Log in

The Case of Equality for the Spacetime Positive Mass Theorem

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The rigidity of the spacetime positive mass theorem states that an initial data set (Mgk) satisfying the dominant energy condition with vanishing mass can be isometrically embedded into Minkowski space. This has been established by Beig–Chruściel and Huang–Lee under additional decay assumptions for the energy and momentum densities \(\mu \) and J. In this note, we give a new and elementary proof in dimension 3 which removes these additional decay assumptions. Our argument uses spacetime harmonic functions and Liouville’s theorem. We also provide an alternative proof based on the Killing development of (Mgk).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostianini, V., Mazzieri, L., Oronzio, F.: A Green’s function proof of the Positive Mass Theorem. arxiv preprint (2021). ar**v:2108.08402

  2. Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249(3), 545–580 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beig, R., Chruściel, P.: Killing vectors in asymptotically flat space-times. I. Asymptotically translational Killing vectors and the rigid positive energy theorem. J. Math. Phys. 37(4), 1939–1961 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blau, M.: Lecture Notes on General Relativity. Albert Einstein Center for Fundamental Physics, Bern (2011)

  5. Bray, H., Hirsch, S., Kazaras, D., Khuri, M., Zhang, Y.: Spacetime harmonic functions and application to mass. arxiv preprint. ar**v:2102.11421

  6. Bray, H., Kazaras, D., Khuri, M., Stern, D.: Harmonic functions and the mass of 3-dimensional asymptotically flat Riemannian manifolds. arxiv preprint (2019). ar**v:1911.06754

  7. Bray, H., Hirsch, S., Kazaras, D., Khuri, M., Zhang, Y.: Spacetime harmonic functions and the mass of 3-dimensional asymptotically hyperboloidal initial data for the Einstein equations. arxiv preprint (2020). ar**v:2002.01534

  8. Chruściel, P., Maerten, D.: Killing vectors in asymptotically flat space-times. II. Asymptotically translational Killing vectors and the rigid positive energy theorem in higher dimensions. J. Math. Phys. 47(2), 022502, 10 (2006)

  9. Eichmair, M.: The Jang equation reduction of the spacetime positive energy theorem in dimensions less than eight. Commun. Math. Phys. 319(3), 575–593 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eichmair, M., Huang, L.-H., Lee, D., Schoen, R.: The spacetime positive mass theorem in dimensions less than eight. J. Eur. Math. Soc. (JEMS) 18(1), 83–121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hirsch, S., Kazaras, D., Khuri, M.: Spacetime harmonic functions and the mass of 3-dimensional asymptotically flat initial data for the Einstein equations. J. Differ. Geom. ar**v:2002.01534

  12. Huang, L.-H., Lee, D.: Equality in the spacetime positive mass theorem. Commun. Math. Phys. 376, 2379–2407 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, L.-H., Lee, D.: Bartnik mass minimizing initial data sets and improvability of the dominant energy scalar. ar**v preprint (2020). ar**v:2007.00593

  14. Huang, L.-H., Jang, H.C., Martin, D.: Mass rigidity for hyperbolic manifolds. Commun. Math. Phys. 376, 2329–2349 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59, 353–437 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lee, D.: Geometric Relativity. Graduate Studies in Mathematics, vol. 201. American Mathematical Society, Providence (2019)

  17. Li, Y.: Ricci flow on asymptotically Euclidean manifolds. Geom. Topol. 22(3), 1837–1891 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Petersen, P.: Riemannian Geometry, 2nd edn. Graduate Texts in Mathematics, vol. 171. Springer, New York (2006)

  19. Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65(1), 45–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schoen, R., Yau, S.-T.: Proof of the positive mass theorem II. Commun. Math. Phys. 79, 231–260 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schoen, R., Yau, S.-T.: Positive scalar curvature and minimal hypersurface singularities. arxiv preprint (2017). ar**v:1704.05490

