Log in

Sustainable Approach for Cotton Fabric Pretreatment with Immobilized Enzymes

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Enzymes are stereospecific, environmentally friendly, and energy-efficient alternatives to chemical treatments in the textile industry. In traditional applications, enzymes are employed to catalyze the process and then drained out on completion of the process. Despite their many potential applications in textiles, enzymes find a limited level of industrial acceptability. Immobilization is a technique for stabilizing enzymes, extending their useful life, and ensuring the long-term viability of their applications through recovery and reuse. In this work, the feasibility of immobilized enzymes for the complete cotton fabric pre-treatment was studied to develop a sustainable way of enzyme application for multiple cycles. Commercial amylase, pectinase and glucose-oxidase enzymes were covalently immobilized on reversibly soluble-insoluble polymer supports (Chitosan & Eudragit S-100) and utilized for the complete pre-treatment of cotton fabric. Methylene blue exhaustion, wax content and tegewa testing confirm the removal of impurities from grey cotton fabric using immobilized enzymes. The equivalent absorbency and whiteness were observed in samples up to three consecutive cycles of immobilized enzyme reuse. Furthermore, the equivalent uniformity, colour yield and fastness ratings after reactive dyeing of these pretreated samples also confirm that the immobilized enzymes can be reused for multiple cycles in comparison to native enzymes for industrial commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Karmakar, “Chemical Technology in the Pretreatment Processes of Textiles”, Elsevier Science B V, Amsterdam, Netherlands, 1999.

    Google Scholar 

  2. A. Cavaco-Paulo and G. M. Gubitz in “Textile Processing with Enzymes”, 1st ed. (A. Cavaco-Paulo and G. M. Gubitz Eds.), pp.86–119, Woodhead Publishing Ltd., Cambridge, England, 2003.

  3. D. Saravanan, A. A. Prakash, D. Jagadeeshwaran, G. Nalankilli, T. Ramachandran, and C. Prabakaran, Indian J. Fibre Text. Res., 36, 253 (2011).

    CAS  Google Scholar 

  4. S. N. Sreelaakshmi, A. Paul, N. S. Vasanthi, and D. Sarvanan, J. Text. Inst., 105, 59 (2014).

    Article  Google Scholar 

  5. P. Anis and H. K. Eren, AATCC Rev., 2, 22 (2002).

    CAS  Google Scholar 

  6. J. N. Etters, Text. Chem. Color. Am. Dyest. Rep., 1, 33 (1999).

    CAS  Google Scholar 

  7. R. B. Waddell, AATCC Rev., 2, 28 (2002).

    CAS  Google Scholar 

  8. P. F. Tavcer, Tekstilec, 50, 16 (2007).

    Google Scholar 

  9. S. Ali, Z. Khatri, A. Khatri, and A. Tanwari, J. Cleaner Prod., 66, 562 (2014).

    Article  CAS  Google Scholar 

  10. P. Anis, A. Davulcu, and H. A. Eren, Fibres Text. East. Eur., 17, 87 (2009).

    CAS  Google Scholar 

  11. G. Buschle-Diller, X. D. Yang, and R. Yamamoto, Text. Res. J., 71, 388 (2001).

    Article  CAS  Google Scholar 

  12. A. Farooq, S. Ali, N. Abbas, G. L. Fatima, and M. A. Ashraf, J. Cleaner Prod., 42, 167 (2013).

    Article  CAS  Google Scholar 

  13. D. Saravanan, N. S. Vasanthi, K. S. Raja, A. Das, and T. Ramachandran, Indian J. Fibre Text. Res., 35, 281 (2010).

    CAS  Google Scholar 

  14. Y. Shin, S. Hwang, and I. Ahn, J. Ind. Eng. Chem., 10, 577 (2004).

    CAS  Google Scholar 

  15. P. F. Tavcer, Biocatal. Biotransform., 30, 20 (2012).

    Article  Google Scholar 

  16. R. Araujo, M. Casal, and A. Cavaco-Paulo, Biocatal. Biotransform., 26, 332 (2008).

    Article  CAS  Google Scholar 

  17. R. Doshil and V. Shelke, Indian J. Fibre Text. Res., 26, 202 (2001).

    Google Scholar 

  18. S. Hossain and K. Uddin, Int. J. Eng., 11, 16 (2011).

    Google Scholar 

  19. K. Mojsov, II International Congress “Engineering, Ecology and Materials in the Processing Industry”, p.230, Jahorina, Proceedings, 2011.

