Abstract

Applications of enzymes to textile wet processing have significantly gained importance due to their stereo specific, non-toxic, eco-friendly, and energy conserving characteristics. The bioprocessing of natural textiles such as cotton, flax, jute, silk and wool has become exceptionally successful in textile wet processing system due to establishment of enhanced functional properties to the fibres along with other essential advantages. Applications to synthetic fibres also proved successful as in case of natural fibres without any exception. Advances in molecular biology and enzyme technology explore the idea of identification of new enzymes and possible alteration of the existing enzymes. In addition, application of enzymes to achieve effective results should also be favourable to technical, economical and environmental concerns. Immobilization of enzymes is one of such approaches for stabilization, providing long life with improved catalytic action to textile substrates. This chapter discusses about different types of enzymes, their potential application areas to different textile material groups, i.e. cellulosic, protein and synthetics, opportunities and challenges associated with these and finally concept of immobilization of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal BJ (2016) Desizing of cotton fabrics with enzymes for improved performance. Int J Ind Biotechnol Biomater 2:11–16

    Google Scholar 

  • Amorim AM, Gasques MDG, Andreaus J, Scharf M (2002) The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics. An Acad Bras Cienc 74:433–436

    Article  CAS  PubMed  Google Scholar 

  • Arami M, Rahimi S, Mivehie L et al (2007) Degumming of Persian silk with mixed proteolytic enzymes. J Appl Polym Sci 106:267–275

    Article  CAS  Google Scholar 

  • Araujo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransformation 26:332–349

    Article  CAS  Google Scholar 

  • Araújo R, Silva C, Machado R et al (2009) Proteolytic enzyme engineering: a tool for wool. Biomacromolecules 10:1655–1661

    Article  PubMed  CAS  Google Scholar 

  • Basto C, Tzanov T, Cavaco-Paulo A (2007) Combined ultrasound-laccase assisted bleaching of cotton. Ultrason Sonochem 14:350–354

    Article  CAS  PubMed  Google Scholar 

  • Begum S, Wu J, Takawira CM, Wang J (2016) Surface modification of polyamide 6, 6 fabrics with an alkaline protease–subtilisin. J Eng Fiber Fabr 11:155892501601100100

    Google Scholar 

  • Besegatto SV, Costa FN, Damas MSP et al (2018) Enzyme treatment at different stages of textile processing: a review. Ind Biotechnol 14:298–307

    Article  CAS  Google Scholar 

  • Bhat M (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  PubMed  Google Scholar 

  • Binod P, Palkhiwala P, Gaikaiwari R et al (2013) Industrial enzymes-present status and future perspectives for India. J Sci Ind Res 72(5):271–286

    CAS  Google Scholar 

  • Brena B, González-Pombo P, Batista-Viera F (2013) Immobilization of enzymes: a literature survey. In: Immobilization of enzymes and cells. Springer, Berlin, pp 15–31

    Chapter  Google Scholar 

  • Cardamone JM (2002) Proteolytic activity of Aspergillus flavus on wool. AATCC Rev 2:30–35

    CAS  Google Scholar 

  • Cardamone JM (2007) Enzyme-mediated crosslinking of wool. Part I: transglutaminase. Text Res J 77:214–221

    Article  CAS  Google Scholar 

  • Chakraborty JN, Jaruhar P (2014) Dyeing of cotton with Sulphur dyes using alkaline catalase as reduction catalyst. Indian J Fibre Text Res 39:303–309

    CAS  Google Scholar 

  • Coradi M, Zanetti M, Valério A et al (2018) Production of antimicrobial textiles by cotton fabric functionalization and pectinolytic enzyme immobilization. Mater Chem Phys 208:28–34

    Article  CAS  Google Scholar 

  • Couto SR, Herrera JLT (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513

    Article  CAS  Google Scholar 

  • Csiszár E, Losonczi A, Szakács G et al (2001) Enzymes and chelating agent in cotton pretreatment. J Biotechnol 89:271–279

    Article  PubMed  Google Scholar 

  • Darwesh OM, Matter IA, Eida MF (2019) Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. J Environ Chem Eng 7:102805

    Article  CAS  Google Scholar 

  • Díaz-Rodríguez A, Davis BG (2011) Chemical modification in the creation of novel biocatalysts. Curr Opin Chem Biol 15:211–219

    Article  PubMed  CAS  Google Scholar 

  • El-Bendary MA, El-Ola SMA, Moharam ME (2012) Enzymatic surface hydrolysis of polyamide fabric by protease enzyme and its production. Ind J Fibre Textile Res 37:273–279