  22. Witten, E.: A simple proof of the positive energy theorem. Commun. Math. Phys. 80(3), 381–402 (1981)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Hubert Bray, Demetre Kazaras, Marcus Khuri and Dan Lee for stimulating discussions and their interest in this work. We are also grateful for several helpful suggestions made by the anonymous referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Hirsch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The Fundamental Theorem of Hypersurfaces

Proof of Proposition 3.1

We follow the proof of [18, p. 100]. Let U be a compact subset of M. We construct the metric \(\bar{g}=-dt^2+g_t\) on \((-\varepsilon ,\varepsilon )\times U\) by prescribing

$$\begin{aligned} \partial _t g_t(\partial _i,\partial _j)&=2{\bar{\nabla }}^2_{ij} t, \end{aligned}$$
(55)
$$\begin{aligned} {\bar{g}}|_{t=0}&=g, \end{aligned}$$
(56)
$$\begin{aligned} \partial _t ({\bar{\nabla }}^2_{ij}t)-({\bar{\nabla }}^2t)^2_{ij}&= 0, \end{aligned}$$
(57)
$$\begin{aligned} {\bar{\nabla }}^2_{ij} t|_{t=0}&= k_{ij}, \end{aligned}$$
(58)

where \(({\bar{\nabla }}^2t)^2_{ij}={{\bar{g}}}^{kl}({\bar{\nabla }}^2_{ik}t)({\bar{\nabla }}^2_{jl}t)\). We will use Roman letters \(\{i,j,k,l\}\) to denote indices tangential to M. By standard ODE existence theory there exists a small \(\varepsilon >0\) such that we can solve the above equation for \(t\in (-\varepsilon ,\varepsilon )\). Next, we take a cover \(\{U_i\}\) of M. According to the asymptotics of (Mgk), there exists a uniform \(\varepsilon >0\) for each \(U_i\). Therefore, we can patch together the above construction and (Mg) can be embedded in \(((-\varepsilon ,\varepsilon )\times M,{\bar{g}})\) with the second fundamental form k.

To verify the flatness of \({{\bar{g}}}\) we proceed exactly as in [18]. It suffices to verify that the curvatures \({\bar{R}}_{tijt}\), \({\bar{R}}_{ijkl}\) and \({\bar{R}}_{tijk}\) are vanishing. Observe that \(\langle {\bar{\nabla }}t,{\bar{\nabla }} t\rangle =-1\) implies \({\bar{\nabla }}_i{\bar{\nabla }}_t t =0\). Combining this with Eq. (57) yields

$$\begin{aligned} 0&=\partial _t({\bar{\nabla }}^2_{ij}t)-({\bar{\nabla }}^2 t)^2_{ij} \end{aligned}$$
(59)
$$\begin{aligned}&={\bar{\nabla }}_t{\bar{\nabla }}_i{\bar{\nabla }}_j t+({\bar{\nabla }}^2 t)^2_{ij} \end{aligned}$$
(60)
$$\begin{aligned}&= {\bar{\nabla }}_i{\bar{\nabla }}_t{\bar{\nabla }}_j t-{\bar{R}}_{tijt}+({\bar{\nabla }}^2 t)^2_{ij} \end{aligned}$$
(61)
$$\begin{aligned}&=\partial _i({\bar{\nabla }}_t{\bar{\nabla }}_j t)-{\bar{\nabla }}^2t(\partial _t,{\bar{\nabla }}_i\partial _j)-{\bar{\nabla }}^2t(\partial _j,{\bar{\nabla }} _i\partial _t)-{\bar{R}}_{tijt}+({\bar{\nabla }}^2 t)^2_{ij} \end{aligned}$$
(62)
$$\begin{aligned}&=-{\bar{R}}_{tijt}. \end{aligned}$$
(63)

