Surface-Functionalized Electrospun Nanofibers for Tissue Engineering

  • Chapter
  • First Online:
Electrospun Nanofibers

Abstract

Electrospun nanofibers have been investigated for applications in diverse fields of tissue engineering such as degradable polymers, bioactive inorganics and nano-composites/ hybrids. Poly (ε-caprolactone) (PCL), poly (L-lactide-co-3-caprolactone) (PLLACL) and poly(lactic co-glycolic acid) (PLGA) electrospun nanofibers have been reported to be an effective scaffold for tissue engineering and drug delivery due to high surface-to-volume ratio, tunable porosity, cell affinity, hydrophilicity and ease of surface functionalization. In particular, electrospun fibrous scaffolds prepared by coaxial and co-electrospinning showed promising applications in adhesion, proliferation, elongation, cell growth and apoptosis which is highly desired for human body applications in tissues such as bone, nerve, ligament along with bio-artificial bone graft mimicking and bio-mineralization. Different characterization methods such as FESEM, SEM, FTIR, XRD and wet chemical precipitation have been used for these studies. Furthermore, a wide range of materials suitable for extracellular matrix scaffold has been prepared by electrospinning technique. This review summarizes preparation methods, functionalization and characterization techniques of nanofibers by electrospinning and their wide application in the field of tissue engineering. In addition, challenges pertaining to cell infiltration, low-density growth and inadequate mechanical strength of nanofibers as well as suggestions to mitigate these problems are also pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FESEM:

Field Emission Scanning Electron Microscope

SEM:

Scanning Electron Microscope

FTIR:

Fourier Transform Infrared Spectroscopy

XRD:

X-ray Diffraction

References

  1. Rim NG Shin CS Shin H (2013) Current approaches to electrospun nanofibers for tissue engineering. Biomed Mater 8. https://doi.org/10.1088/1748-6041/8/1/014102

  2. Choi JS, Lee SJ, Christ GJ et al (2008) The influence of electrospun aligned poly(ε-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29:2899–2906. https://doi.org/10.1016/j.biomaterials.2008.03.031

    Article  CAS  PubMed  Google Scholar 

  3. Hu J, Kai D, Ye H et al (2017) Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering. Mater Sci Eng C 70:1089–1094. https://doi.org/10.1016/j.msec.2016.03.035

    Article  CAS  Google Scholar 

  4. Tonsomboon K, Oyen ML (2013) Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. J Mech Behav Biomed Mater 21:185–194. https://doi.org/10.1016/j.jmbbm.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  5. Li WJ, Mauck RL, Cooper JA et al (2007) Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40:1686–1693. https://doi.org/10.1016/j.jbiomech.2006.09.004

    Article  PubMed  Google Scholar 

  6. Rezk AI, Mousa HM, Lee J et al (2019) Composite PCL/HA/simvastatin electrospun nanofiber coating on biodegradable Mg alloy for orthopedic implant application. J Coat Technol Res 16:477–489. https://doi.org/10.1007/s11998-018-0126-8

    Article  CAS  Google Scholar 

  7. Fiorani A (2014) Electrospun polymeric scaffolds with enhanced biomimetic properties for tissue engineering applications. 109. https://doi.org/10.6092/unibo/amsdottorato/6483

  8. Tanaka T, Ujiie R, Yajima H et al (2011) Ion-beam irradiation into biodegradable nanofibers for tissue engineering scaffolds. Surf Coat Technol 206:889–892. https://doi.org/10.1016/j.surfcoat.2011.04.049

    Article  CAS  Google Scholar 

  9. Santander J, Fonseca L, Udina S, Marco S (2007) Accepted Musp. https://doi.org/10.1016/j.snb.2007.07.003

  10. Abdal-hay A, Vanegas P, Hamdy AS et al (2014) Preparation and characterization of vertically arrayed hydroxyapatite nanoplates on electrospun nanofibers for bone tissue engineering. Chem Eng J 254:612–622. https://doi.org/10.1016/j.cej.2014.05.118

    Article  CAS  Google Scholar 

  11. Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30:4325–4335. https://doi.org/10.1016/j.biomaterials.2009.04.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bosworth LA, Hu W, Shi Y, Cartmell SH (2019) Enhancing biocompatibility without compromising material properties: an optimised NaOH treatment for electrospun polycaprolactone fibres. J Nanomater. https://doi.org/10.1155/2019/4605092