    Google Scholar 

  • El-Sayed H, Hamed RR, Kantouch A et al (2002) Enzyme-based feltproofing of wool. AATCC Rev 2:25–29

    CAS  Google Scholar 

  • Freddi G, Mossotti R, Innocenti R (2003) Degumming of silk fabric with several proteases. J Biotechnol 106:101–112

    Article  CAS  PubMed  Google Scholar 

  • Gashti MP, Assefipour R, Kiumarsi A, Gashti MP (2013) Enzymatic surface hydrolysis of polyamide 6,6 with mixtures of proteolytic and lipolytic enzymes. Prep Biochem Biotechnol 43:798–814. https://doi.org/10.1080/10826068.2013.805623

    Article  CAS  Google Scholar 

  • Ge F, Cai Z, Zhang H, Zhang R (2009) Transglutaminase treatment for improving wool fabric properties. Fibers Polym 10:787–790

    Article  CAS  Google Scholar 

  • Gowda KN, Padaki NV, Sudhakar R, Subramani R (2007) Eco-friendly preparatory process for silk: degumming by protease enzyme. Man Made Text India 50:28

    CAS  Google Scholar 

  • Gübitz GM, Paulo AC (2003) New substrates for reliable enzymes: enzymatic modification of polymers. Curr Opin Biotechnol 14:577–582

    Article  PubMed  CAS  Google Scholar 

  • Gudelj M, Fruhwirth G, Paar A et al (2001) A catalase-peroxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effluents. Extremophiles 5:423–429

    Article  CAS  PubMed  Google Scholar 

  • Gulrajani ML (2004) Some recent developments in chemical processing of silk. Colourage 51:115–120

    Google Scholar 

  • Hadzhiyska H, Calafell M, Gibert JM et al (2006) Laccase-assisted dyeing of cotton. Biotechnol Lett 28:755–759

    Article  CAS  PubMed  Google Scholar 

  • Han X, Yu Y, Wang Q et al (2014) Anti-bacterial properties of lactoferrin immobilized wool fabric. Indian J Fibre Text Res 39:401–405

    CAS  Google Scholar 

  • Hu YJ, Fan XR, Wang Q et al (2008) Immobilization of lysozyme on wool fabric. Wool Text J 10:15–18

    Google Scholar 

  • Huang D, Cui L, Wang Q et al (2009a) Immobilization of lysozyme catalyzed by MTG on the wool and antibacterial action. J Food Sci Biotechnol 19

    Google Scholar 

  • Huang D, Fan X, Cui L et al (2009b) Antibacterial action and properties of lysozyme immobilized on wool catalyzed by MTG. Chem Ind Eng Prog 7

    Google Scholar 

  • Ibrahim D, Abd-ElSalam SH (2012) Enzymatic treatment of polyester fabrics digitally printed. J Text Sci Eng 2

    Google Scholar 

  • Ibrahim NA, Gouda M, El-Shafei AM, Abdel-Fatah OM (2007) Antimicrobial activity of cotton fabrics containing immobilized enzymes. J Appl Polym Sci 104:1754–1761

    Article  CAS  Google Scholar 

  • Ibrahim NA, El-Shafei HA, Abdel-Aziz MS et al (2012) The potential use of alkaline protease from Streptomyces albidoflavus as an eco-friendly wool modifier. J Text Inst 103:490–498

    Article  CAS  Google Scholar 

  • Islam M, Nahar K, Ferdush J, Akter T (2019) Impact of bleaching actions of bleaching powder and hydrogen peroxide on biopolished denim garments. Tekst časopis za Tekst i odjevnu Tehnol 68:35–39

    Google Scholar 

  • Kanelli M, Vasilakos S, Nikolaivits E et al (2015) Surface modification of poly (ethylene terephthalate)(PET) fibers by a cutinase from Fusarium oxysporum. Process Biochem 50:1885–1892

    Article  CAS  Google Scholar 

  • Khan AA, Alzohairy MA (2010) Recent advances and applications of immobilized enzyme technologies: a review. Res J Biol Sci 5:565–575

    Article  Google Scholar 

  • Khan R, Bhawana P, Fulekar MH (2013) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Bio/Technology 12:75–97

    Article  CAS  Google Scholar 

  • Kim S, Moldes D, Cavaco-Paulo A (2007) Laccases for enzymatic colouration of unbleached cotton. Enzyme Microb Technol 40:1788–1793