Since \({\bar{R}}_{tijt}=0\), \({\bar{\nabla }}_t \partial _t=0\) and \({\bar{\Gamma }}_{ti}^t=0\), we obtain

$$\begin{aligned} \partial _t({\bar{R}}_{tijk})&=({\bar{\nabla }}_t{\bar{R}})_{tijk}+{\bar{R}}_{tljk}{\bar{\Gamma }}_{ti}^l +{\bar{R}}_{tilk}{\bar{\Gamma }}_{tj}^l+{\bar{R}}_{tljk}{\bar{\Gamma }}_{tk}^l \end{aligned}$$
(64)
$$\begin{aligned}&=({\bar{\nabla }}_j{\bar{R}})_{titk}+({\bar{\nabla }}_k{\bar{R}})_{tijt} +{\bar{R}}_{tljk}{\bar{\Gamma }}_{ti}^l+{\bar{R}}_{tilk}{\bar{\Gamma }}_{tj}^l+{\bar{R}}_{tljk}{\bar{\Gamma }}_{tk}^l \end{aligned}$$
(65)
$$\begin{aligned}&=\partial _j({\bar{R}}_{titk})-{\bar{R}}_{litk}{\bar{\Gamma }}_{jt}^l-{\bar{R}}_{tilk}{\bar{\Gamma }}_{jt}^l+ \partial _k({\bar{R}}_{tijt})-{\bar{R}}_{lijt}{\bar{\Gamma }}_{kt}^l-{\bar{R}}_{tijl}{\bar{\Gamma }}_{kt}^l \end{aligned}$$
(66)
$$\begin{aligned}&\qquad +{\bar{R}}_{tljk}{\bar{\Gamma }}_{ti}^l+{\bar{R}}_{tilk}{\bar{\Gamma }}_{tj}^l+{\bar{R}}_{tljk}{\bar{\Gamma }}_{tk}^l \end{aligned}$$
(67)
$$\begin{aligned}&=-{\bar{R}}_{litk}{\bar{\Gamma }}_{jt}^l-{\bar{R}}_{tilk}{\bar{\Gamma }}_{jt}^l-{\bar{R}}_{lijt} {\bar{\Gamma }}_{kt}^l-{\bar{R}}_{tijl}{\bar{\Gamma }}_{kt}^l +{\bar{R}}_{tljk}{\bar{\Gamma }}_{ti}^l\nonumber \\&\qquad +{\bar{R}}_{tilk}{\bar{\Gamma }}_{tj}^l+{\bar{R}}_{tljk}{\bar{\Gamma }}_{tk}^l. \end{aligned}$$
(68)

According to the Codazzi equation, \({\bar{R}}_{tijk}|_{t=0}=0\), and thus \({\bar{R}}_{tijk}=0\). Next, we compute

$$\begin{aligned} \partial _t({\bar{R}}_{ijkl})&=({\bar{\nabla }}_t {\bar{R}})_{ijkl}+{\bar{R}}_{sjkl}{\bar{\Gamma }}_{ti}^s +{\bar{R}}_{iskl}{\bar{\Gamma }}_{tj}^s+{\bar{R}}_{ijsl}{\bar{\Gamma }}_{tk}^s+{\bar{R}}_{ijks}{\bar{\Gamma }}_{tl}^s \end{aligned}$$
(69)
$$\begin{aligned}&=(\nabla _k {\bar{R}})_{ijtl}+(\nabla _l {\bar{R}})_{ijkt} +{\bar{R}}_{sjkl}{\bar{\Gamma }}_{ti}^s+{\bar{R}}_{iskl}{\bar{\Gamma }}_{tj}^s +{\bar{R}}_{ijsl}{\bar{\Gamma }}_{tk}^s+{\bar{R}}_{ijks}{\bar{\Gamma }}_{tl}^s \end{aligned}$$
(70)
$$\begin{aligned}&=-{\bar{R}}_{ijsl}{\bar{\Gamma }}_{kt}^s-{\bar{R}}_{ijks}{\bar{\Gamma }}_{lt}^s +{\bar{R}}_{sjkl}{\bar{\Gamma }}_{ti}^s+{\bar{R}}_{iskl}{\bar{\Gamma }}_{tj}^s +{\bar{R}}_{ijsl}{\bar{\Gamma }}_{tk}^s+{\bar{R}}_{ijks}{\bar{\Gamma }}_{tl}^s \end{aligned}$$
(71)
$$\begin{aligned}&={\bar{R}}_{sjkl}{\bar{\Gamma }}_{ti}^s+{\bar{R}}_{iskl}{\bar{\Gamma }}_{tj}^s. \end{aligned}$$
(72)