  13. Cheng Q, Lee BLP, Komvopoulos K et al (2013) Plasma surface chemical treatment of electrospun poly(L-lactide) microfibrous scaffolds for enhanced cell adhesion, growth, and infiltration. Tissue Eng Part A 19:1188–1198. https://doi.org/10.1089/ten.tea.2011.0725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yan S, **aoqiang L, Lianjiang T et al (2009) Poly(l-lactide-co-ε-caprolactone) electrospun nanofibers for encapsulating and sustained releasing proteins. Polymer (Guildf) 50:4212–4219. https://doi.org/10.1016/j.polymer.2009.06.058

    Article  CAS  Google Scholar 

  15. Li Y, Akl TB, Li Y, Akl TB (2016) Electrospinning-material, techniques, and biomedical applications. Electrospinning Mater Tech Biomed Appl. https://doi.org/10.5772/62860

  16. Vitchuli N, Shi Q, Nowak J et al (2013) Atmospheric plasma application to improve adhesion of electrospun nanofibers onto protective fabric. J Adhes Sci Technol 27:924–938. https://doi.org/10.1080/01694243.2012.727164

    Article  CAS  Google Scholar 

  17. Feng C, Liu C, Liu S, et al (2019) Electrospun nanofibers with core-shell structure for treatment of bladder regeneration

    Google Scholar 

  18. Senthamizhan A, Balusamy B, Uyar T (2017) Electrospinning: a versatile processing technology for producing nanofibrous materials for biomedical and tissue-engineering applications. Elsevier Ltd.

    Google Scholar 

  19. Pordel MA, Maleki A, Khamforosh M, Daraei H (2017) Fabrication , characterization , and microscopic imaging of Fe2O3-modified electrospun nanofibers, pp 146–153. https://doi.org/10.22102/jaehr.2017.80173.1010

  20. Kalaoglu-Altan OI, Kirac-Aydin A, Sumer Bolu B et al (2017) Diels-Alder “clickable” biodegradable nanofibers: benign tailoring of scaffolds for biomolecular immobilization and cell growth. Bioconjug Chem 28:2420–2428. https://doi.org/10.1021/acs.bioconjchem.7b00411

    Article  CAS  PubMed  Google Scholar 

  21. Rodda AE, Ercole F, Glattauer V et al (2015) Low fouling electrospun scaffolds with clicked bioactive peptides for specific cell attachment. Biomacromol 16:2109–2118. https://doi.org/10.1021/acs.biomac.5b00483

    Article  CAS  Google Scholar 

  22. Aksoy OE, Ates B, Cerkez I (2017) Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination. J Mater Sci 52:10013–10022. https://doi.org/10.1007/s10853-017-1240-1

    Article  CAS  Google Scholar 

  23. Abdal-hay A, Ti**g LD, Lim JK (2013) Characterization of the surface biocompatibility of an electrospun nylon 6/CaP nanofiber scaffold using osteoblasts. Chem Eng J 215–216:57–64. https://doi.org/10.1016/j.cej.2012.10.046

    Article  CAS  Google Scholar 

  24. Hendrick E, Frey M (2014) Increasing surface hydrophilicity in poly(lactic acid) electrospun fibers by addition of Pla-B-Peg co-polymers. J Eng Fiber Fabr 9:153–164. https://doi.org/10.1177/155892501400900219

    Article  CAS  Google Scholar 

  25. Lannutti J, Reneker D, Ma T et al (2007) Electrospinning for tissue engineering scaffolds. Mater Sci Eng C 27:504–509. https://doi.org/10.1016/j.msec.2006.05.019

    Article  CAS  Google Scholar 

  26. Shabani I, Haddadi-Asl V, Seyedjafari E et al (2009) Improved infiltration of stem cells on electrospun nanofibers. Biochem Biophys Res Commun 382:129–133. https://doi.org/10.1016/j.bbrc.2009.02.150

    Article  CAS  PubMed  Google Scholar 

  27. Meng ZX, Li HF, Sun ZZ et al (2013) Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering. Mater Sci Eng C 33:699–706. https://doi.org/10.1016/j.msec.2012.10.021

    Article  CAS  Google Scholar 

  28. Zhao W, Li J, ** K et al (2016) Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Mater Sci Eng C 59:1181–1194. https://doi.org/10.1016/j.msec.2015.11.026

    Article  CAS  Google Scholar 

  29. Bhaarathy V, Venugopal J, Gandhimathi C et al (2014) Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Mater Sci Eng C 44:268–277. https://doi.org/10.1016/j.msec.2014.08.018