  20. K. D. Mojsov, Advanced Technologies, 3, 135 (2014).

    Google Scholar 

  21. P. Binod, P. Palkhiwala, R. Gaikaiwari, K. M. Nampoothiri, A. Duggal, K. Dey, and A. Pandey, J. Sci. Ind. Res., 72, 271 (2013).

    CAS  Google Scholar 

  22. G. D. Haki and S. K. Rakshit, Bioresour. Technol., 89, 17 (2003).

    Article  CAS  Google Scholar 

  23. P. H. Nielsen, H. Kuilderd, W. Zhou, and X. Lu in “Sustainable Textile: Life Cycle and Environment Impact”, 1st ed. (R. S. Blackburn Ed.), pp.113–138, Woodhead Publishing Ltd., Cambridge, UK, 2009.

  24. B. Brena, P. Gonzalez-Pambo and F. Batista-Viera in “Immobilization of Enzymes and Cells”, 2nd ed. (J. M. Guisan Ed.), pp.15–30, Humana Press Inc., Totowa, NJ, 2006.

  25. R. A. Sheldon, Adv. Synth. Catal., 349, 1289 (2007).

    Article  CAS  Google Scholar 

  26. A. Madhu and J. N. Chakraborty, J. Cleaner Prod., 145, 114 (2017).

    Article  CAS  Google Scholar 

  27. A. A. Khan and M. A. Alzohairy, Res. J. Biological Sci., 5, 565 (2010).

    Article  Google Scholar 

  28. J. C. Soares, P. R. Moreira, A. C. Queiroga, J. E. Morgado, F. X. Malcata, and M. E. Pintado, Biocatal. Biotransform., 29, 223 (2011).

    Article  CAS  Google Scholar 

  29. K. Opwis, D. Knittel, A. Kele, and E. Schollmeyer, Starch, 51, 348 (1999).

    Article  CAS  Google Scholar 

  30. T. Tzanov, S. A. Costa, G. M. Gubitz, and A. Cavaco-Paulo, J. Biotechnol., 93, 87 (2002).

    Article  CAS  Google Scholar 

  31. V. S. Kumar, S. Meenakshisundaram, and N. Selvakumar, J. Text. Inst., 99, 339 (2008).

    Article  CAS  Google Scholar 

  32. N. K. Pazarlioglu, M. Sariisik, and A. Telefoncu, Process Biochem., 40, 767 (2005).

    Article  CAS  Google Scholar 

  33. Y. Yu, J. Yuan, Q. Wang, X. Fan, X. Ni, P. Wang, and L. Cui, Carbohydr. Polym., 95, 675 (2013).

    Article  CAS  Google Scholar 

  34. C. J. S. M. Silva, Q. Zhang, J. Shen, and A. Cavaco-Paulo, Enzyme Microb. Technol., 39, 634 (2006).

    Article  CAS  Google Scholar 

  35. J. Shen, M. Rushforth, A. Cavaco-Paulo, G. Guebitz, and H. Lenting, Enzyme Microb. Technol., 40, 1656 (2007).

    Article  CAS  Google Scholar 

  36. B. Y. Sahinbaskan and M. V. Kahraman, Starch, 63, 154 (2011).

    Article  CAS  Google Scholar 

  37. A. Madhu and J. N. Chakraborty, Res. J. Text. Apparel, 22, 271 (2018).

    Article  CAS  Google Scholar 

  38. A. Madhu and J. N. Chakraborty, AATCC J. Res., 6, 7 (2019).

    Google Scholar 

  39. AATCC Test Method 79–2000, “Absorbency of Textile”, AATCC Technical Manual, AATCC, NC, USA, 2010.

    Google Scholar 

  40. S. D. Bhattachary and S. R. Shah, Color. Technol., 118, 295 (2002).

    Article  Google Scholar 

  41. K. Sawada, S. Tokino, M. Ueda, and X. Y. Wang, Color. Technol., 114, 333 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadunandan Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhu, A., Chakraborty, J. Sustainable Approach for Cotton Fabric Pretreatment with Immobilized Enzymes. Fibers Polym 23, 993–1007 (2022). https://doi.org/10.1007/s12221-022-4193-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4193-1

Keywords

Navigation