According to the Gauss equations, \({\bar{R}}_{ijkl}|_{t=0}=0\), and thus \({\bar{R}}_{ijkl}=0\). Therefore, \({{\bar{M}}}\) is flat which implies together with \(M\cong {\mathbb {R}}^3\) that \({{\bar{M}}}\) is a subset of Minkowski spacetime. \(\square \)

Appendix B: Killing Development

Another way to prove rigidity for the spacetime PMT is to construct a spacetime using spacetime harmonic function, and demonstrating that this spacetime is Minkowski space. For this purpose, we define on \({\tilde{M}}^4={\mathbb {R}}\times M^3\) the Lorentzian metric

$$\begin{aligned} \tilde{g}=2\text {d}\tau \text {d}u+g, \end{aligned}$$
(73)

where \(\tau \) is the flat coordinate on the \({\mathbb {R}}\)-factor. This so-called Killing Development is motivated by [3, 11], though we note that the Killing Development in [3, 11] was obtained from three, rather than a single vector field. Since \(M^3\cong {\mathbb {R}}^3\), we have \({\tilde{M}}^4\cong {\mathbb {R}}^4\), and thus it suffices to show that \({\tilde{g}}\) is flat. The flatness of \({\tilde{g}}\) follows essentially from the Gauss and Codazzi equations computed in Sect. 3. We present here another approach which has the advantage that it does not require the additional regularity assumptions \(g\in C^3(M^3)\) and \(k\in C^2(M^3)\) used in Lemma 3.4, and therefore establishes Theorem 1.2 in full generality.

We first claim that we can write

$$\begin{aligned} g=(|\nabla u|^{-2}+a^2+b^2) \text {d}u^2+2a\text {d}u\text {d}x_1+2b\text {d}u\text {d}x_2+\text {d}x_1^2+\text {d}x_2^2, \end{aligned}$$
(74)

for some functions \(a,b\in C^2(M^3)\). This essentially follows from the flatness of the level sets of u, but let us elaborate more on this construction:

To write g in the above form, we need to define globally defined coordinates \(x_1,x_2\). To do so, we begin with introducing global polar coordinates. Given some point \(p_0\in M^3\), let \(\Gamma :(-\infty ,+\infty )\rightarrow M^3\) be the integral curve through \(p_0\) with respect to the vector field \(\nabla u\). We define the function \(\rho (p)=d(p,\Gamma \cap \Sigma _{u(p)})\), where d denotes the distance within the level set \(\Sigma _{u(p)}\). Since \(u\in C^3(M)\) and \(|\nabla u|\ne 0\), the second fundamental form of \(\Sigma _{u(p)}\) is \(C^1\). On each level set \(\Sigma _t\) of u, we can write the metric \(g_{\Sigma _t}\) as \(d\rho ^2+\rho ^2d\theta ^2\). We would like g to have globally such a form, i.e. we need to define an angle function \(\theta (p)\in [0,2\pi )\) for any \(p\in M^3\backslash \Gamma \). To uniquely determine \(\theta (p)\), we fix another point \(p_1\in M^3\) not contained in the image \(\text {im}(\Gamma )\). Let \(\Gamma _1:(-\infty ,\infty )\rightarrow M^3\) be the integral curve through \(p_1\) with respect to the vector field \(\nabla u\). Since \(|\nabla u|\ne 0\), we have \(\text {im}(\Gamma )\cap \text {im}(\Gamma _1)=\varnothing \). We set \(\theta (\Gamma _1)=0\). Thus, the Lorentzian metric \({\tilde{g}}\) can be written in the form

$$\begin{aligned} {\tilde{g}}= & {} 2\text {d}\tau \text {d}u+(|\nabla u|^{-2}+a_0^2+\rho ^{-2}b_0^2)\text {d}u^2+2a_0\text {d}u\text {d}\rho +2b_0\text {d}u\text {d}\theta \nonumber \\&+\,\text {d}\rho ^2+\rho ^2\text {d}\theta ^2 \end{aligned}$$
(75)