    Article  CAS  Google Scholar 

  30. Chow LW (2018) Electrospinning functionalized polymers for use as tissue engineering scaffolds. Methods Mol Biol 1758:27–39. https://doi.org/10.1007/978-1-4939-7741-3_3

    Article  CAS  PubMed  Google Scholar 

  31. Al DJT et (2011) No titleענף הקיווי: תמונת מצב. עלון הנוטע 66:37–39

    Google Scholar 

  32. Pauly H (2018) Development of a hierarchical electrospun scaffold for ligament replacement

    Google Scholar 

  33. Wang X, Gittens RA, Song R et al (2012) Effects of structural properties of electrospun TiO2 nanofiber meshes on their osteogenic potential. Acta Biomater 8:878–885. https://doi.org/10.1016/j.actbio.2011.10.023

    Article  CAS  PubMed  Google Scholar 

  34. Ngadiman NHA, Idris A, Irfan M et al (2015) γ-Fe2O3 nanoparticles filled polyvinyl alcohol as potential biomaterial for tissue engineering scaffold. J Mech Behav Biomed Mater 49:90–104. https://doi.org/10.1016/j.jmbbm.2015.04.029

    Article  CAS  PubMed  Google Scholar 

  35. Abdal-hay A, Lim J, Shamshi Hassan M, Lim JK (2013) Ultrathin conformal coating of apatite nanostructures onto electrospun nylon 6 nanofibers: mimicking the extracellular matrix. Chem Eng J 228:708–716. https://doi.org/10.1016/j.cej.2013.05.022

    Article  CAS  Google Scholar 

  36. Liao S, Murugan R, Chan CK, Ramakrishna S (2008) Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering. J Mech Behav Biomed Mater 1:252–260. https://doi.org/10.1016/j.jmbbm.2008.01.007

    Article  PubMed  Google Scholar 

  37. Shrestha BK, Mousa HM, Tiwari AP et al (2016) Development of polyamide-6,6/chitosan electrospun hybrid nanofibrous scaffolds for tissue engineering application. Carbohydr Polym 148:107–114. https://doi.org/10.1016/j.carbpol.2016.03.094

    Article  CAS  PubMed  Google Scholar 

  38. Li L, Li H, Qian Y et al (2011) Electrospun poly (ε-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release. Int J Biol Macromol 49:223–232. https://doi.org/10.1016/j.ijbiomac.2011.04.018

    Article  CAS  PubMed  Google Scholar 

  39. Doshi J, Reneker DH (1993) Electrospinning process and applications of electrospun fibers. In: Conference record-IAS annual meeting (IEEE Ind Appl Soc), vol 3, pp 1698–1703. https://doi.org/10.1109/ias.1993.299067

  40. Chen F, Huang P, Mo XM (2010) Electrospinning of heparin encapsulated P(LLA-CL) core/shell nanofibers. Nano Biomed Eng 2:56–60. https://doi.org/10.5101/nbe.v2i1.p56-60

    Article  Google Scholar 

  41. Širc J, Hobzová R, Kostina N et al (2012) Morphological characterization of nanofibers: methods and application in practice. J Nanomater. https://doi.org/10.1155/2012/327369

  42. Xu X, Zhuang X, Chen X et al (2006) Preparation of core-sheath composite nanofibers by emulsion electrospinning. Macromol Rapid Commun 27:1637–1642. https://doi.org/10.1002/marc.200600384

    Article  CAS  Google Scholar 

  43. Xu X, Chen X, Wang X, **g X (2008) The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning, vol 70, pp 165–170. https://doi.org/10.1016/j.ejpb.2008.03.010

  44. ** L et al (2010) Colloids and surfaces B: biointerfaces encapsulation of proteins in poly (l-lactide-co-caprolactone) fibers by emulsion electrospinning, vol 75, pp 418–424. https://doi.org/10.1016/j.colsurfb.2009.09.014

  45. Hutmacher DW, Dalton PD (2011) Melt electrospinning. Chem Asian J 6:44–56. https://doi.org/10.1002/asia.201000436

    Article  CAS  PubMed  Google Scholar 

  46. Zhmayev E, Cho D, Joo YL (2010) Nanofibers from gas-assisted polymer melt electrospinning. Polymer (Guildf) 51:4140–4144. https://doi.org/10.1016/j.polymer.2010.06.058

    Article  CAS  Google Scholar 

  47. Brown TD, Edin F, Detta N et al (2015) Melt electrospinning of poly(ε-caprolactone) scaffolds: Phenomenological observations associated with collection and direct writing. Mater Sci Eng C 45:698–708. https://doi.org/10.1016/j.msec.2014.07.034