    Article  CAS  Google Scholar 

  • Kiumarsi A, Parvinzadeh M (2010) Enzymatic hydrolysis of nylon 6 fiber using lipolytic enzyme. J Appl Polym Sci 116:3140–3147

    CAS  Google Scholar 

  • Lee SH, Song WS (2010) Surface modification of polyester fabrics by enzyme treatment. Fibers Polym 11:54–59

    Article  CAS  Google Scholar 

  • Miettinen-Oinonen A, Silvennoinen M, Nousiainen P, Buchert J (2002) Modification of synthetic fibres with laccase. In: Proceedings of the Second International Symposium on biotechnology in textiles, pp 3–6

    Google Scholar 

  • Miletić N, Nastasović A, Loos K (2012) Immobilization of biocatalysts for enzymatic polymerizations: possibilities, advantages, applications. Bioresour Technol 115:126–135

    Article  PubMed  CAS  Google Scholar 

  • Mojsov K (2014) Biopolishing enzymes and their applications in textiles: a review. Tekst Ind 61:20–24

    Google Scholar 

  • Mojsov K (2019) Enzymatic desizing, bioscouring and enzymatic bleaching of cotton fabric with glucose oxidase. J Text Inst 110:1032–1041

    Article  CAS  Google Scholar 

  • Mojsov K, Janevski A, Andronikov D et al (2019) Behaviour of biopolishing on dyeability and certain properties of cotton fabrics. Tekst Ind 67:20–24

    Google Scholar 

  • Moniruzzaman M, Reyad SM (2018). Study of the effects of time on bio-polishing of cotton knit fabrics (Doctoral dissertation, Daffodil International University).

    Google Scholar 

  • Morshed MN, Behary N, Bouazizi N et al (2019) Surface modification of polyester fabric using plasma-dendrimer for robust immobilization of glucose oxidase enzyme. Sci Rep 9:1–16

    Article  CAS  Google Scholar 

  • Nolte H, Bishop DP, Höcker H (1996) Effects of proteolytic and lipolytic enzymes on untreated and shrink-resist-treated wool. J Text Inst 87:212–226

    Article  CAS  Google Scholar 

  • Nov Z, Biobeljenja E (2013) New combined bio-scouring and bio-bleaching process of cotton fabrics. Mater Technol 47:409–412

    Google Scholar 

  • Parvinzadeh M (2007) Effect of proteolytic enzyme on dyeing of wool with madder. Enzyme Microb Technol 40:1719–1722

    Article  CAS  Google Scholar 

  • Parvinzadeh M (2009) A new approach to improve dyeability of nylon 6 fibre using a subtilisin enzyme. Color Technol 125:228–233

    Article  CAS  Google Scholar 

  • Paul R, Genescà E (2013) The use of enzymatic techniques in the finishing of technical textiles. In: Advances in the dyeing and finishing of technical textiles. Elsevier, Amsterdam, pp 177–198

    Chapter  Google Scholar 

  • Pazarlioğlu NK, Sariişik M, Telefoncu A (2005) Treating denim fabrics with immobilized commercial cellulases. Process Biochem 40:767–771

    Article  CAS  Google Scholar 

  • Pereira L, Bastos C, Tzanov T et al (2005) Environmentally friendly bleaching of cotton using laccases. Environ Chem Lett 3:66–69

    Article  CAS  Google Scholar 

  • Presa P, Tavcer PF (2007) Pectinases as agents for bioscouring. Tekstilec 50:16–34

    CAS  Google Scholar 

  • Rauf MA, Ashraf SS (2012) Survey of recent trends in biochemically assisted degradation of dyes. Chem Eng J 209:520–530

    Article  CAS  Google Scholar 

  • Ribitsch D, Herrero Acero E, Greimel K et al (2012) A new esterase from Thermobifida halotolerans hydrolyses polyethylene terephthalate (PET) and polylactic acid (PLA). Polymers (Basel) 4:617–629

    Article  CAS  Google Scholar 

  • Rodríguez-Couto S (2012) Laccases for denim bleaching: an eco-friendly alternative. Sigma 1:10–12

    Google Scholar 

  • Sankarraj N, Nallathambi G (2018) Enzymatic biopolishing of cotton fabric with free/immobilized cellulase. Carbohydr Polym 191:95–102

    Article  CAS  PubMed  Google Scholar 

  • Sarkar AK, Etters JN (2001) Kinetics of the enzymatic hydrolysis of cellulose. AATCC Rev 1:48–52