for some functions \(a_0,b_0\in C^2(M^3\backslash \Gamma )\), where the \(C^2\) regularity follows from the second fundamental form being \(C^1\). Finally, we change coordinates via \(x_1=\rho \cos \theta \), \(x_2=\rho \sin \theta \) and set

$$\begin{aligned} a=a_0 \cos \theta - b_0\rho ^{-1}\sin \theta ,\quad b=a_0\sin \theta +b_0\rho ^{-1}\cos \theta \end{aligned}$$
(76)

to obtain

$$\begin{aligned} \tilde{g}=2\text {d}\tau \text {d}u+(|\nabla u|^2+a^2+b^2)du^2+2a\text {d}u\text {d}x_1+2b\text {d}u\text {d}x_2+\text {d}x_1^2+\text {d}x_2^2 \end{aligned}$$
(77)

as desired.

In \((\tau ,u,x_1,x_2)\) coordinates, the inverse metric \({\tilde{g}}^{-1}\) is given by

$$\begin{aligned} \tilde{g}^{-1}=\begin{bmatrix} -|\nabla u|^{-2} &{}1 &{} -a &{}-b \\ 1&{}0&{}0&{}0 \\ -a&{}0&{}1&{}0 \\ -b&{}0&{}0&{}1 \end{bmatrix}. \end{aligned}$$
(78)

Therefore, we have

$$\begin{aligned} {\tilde{\nabla }} u=\tilde{g}^{u i}\partial _i=\partial _\tau . \end{aligned}$$
(79)

Moreover, the null vector \({{\tilde{\nabla }}} u=\partial _\tau \) is covariantly constant, i.e. \({\tilde{\nabla }}^2 u=0\). Thus, \(({\tilde{M}}^4,{\tilde{g}})\) is a pp-wave. See [4] for a more detailed discussion of such spacetimes. Therefore, we have on \((M^3,g,k)\)

$$\begin{aligned} 0={\tilde{\nabla }}^2_{ij}u|_{TM^3}=\nabla ^2_{ij}u+\text {II}_{ij}{\hat{N}}(u)=(\text {II}_{ij}-k_{ij})|\nabla u|, \end{aligned}$$
(80)

where \(N=|\nabla u|(-|\nabla u|^{-2}\partial _\tau +\partial _u-a\partial _1-b\partial _2)\) is a time-like unit normal vector. Thus, the second fundamental form \(\text {II}\) of \((M^3,g)\subset ({\tilde{M}}^4,{\tilde{g}})\) is given by k.

The vector fields \(\{\partial _1,\partial _2,\partial _u,\partial _\tau \}\) form a frame of \(T{\tilde{M}}^4\) and \(\{\nabla u,\partial _1,\partial _2\}\) form an orthogonal frame of \(TM^3\). Using Mathematica, we obtain that the only non-vanishing Ricci curvature terms of \({\tilde{g}}\) are given by

$$\begin{aligned} {\widetilde{{\text {Ric}}}}(\partial _u,\partial _{1})&=\frac{1}{2}(-a_{x_2x_2}+b_{x_1x_2}), \end{aligned}$$
(81)
$$\begin{aligned} {\widetilde{{\text {Ric}}}}(\partial _u,\partial _2)&=\frac{1}{2}(a_{x_1x_2}-b_{x_1x_1}), \end{aligned}$$
(82)
$$\begin{aligned} {\widetilde{{\text {Ric}}}}(\partial _u,\partial _u)&=\frac{1}{2}(a_{x_2}-b_{x_1})^2-\frac{1}{2}\Delta _{{\mathbb {R}}^2}(|\nabla u|^{-2}+a^2+b^2)+a_{ux_1}+b_{ux_2}. \end{aligned}$$
(83)