    Article  CAS  Google Scholar 

  48. Ramakrishna S, Fujihara K, Teo WE et al (2005) An introduction to electrospinning and nanofibers

    Google Scholar 

  49. Soldate P, Fan J (2019) Controlled deposition of electrospun nanofibers by electrohydrodynamic deflection. J Appl Phys 125. https://doi.org/10.1063/1.5084284

  50. Koenig K, Beukenberg K, Langensiepen F, Seide G (2019) A new prototype melt-electrospinning device for the production of biobased thermoplastic sub-microfibers and nanofibers. Biomater Res 23:1–12. https://doi.org/10.1186/s40824-019-0159-9

    Article  Google Scholar 

  51. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006. https://doi.org/10.1016/j.biomaterials.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  52. Zulkifli FH, Shahitha F, Yusuff MM et al (2013) Cross-linking effect on electrospun hydroxyethyl cellulose/poly(vinyl alcohol) nanofibrous scaffolds. Procedia Eng 53:689–695. https://doi.org/10.1016/j.proeng.2013.02.089

    Article  CAS  Google Scholar 

  53. Shao S, Zhou S, Li L et al (2011) Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials 32:2821–2833. https://doi.org/10.1016/j.biomaterials.2011.01.051

    Article  CAS  PubMed  Google Scholar 

  54. Zhang S, Chen L, Jiang Y et al (2013) Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater 9:7236–7247. https://doi.org/10.1016/j.actbio.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  55. Chen MC, Sun YC, Chen YH (2013) Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Acta Biomater 9:5562–5572. https://doi.org/10.1016/j.actbio.2012.10.024

    Article  CAS  PubMed  Google Scholar 

  56. Yang C, Deng G, Chen W et al (2014) A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering. Colloids Surf B Biointerfaces 122:270–276. https://doi.org/10.1016/j.colsurfb.2014.06.061

    Article  CAS  PubMed  Google Scholar 

  57. Ikada Y (1994) Surface modification of polymers for medical applications. Biomaterials 15:725–736. https://doi.org/10.1016/0142-9612(94)90025-6

    Article  CAS  PubMed  Google Scholar 

  58. Liao C, Li Y, Tjong SC (2018) Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. Int J Mol Sci 19. https://doi.org/10.3390/ijms19113564

  59. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223. https://doi.org/10.1016/j.yexmp.2008.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sreekumar PA, Thomas SP, Marc SJ et al (2009) Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Compos Part A Appl Sci Manuf 40:1777–1784. https://doi.org/10.1016/j.compositesa.2009.08.013

  61. Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61:1033–1042. https://doi.org/10.1016/j.addr.2009.07.007

    Article  CAS  PubMed  Google Scholar 

  62. Poulsson AHC, Richards RG (2012) Surface modification techniques of polyetheretherketone, including plasma surface treatment. Elsevier Inc.

    Google Scholar 

  63. Rana D, Ramasamy K, Leena M et al (2016) Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine. Biotechnol Prog 32:554–567. https://doi.org/10.1002/btpr.2262

    Article  CAS  PubMed  Google Scholar 

  64. Kennedy M, Ristau D, Niederwald HS (1998) Ion beam-assisted deposition of MgF2 and YbF3 films. Thin Solid Films 333:191–195. https://doi.org/10.1016/S0040-6090(98)00847-5

    Article  CAS  Google Scholar 

  65. Chen W, McCarthy TJ (1997) Layer-by-layer deposition: a tool for polymer surface modification. Macromolecules 30:78–86. https://doi.org/10.1021/ma961096d

    Article  CAS  Google Scholar 

  66. Sarathy KV, Thomas PJ, Kulkarni GU, Rao CNR (1999) Superlattices of metal and metal-semiconductor quantum dots obtained by layer-by-layer deposition of nanoparticle arrays. J Phys Chem B 103:399–401. https://doi.org/10.1021/jp983836l

    Article  CAS  Google Scholar 

  67. Uǧur ŞS, Sariişk M, Hakan Aktaş A (2010) The fabrication of nanocomposite thin films with TiO2 nanoparticles by the layer-by-layer deposition method for multifunctional cotton fabrics. Nanotechnology 21 https://doi.org/10.1088/0957-4484/21/32/325603

  68. Gentile P, Carmagnola I, Nardo T, Chiono V (2015) Layer-by-layer assembly for biomedical applications in the last decade. Nanotechnology 26:422001. https://doi.org/10.1088/0957-4484/26/42/422001