    CAS  Google Scholar 

  • Schröder M, Schweitzer M, Lenting HBM, Guebitz GM (2004) Chemical modification of proteases for wool cuticle scale removal. Biocatal Biotransformation 22:299–305

    Article  CAS  Google Scholar 

  • Sen S, Puskas JE (2015) Green polymer chemistry: enzyme catalysis for polymer functionalization. Molecules 20:9358–9379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah T, Halacheva S (2016) Drug-releasing textiles. In: Advances in smart medical textiles. Elsevier, Amsterdam, pp 119–154

    Chapter  Google Scholar 

  • Shahid M, Mohammad F, Chen G et al (2016) Enzymatic processing of natural fibres: white biotechnology for sustainable development. Green Chem 18:2256–2281

    Article  CAS  Google Scholar 

  • Shen J (2019) Enzymatic treatment of wool and silk fibers. In: Advances in textile biotechnology. Elsevier, Amsterdam, pp 77–105

    Chapter  Google Scholar 

  • Silva C, Cavaco-Paulo A (2008) Biotransformations in synthetic fibres. Biocatal Biotransformation 26:350–356. https://doi.org/10.1080/10242420802357845

    Article  CAS  Google Scholar 

  • Silva C, Gübitz G, Cavaco-Paulo A (2006a) Optimisation of a serine protease coupling to Eudragit S-100 by experimental design techniques. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 81:8–16

    CAS  Google Scholar 

  • Silva C, Zhang Q, Shen J, Cavaco-Paulo A (2006b) Immobilization of proteases with a water soluble–insoluble reversible polymer for treatment of wool. Enzyme Microb Technol 39:634–640

    Article  CAS  Google Scholar 

  • Singh RK, Tiwari MK, Singh R, Lee J-K (2013) From protein engineering to immobilization. Int J Mol Sci 14:1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares JC, Moreira PR, Queiroga AC et al (2011) Application of immobilized enzyme technologies for the textile industry: a review. Biocatal Biotransformation 29:223–237

    Article  CAS  Google Scholar 

  • Sójka-Ledakowicz J, Lichawska J, Pyć R (2006) Integrated enzymatic pre-treatment of cotton fabrics. J Nat Fibers 3:199–207

    Article  CAS  Google Scholar 

  • Špička N, Tavčer PF (2013) Complete enzymatic pre-treatment of cotton fabric with incorporated bleach activator. Text Res J 83:566–573

    Article  CAS  Google Scholar 

  • Tesfaw A, Assefa F (2014) Applications of transglutaminase in textile, wool, and leather processing. Int J Tex Sci 3:64–69

    Google Scholar 

  • Tischer W, Wedekind F (1999) Immobilized enzymes: methods and applications. In: Biocatalysis-from discovery to application. Springer, Berlin, pp 95–126

    Chapter  Google Scholar 

  • Vílchez S, Jovančić P, Erra P (2010) Influence of chitosan on the effects of proteases on wool fibers. Fibers Polym 11:28–35

    Article  CAS  Google Scholar 

  • Walter T, Augusta J, Müller R-J et al (1995) Enzymatic degradation of a model polyester by lipase from Rhizopus delemar. Enzyme Microb Technol 17:218–224

    Article  CAS  Google Scholar 

  • Waly AI, Marie MM, Shahin MF, Faroun NMS (2016) Effect of protease treatment on the physical properties and dyeability of wool/nylon blend to cutch natural dye. IJSR 5:1764–1770

    Article  Google Scholar 

  • Wan Q, Fan X, Hua Z et al (2007) Degradation kinetics of pectins by an alkaline pectinase in bioscouring of cotton fabrics. Carbohydr Polym 67:572–575

    Article  CAS  Google Scholar 

  • Wang Q, Fan X, Hu Y et al (2009) Antibacterial functionalization of wool fabric via immobilizing lysozymes. Bioprocess Biosyst Eng 32:633–639

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Yuan J, Wang Q et al (2013) Cellulase immobilization onto the reversibly soluble methacrylate copolymer for denim washing. Carbohydr Polym 95:675–680

    Article  CAS  PubMed  Google Scholar 

  • Zubay GL, Parson WW, Vance DE (1995) Principles of biochemistry. W. C. Brown, Dubuque, IA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwini Kumar Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dash, A.K., Sahoo, S.K. (2021). Role of Enzymes in Textile Processing. In: Thatoi, H., Mohapatra, S., Das, S.K. (eds) Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-33-4195-1_19

Download citation

Publish with us

Policies and ethics

Navigation