Log in

Fabrication and Osteoblastic Adhesion Behavior of Regenerated Silk Fibroin/PLLA Nanofibrous Scaffold by Double Syringe Electrospinning

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this work, regenerated silk fibroin (SF)/poly-L-lactic acid (PLLA) composite electrospun fibers were successfully prepared by electrospinning method with single and double syringe systems. Furtherly, we applied simultaneous and alternative spinning when using double syringe systems. The morphologies of the obtained silk/PLLA hybrid nanofibers were characterized by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) showed that PLLA has been well incorporated into the SF electrospun fibers using double syringes. Furthermore, the tensile test results indicate the tensile strength and Young's modulus of the silk/PLLA hybrid nanofibers webs were improved by both single and double syringe system. Moreover, the cell adhesion ratios of simultaneous silk/PLLA nanofibers were much higher than that of alternative silk/PLLA nanofibers, and even higher than pure silk nanofibers. Therefore, simultaneous spinning using double syringe system is a potential method for fabrication of nanofiber scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Altaian, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. S. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials, 24, 401 (2003).

    Article  Google Scholar 

  2. L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. Mccool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, Biomaterials, 26, 147 (2005).

    Article  CAS  Google Scholar 

  3. B. Panilaitis, G. H. Altaian, J. S. Chen, H. J. **, V. Karageorgiou, and D. L. Kaplan, Biomaterials, 24, 3079 (2003).

    Article  CAS  Google Scholar 

  4. H. Lee, M. Nishino, D. Sohn, J. S. Lee, and I. S. Kim, Cellulose, 25, 2829 (2018).

    Article  CAS  Google Scholar 

  5. H. Lee, G. Xu, D. Kharaghani, M. Nishino, K. H. Song, J. S. Lee, and I. S. Kim, Int. J. Pharm., 531, 101 (2017).

    Article  CAS  Google Scholar 

  6. T. J. Sill and H. A. von Recum, Biomaterials, 29, 1989 (2008).

    Article  CAS  Google Scholar 

  7. Q. R. Pham, U. Sharma, and A. G. Mikos, J. Tissue Eng., 12, 1197 (2006).

    Article  CAS  Google Scholar 

  8. J. H. Jang, O. Castano, and H. W. Kim, Adv. Drug Deliv. Rev., 61, 1065 (2009).

    Article  CAS  Google Scholar 

  9. J. M. Holzwarth and P. X. Ma, Biomaterials, 32, 9622 (2011).

    Article  CAS  Google Scholar 

  10. M. M. Stevens, Mater. Today, 11, 18 (2008).

    Article  CAS  Google Scholar 

  11. M. Salehi and F. Bastami, Regeneration, Reconstruction & Restoration, 1, 69 (2016).

    Google Scholar 

  12. J. Lannutti, D. Reneker, T. Ma, D. Tomasko, and D. Farson, Mater. Sci. Eng. C, 27, 504 (2007).

    Article  CAS  Google Scholar 

  13. P. Rujitanaroj, N. Pimpha, and P. Supaphol, Polymer, 49, 4723 (2008).

    Article  CAS  Google Scholar 

  14. L. Huang, K. Nagapudi, R. P. Apkarian, and E. L. Chaikof, J. Biomater Sci. Polym. Ed., 12, 979 (2001).

    Article  CAS  Google Scholar 

  15. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Biomacromolecules, 3, 232 (2002).

    Article  CAS  Google Scholar 

  16. A. S. reenwald, S. D. Boden, V. M. Goldberg, Y. Khan, C. T. Laurencin, and R. N. Rosier, J. Bone. Joint. Surg. Am., 83, 98 (2001).

    Article  Google Scholar 

  17. K. M. Woo, V. J. Chen, and P. X. Ma, J. Biomed. Mater. Res., 67, 531 (2003).

    Article  Google Scholar 

  18. F. Asghari, R. Salehi, M. Agazadeh, E. Alizadeh, K. Adibkia, M. Samiei, A. Akbarzadeh, N. A. Aval, and S. Davaran, Int. J. Polym. Mater. Polym. Biomater., 65, 720 (2016).

    Article  CAS  Google Scholar 

  19. H. Mahfiiz, F. Clements, V. Rangari, V. Dhanak, and G. Beamson, J. Appl. Phys., 105, 064307 (2009).

    Article  Google Scholar 

  20. A. M. Torki, D. B. Stojanovic, I. D. Zivkovic, A. Marinkovic, S. D. Skapin, P. S. Uskokovic, and R. R. Aleksic, Polym. Compos., 33, 158 (2012).

    Article  CAS  Google Scholar 

  21. D. Stojanovic, A. Orlovic, S. B. Glisic, S. Markovic, V. Radmilovic, P. S. Uskokovic, and R. Aleksic, J. Supercrit. Fluid, 52, 276 (2010).

    Article  CAS  Google Scholar 

  22. K. Mylvaganam and L. C. Zhang, Nanotechnology, 18, 475701 (2007).

    Article  Google Scholar 

  23. A. Morka and B. Jackowska, Comput. Mater. Sci., 50, 1244 (2011).

    Article  CAS  Google Scholar 

  24. K. Balasubramanian and M. Burghard, Small, 1, 180 (2005).

    Article  CAS  Google Scholar 

  25. B. Ben Doudou, A. Vivet, J. Chen, A. Laachachi, T. Falher, and C. Poilane, J. Polym. Res., 21, 420 (2014).

    Article  Google Scholar 

  26. B. Weng, F. Xu, G. Garza, M. Alcoutlabi, A. Salinas, and K. Lozano, Polym. Eng. Sci., 55, 81 (2015).

    Article  CAS  Google Scholar 

  27. S. Swain and I. Jena, Asian J. Chem., 22, 1 (2010).

    CAS  Google Scholar 

  28. K. Wei, Y. Li, K. H. Kim, B. S. Kim, K. Abe, G. Q. Chen, I. S. Kim, J. Biomed. Mater. Res. A, 97, 272 (2011).

    Article  Google Scholar 

  29. K. Wei, J. H. **a, B. S. Kim, and I. S. Kim, J. Polym. Res., 18, 579 (2011).

    Article  CAS  Google Scholar 

  30. F. J. O'Brien, B. A. Harley, I. V. Yannas, and L. Gibson, Biomaterials, 25, 1077 (2004).

    Article  CAS  Google Scholar 

  31. I. C. Urn, H. Y. Kweon, K. G. Lee, Y. H. Park, Int J Biol Macromolecules, 33, 203 (2003).

    Article  Google Scholar 

  32. J. He, Y. Qin, S. Cui, Y. Gao, and S. Wang, J. Mater. Sci., 46, 2938 (2011).

    Article  CAS  Google Scholar 

  33. Z. Khatri, R. Nakashima, G. Mayakrishnan, K. H. Lee, Y. H. Park, K. Wei, and I. S. Kim, J. Mater. Sci., 48, 3659 (2013).

    Article  CAS  Google Scholar 

  34. G. Thomas and A. George, Biomaterials, 17, 1227 (1996).

    Article  Google Scholar 

  35. H. M. Powell and S. T. Boyce, J. Biomed. Mater. Res. A., 84, 1078 (2007).

    Google Scholar 

Download references

Acknowledgments

The work was supported by National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Icksoo Kim or Kai Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Gu, J., He, L. et al. Fabrication and Osteoblastic Adhesion Behavior of Regenerated Silk Fibroin/PLLA Nanofibrous Scaffold by Double Syringe Electrospinning. Fibers Polym 20, 1850–1856 (2019). https://doi.org/10.1007/s12221-019-1188-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-1188-7

Keywords

Navigation