  69. Kim MS, Ma L, Choudhury S et al (2016) Fabricating multifunctional nanoparticle membranes by a fast layer-by-layer Langmuir-Blodgett process: application in lithium-sulfur batteries. J Mater Chem A 4:14709–14719. https://doi.org/10.1039/c6ta06018h

    Article  CAS  Google Scholar 

  70. de Souza ID, Cruz MAE, de Faria AN et al (2014) Formation of carbonated hydroxyapatite films on metallic surfaces using dihexadecyl phosphate-LB film as template. Colloids Surf B Biointerfaces 118:31–40. https://doi.org/10.1016/j.colsurfb.2014.03.029

    Article  CAS  PubMed  Google Scholar 

  71. Liao WS, Yang T, Castellana ET et al (2006) A rapid prototy** approach to ag nanoparticle fabrication in the 10–100 nm range. Adv Mater 18:2240–2243. https://doi.org/10.1002/adma.200600589

    Article  CAS  Google Scholar 

  72. Seif S, Planz V, Windbergs M (2017) Controlling the release of proteins from therapeutic nanofibers: the effect of fabrication modalities on biocompatibility and antimicrobial activity of lysozyme. Planta Med 83:445–452. https://doi.org/10.1055/s-0042-109715

    Article  CAS  PubMed  Google Scholar 

  73. Zare S, Kargari A (2018) Membrane properties in membrane distillation. Elsevier Inc.

    Google Scholar 

  74. Qin X (2017) Coaxial electrospinning of nanofibers

    Google Scholar 

  75. Maria D (2015) Three dimensional scaffolds based on electroactive polymers for tissue engineering applications

    Google Scholar 

  76. Mondal K, Ali MA, Agrawal VV et al (2014) Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing. ACS Appl Mater Interfaces 6:2516–2527. https://doi.org/10.1021/am404931f

    Article  CAS  PubMed  Google Scholar 

  77. Sarkar S (2016) Roles of nanofiber scaffold structure and chemistry in directing human bone marrow stromal cell response. Adv Tissue Eng Regen Med Open Access 1. https://doi.org/10.15406/atroa.2016.01.00003

  78. Zhang Y, Venugopal JR, El-Turki A et al (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322. https://doi.org/10.1016/j.biomaterials.2008.07.038

    Article  CAS  PubMed  Google Scholar 

  79. Luo Y, Wang S, Shen M et al (2013) Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr Polym 91:419–427. https://doi.org/10.1016/j.carbpol.2012.08.069

    Article  CAS  PubMed  Google Scholar 

  80. Huang C-J (2019) Advanced surface modification technologies for biosensors. Elsevier Inc.

    Google Scholar 

  81. Ramier J, Grande D, Bouderlique T et al (2014) From design of bio-based biocomposite electrospun scaffolds to osteogenic differentiation of human mesenchymal stromal cells. J Mater Sci Mater Med 25:1563–1575. https://doi.org/10.1007/s10856-014-5174-8

    Article  CAS  PubMed  Google Scholar 

  82. Ahn S, Ardoña HAM, Campbell PH et al (2019) Alfalfa nanofibers for dermal wound healing. ACS Appl Mater Interfaces 11:33535–33547. https://doi.org/10.1021/acsami.9b07626

    Article  CAS  PubMed  Google Scholar 

  83. Prabhakaran MP, Venugopal J, Ramakrishna S (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater 5:2884–2893. https://doi.org/10.1016/j.actbio.2009.05.007

    Article  CAS  PubMed  Google Scholar 

  84. Ito Y, Hasuda H, Kamitakahara M et al (2005) A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. J Biosci Bioeng 100:43–49. https://doi.org/10.1263/jbb.100.43

    Article  CAS  PubMed  Google Scholar 

  85. Ma G, Fang D, Liu Y et al (2012) Electrospun sodium alginate/poly(ethylene oxide) core-shell nanofibers scaffolds potential for tissue engineering applications. Carbohydr Polym 87:737–743. https://doi.org/10.1016/j.carbpol.2011.08.055

    Article  CAS  Google Scholar 

  86. Sharma Y, Tiwari A, Hattori S et al (2012) Fabrication of conducting electrospun nanofibers scaffold for three-dimensional cells culture. Int J Biol Macromol 51:627–631. https://doi.org/10.1016/j.ijbiomac.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  87. Bhattarai N, Edmondson D, Veiseh O et al (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176–6184. https://doi.org/10.1016/j.biomaterials.2005.03.027

