxification genes in Saccharomyces cerevisiae. Mol Cell Biol 18:2514–2523

    Article  CAS  Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32–41

    Article  Google Scholar 

  • Rahman A, Ismail A, Jumbianti D, Magdalena S, Sudrajat H (2009) Synthesis of copper oxide nano particles by using Phormidium cyanobacterium. Indo J Chem 9(3):355–360

  • Ravindra S, Mohan YM, Reddy NN, Raju KM (2010) Fabrication of antibacterial cotton fibers loaded with silver nanoparticles via ‘‘Green Approach’’. Colloids Surf A 367:31–40

    Article  CAS  Google Scholar 

  • Salavati-Niasari M, Davar F (2009) Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor. Mater Lett 63:441–443

    Article  CAS  Google Scholar 

  • Sedighi A, Montazer M, Hemmatinejad N (2014a) Copper nanoparticles on bleached cotton fabric: in situ synthesis and characterization. Cellulose 21:2119–2132

    Article  CAS  Google Scholar 

  • Sedighi A, Montazer M, Samadi N (2014b) Synthesis of nano Cu2O on cotton: morphological, physical, biological and optical sensing characterizations. Carbohydr Polym 110:489–498

    Article  CAS  Google Scholar 

  • Yan C, Yue-jun W, Kang-gen ZH, Zhen B (2010) Morphology control of ultrafine cuprous oxide powder and its growth mechanism. Trans Nanferrous Met Soc China 20:216–220

    Article  Google Scholar 

  • Yang Z, Chen S, Hu W, Yin N, Zhang W, **ang C et al (2012) Flexible luminescent CdSe/bacterial cellulose nanocomposite membranes. Carbohydr Polym 88:173–178

    Article  CAS  Google Scholar 

  • Zhang Y, Deng B, Zhang T, Gao D, Xu A-W (2010) Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity. J Phys Chem C 114:5073–5079

    Article  CAS  Google Scholar 

  • Zheng Zh, Huang B, Wang Z, Guo M, Qin X, Zhang X, Wang P, Dai Y (2009) Crystal faces of Cu2O and their stabilities in photocatalytic reactions. J Phys Chem C 113:14448–14453

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Montazer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montazer, M., Dastjerdi, M., Azdaloo, M. et al. Simultaneous synthesis and fabrication of nano Cu2O on cellulosic fabric using copper sulfate and glucose in alkali media producing safe bio- and photoactive textiles without color change. Cellulose 22, 4049–4064 (2015). https://doi.org/10.1007/s10570-015-0764-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0764-2

Keywords

Navigation