Taking the trace of \({\widetilde{{\text {Ric}}}}\), we have \(\tilde{R}=0\), then \(\mu ={\widetilde{{\text {Ric}}}}({N},{N})\) and \(J={\widetilde{{\text {Ric}}}}({N},\cdot )\). The identity \(\langle J,\partial _1\rangle =\langle J,\partial _2\rangle =0\) yields \({\widetilde{{\text {Ric}}}}({N},\partial _1)={\widetilde{{\text {Ric}}}}({N},\partial _2)=0\). Combining this with \(\mu \ge 0\), we obtain \({\widetilde{{\text {Ric}}}}(\partial _u,\partial _u)\ge 0\). The equation \({\widetilde{{\text {Ric}}}}({N},\partial _1)={\widetilde{{\text {Ric}}}}({N},\partial _2)=0\) also implies

$$\begin{aligned} a_{x_2x_2}=b_{x_1x_2} \quad \text {and}\quad a_{x_1x_2}=b_{x_1x_1}. \end{aligned}$$
(84)

Thus, \(\psi :=a_{x_2}-b_{x_1}\) only depends on u. Hence, there exists a function l such that \(a=x_2\psi (u)+l_{x_1}\) and \(b=-x_1\psi (u)+l_{x_2}\). Inserting this into Eq. (83), we obtain

$$\begin{aligned} \Delta _{{\mathbb {R}}^2}\left( \frac{1}{2}|\nabla u|^{-2}+\frac{1}{2}l_{x_1}^2+\frac{1}{2}l_{x_2}^2+l_{x_1} x_2\psi (u)-l_{x_2}x_1\psi (u)-l_u\right) \le 0. \end{aligned}$$
(85)

Next, we define

$$\begin{aligned} F(u,x_1,x_2):=\frac{1}{2}|\nabla u|^{-2}+\frac{1}{2}l_{x_1}^2+\frac{1}{2}l_{x_2}^2+l_{x_1} x_2\psi (u)-l_{x_2}x_1\psi (u)-l_u. \end{aligned}$$
(86)

Another computation and the fact that \({{\tilde{\nabla }}} u\) is covariantly constant, yield that the only non-vanishing Riemann curvature terms of \({\tilde{g}}\) in the frame \(\{\partial _1,\partial _2,\partial _\tau ,\nabla u \}\) are given by

$$\begin{aligned} \tilde{R}(\nabla u,\partial _1,\partial _1,\nabla u)&= R(\nabla u,\partial _1,\partial _1,\nabla u) +k(\nabla u,\nabla u)k(\partial _1,\partial _1)-k^2(\nabla u,\partial _1) \end{aligned}$$
(87)
$$\begin{aligned}&=-|\nabla u|^4F_{x_1x_1}, \end{aligned}$$
(88)
$$\begin{aligned} \tilde{R}(\nabla u,\partial _2,\partial _2,\nabla u)=&R(\nabla u,\partial _1,\partial _1,\nabla u) +k(\nabla u,\nabla u)k(\partial _2,\partial _2)-k^2(\nabla u,\partial _2) \end{aligned}$$
(89)
$$\begin{aligned}&=-|\nabla u|^4F_{x_2x_2}, \end{aligned}$$
(90)
$$\begin{aligned} \tilde{R}(\nabla u,\partial _1,\partial _2,\nabla u)&=-|\nabla u|^4F_{x_1x_2}. \end{aligned}$$
(91)

According to Theorem 4.2 in [11], we have \(|\nabla u|= 1+O_1(|x|^{-\tau })\). Combining this with the asymptotics for g and k in (1), we obtain \(F_{x_ix_j}=O(|x|^{-\tau -2})\), where \(i,j=1,2\). Therefore, we can follow the proof of Lemma 3.5 to conclude that F is a linear function with respect to \(x_1\), \(x_2\). Thus, \({\tilde{g}}\) is flat which finishes the proof.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirsch, S., Zhang, Y. The Case of Equality for the Spacetime Positive Mass Theorem. J Geom Anal 33, 30 (2023). https://doi.org/10.1007/s12220-022-01060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01060-5

Keywords

Mathematics Subject Classification

Navigation