    Article  CAS  PubMed  Google Scholar 

  88. Frohbergh ME, Katsman A, Botta GP et al (2012) Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33:9167–9178. https://doi.org/10.1016/j.biomaterials.2012.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. González E, Shepherd LM, Saunders L, Frey MW (2016) Surface functional poly(lactic acid) electrospun nanofibers for biosensor applications. Mater (Basel) 9:1–11. https://doi.org/10.3390/ma9010047

    Article  CAS  Google Scholar 

  90. Kim JH, Choung PH, Kim IY et al (2009) Electrospun nanofibers composed of poly(ε-caprolactone) and polyethylenimine for tissue engineering applications. Mater Sci Eng C 29:1725–1731. https://doi.org/10.1016/j.msec.2009.01.023

    Article  CAS  Google Scholar 

  91. **g X, Mi HY, Cordie TM et al (2014) Fabrication of shish-kebab structured poly(ε-caprolactone) electrospun nanofibers that mimic collagen fibrils: Effect of solvents and matrigel functionalization. Polymer (Guildf) 55:5396–5406. https://doi.org/10.1016/j.polymer.2014.08.061

    Article  CAS  Google Scholar 

  92. Meng ZX, Wang YS, Ma C et al (2010) Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C 30:1204–1210. https://doi.org/10.1016/j.msec.2010.06.018

    Article  CAS  Google Scholar 

  93. Zulkifli FH, Hussain FSJ, Rasad MSBA, Mohd Yusoff M (2014) Nanostructured materials from hydroxyethyl cellulose for skin tissue engineering. Carbohydr Polym 114:238–245. https://doi.org/10.1016/j.carbpol.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  94. Meng ZX, Zheng W, Li L, Zheng YF (2010) Fabrication and characterization of three-dimensional nanofiber membrance of PCL-MWCNTs by electrospinning. Mater Sci Eng C 30:1014–1021. https://doi.org/10.1016/j.msec.2010.05.003

    Article  CAS  Google Scholar 

  95. Ding Q, Li Z, Yang Y et al (2016) Preparation and therapeutic application of docetaxel-loaded poly(d, l-lactide) nanofibers in preventing breast cancer recurrence. Drug Deliv 23:2677–2685. https://doi.org/10.3109/10717544.2015.1048490

    Article  CAS  PubMed  Google Scholar 

  96. Haynie DT, Khadka DB, Cross MC (2012) Physical properties of polypeptide electrospun nanofiber cell culture scaffolds on a wettable substrate. Polym (Basel) 4:1535–1553. https://doi.org/10.3390/polym4031535

    Article  CAS  Google Scholar 

  97. Su Y, Su Q, Liu W et al (2012) Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering. Acta Biomater 8:763–771. https://doi.org/10.1016/j.actbio.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  98. Santillán J, Dwomoh EA, Rodríguez-Avilés YG et al (2019) Fabrication and evaluation of polycaprolactone beads-on-string membranes for applications in bone tissue regeneration. ACS Appl Bio Mater 2:1031–1040. https://doi.org/10.1021/acsabm.8b00628

    Article  CAS  Google Scholar 

  99. Janković B, Pelipenko J, Škarabot M et al (2013) The design trend in tissue-engineering scaffolds based on nanomechanical properties of individual electrospun nanofibers. Int J Pharm 455:338–347. https://doi.org/10.1016/j.ijpharm.2013.06.083

    Article  CAS  PubMed  Google Scholar 

  100. Asheghali D Lee SJ Furchner A et al (2020) Enhanced neuronal differentiation of neural stem cells with mechanically enhanced touch-spun nanofibrous scaffolds. Nanomedicine Nanotechnol Biol Med 24:102152. https://doi.org/10.1016/j.nano.2020.102152

  101. Bhattarai SR, Bhattarai N, Yi HK et al (2004) Novel biodegradable electrospun membrane: Scaffold for tissue engineering. Biomaterials 25:2595–2602. https://doi.org/10.1016/j.biomaterials.2003.09.043

    Article  CAS  PubMed  Google Scholar 

  102. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M et al (2008) Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539. https://doi.org/10.1016/j.biomaterials.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  103. Karuppuswamy P, Venugopal JR, Navaneethan B et al (2014) Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications. Appl Surf Sci 322:162–168. https://doi.org/10.1016/j.apsusc.2014.10.074

    Article  CAS  Google Scholar 

  104. Singh RK, ** GZ, Mahapatra C et al (2015) Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. ACS Appl Mater Interfaces 7:8088–8098. https://doi.org/10.1021/acsami.5b00692

    Article  CAS  PubMed  Google Scholar 

  105. Jiang S, Song P, Guo H et al (2017) Blending PLLA/tannin-grafted PCL fiber membrane for skin tissue engineering. J Mater Sci 52:1617–1624. https://doi.org/10.1007/s10853-016-0455-x

    Article  CAS  Google Scholar 

  106. Chahal S, Hussain FSJ, Kumar A et al (2016) Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose/poly (vinyl) alcohol nanofibrous composite biomaterial for bone tissue engineering. Elsevier

    Book  Google Scholar 

  107. Zhang C, Wang L, Zhai T et al (2016) The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications. J Mech Behav Biomed Mater 53:403–413. https://doi.org/10.1016/j.jmbbm.2015.08.043

    Article  CAS  PubMed  Google Scholar 

  108. Guler Z, Sarac AS (2015) BMP-2 immobilized PCL/P3ANA nanofibers for bone tissue engineering, pp 1–4

    Google Scholar 

  109. Azim N, Kundu A, Royse M et al (2019) Fabrication and characterization of a 3D printed, microelectrodes platform with functionalized electrospun nano-scaffolds and spin coated 3D insulation towards multi-functional biosystems. J Microelectromechanical Syst 28:606–618. https://doi.org/10.1109/JMEMS.2019.2913652

    Article  CAS  Google Scholar 

  110. Ravichandran R, Sundaramurthi D, Gandhi S et al (2014) Bioinspired hybrid mesoporous silica-gelatin sandwich construct for bone tissue engineering. Microporous Mesoporous Mater 187:53–62. https://doi.org/10.1016/j.micromeso.2013.12.018

    Article  CAS  Google Scholar 

  111. Zeeshan K (2013) Preparation and characterization of electrospun nanofibers for apparel and medical application

    Google Scholar 

  112. Wang S, Cao X, Shen M et al (2012) Fabrication and morphology control of electrospun poly(γ-glutamic acid) nanofibers for biomedical applications. Colloids Surf B Biointerfaces 89:254–264. https://doi.org/10.1016/j.colsurfb.2011.09.029

    Article  CAS  PubMed  Google Scholar 

  113. Martins A, Duarte ARC, Faria S et al (2010) Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials 31:5875–5885. https://doi.org/10.1016/j.biomaterials.2010.04.010

    Article  CAS  PubMed  Google Scholar 

  114. Amokrane G, Humblot V, Jubeli E et al (2019) Electrospun poly(ϵ-caprolactone) fiber scaffolds functionalized by the covalent grafting of a bioactive polymer: surface characterization and influence on in vitro biological response. ACS Omega 4:17194–17208. https://doi.org/10.1021/acsomega.9b01647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tang S, Zhao Z, Chen G et al (2016) Fabrication of ampicillin/starch/polymer composite nanofibers with controlled drug release properties by electrospinning. J Sol-Gel Sci Technol 77:594–603. https://doi.org/10.1007/s10971-015-3887-x

    Article  CAS  Google Scholar 

  116. He X, Cheng L, Zhang X et al (2015) Tissue engineering scaffolds electrospun from cotton cellulose. Carbohydr Polym 115:485–493. https://doi.org/10.1016/j.carbpol.2014.08.114

    Article  CAS  PubMed  Google Scholar 

  117. Mendoza-palomares C, Ferrand A, Facca S et al (1977) Infection with contact lens wear. Br J Ophthalmol 61:249. https://doi.org/10.1136/bjo.61.4.249

    Article  Google Scholar 

  118. Prabhakaran MP, Ghasemi-Mobarakeh L, ** G, Ramakrishna S (2011) Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J Biosci Bioeng 112:501–507. https://doi.org/10.1016/j.jbiosc.2011.07.010

    Article  CAS  PubMed  Google Scholar 

  119. Xue J, He M, Niu Y et al (2014) Preparation and in vivo efficient anti-infection property of GTR/GBR implant made by metronidazole loaded electrospun polycaprolactone nanofiber membrane. Int J Pharm 475:566–577. https://doi.org/10.1016/j.ijpharm.2014.09.026

    Article  CAS  PubMed  Google Scholar 

  120. He XX, Yu GF, Wang XX et al (2017) Electromagnetic functionalized micro-ribbons and ropes for strain sensors via UV-assisted solvent-free electrospinning. J Phys D Appl Phys 50. https://doi.org/10.1088/1361-6463/aa8101

  121. Cui W, Cheng L, Hu C et al (2013) Electrospun Poly(L-Lactide) Fiber with Ginsenoside Rg3 for Inhibiting Scar Hyperplasia of Skin. PLoS ONE 8:1–12. https://doi.org/10.1371/journal.pone.0068771

    Article  CAS  Google Scholar 

  122. Veras FF, Roggia I, Pranke P et al (2016) Inhibition of filamentous fungi by ketoconazole-functionalized electrospun nanofibers. Eur J Pharm Sci 84:70–76. https://doi.org/10.1016/j.ejps.2016.01.014

    Article  CAS  PubMed  Google Scholar 

  123. Abdalkarim SYH, Yu HY, Wang D, Yao J (2017) Electrospun poly(3-hydroxybutyrate-co-3-hydroxy-valerate)/cellulose reinforced nanofibrous membranes with ZnO nanocrystals for antibacterial wound dressings. Cellulose 24:2925–2938. https://doi.org/10.1007/s10570-017-1303-0

    Article  CAS  Google Scholar 

  124. Qi H, Ye Z, Ren H et al (2016) Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Life Sci 148:139–144. https://doi.org/10.1016/j.lfs.2016.02.040

    Article  CAS  PubMed  Google Scholar 

  125. Pournaqi F, Farahmand M, Ardeshirylajimi A (2016) Increase biocompatibility of scaffold made of Polyethersulfone (PES) by combining polyaniline(PANI). J Paramed Sci Winter 7:2008–4978

    Google Scholar 

  126. Duan H, Feng B, Guo X et al (2013) Engineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes. Int J Nanomedicine 8:2077–2084. https://doi.org/10.2147/IJN.S42384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yang Y, **a T, Chen F et al (2012) Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats. Mol Pharm 9:48–58. https://doi.org/10.1021/mp200246b

    Article  CAS  PubMed  Google Scholar 

  128. Nemati S, Jeong KS, Shin YM, Shin H (2019) Current progress in application of polymeric nanofibers to tissue engineering. Nano Converg 6. https://doi.org/10.1186/s40580-019-0209-y

  129. Ryan CNM, Fuller KP, Larrañaga A et al (2015) An academic, clinical and industrial update on electrospun, additive manufactured and imprinted medical devices. Expert Rev Med Devices 12:601–612. https://doi.org/10.1586/17434440.2015.1062364

    Article  CAS  PubMed  Google Scholar 

  130. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer (Guildf) 49:5603–5621. https://doi.org/10.1016/j.polymer.2008.09.014

    Article  CAS  Google Scholar 

  131. Greve C, Jorgensen L (2016) Therapeutic delivery. Ther Deliv 7:117–138

    Google Scholar 

  132. Pauly HM, Kelly DJ, Popat KC et al (2016) Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: Effects of orientation and geometry. J Mech Behav Biomed Mater 61:258–270. https://doi.org/10.1016/j.jmbbm.2016.03.022

    Article  CAS  PubMed  Google Scholar 

  133. Gostev AA, Chernonosova VS, Murashov IS, et al (2019) IOPscience. In: Biomedical Materials. https://iopscience.iop.org/article/10.1088/1748-605X/ab550c

  134. Katsanevakis E (2013) Engineering a biomimetic structure for human long bone regeneration. ProQuest Dissertations Theses, p 172

    Google Scholar 

  135. Griffith LG, Naughton G (2002) Tissue engineering-current challenges and expanding opportunities. Science (80-):295. https://doi.org/10.1126/science.1069210

  136. Willerth SM, Sakiyama-Elbert SE (2007) Approaches to neural tissue engineering using scaffolds for drug delivery. Adv Drug Deliv Rev 59:325–338. https://doi.org/10.1016/j.addr.2007.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Thevenot PT, Saravia J, ** N, et al (2012), pp 1–59

    Google Scholar 

  138. Tanes ML (2016) Generating a bioactive protein gradient on electrospun nanofiber mats using a bovine serum albumin blocking scheme by COPYRIGHT © 2016 BY Michael Tanes Generating a bioactive protein gradient on electrospun nanofiber mats using a bovine Serum

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, R. et al. (2021). Surface-Functionalized Electrospun Nanofibers for Tissue Engineering. In: Tiwari, S.K., Sharma, K., Sharma, V., Kumar, V. (eds) Electrospun Nanofibers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-79979-3_12

Download citation

Publish with us

Policies and ethics

Navigation