Log in

Closure Properties of Solutions to Heat Inequalities

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We prove that if u 1,u 2:(0,∞)×ℝd→(0,∞) are sufficiently well-behaved solutions to certain heat inequalities on ℝd then the function u:(0,∞)×ℝd→(0,∞) given by \(u^{1/p}=u_{1}^{1/p_{1}}*u_{2}^{1/p_{2}}\) also satisfies a heat inequality of a similar type provided \(\frac{1}{p_{1}}+\frac{1}{p_{2}}=1+\frac{1}{p}\) . On iterating, this result leads to an analogous statement concerning n-fold convolutions. As a corollary, we give a direct heat-flow proof of the sharp n-fold Young convolution inequality and its reverse form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, K.: Volumes of sections of cubes and related problems. In: Lindenstrauss, J., Milman, V.D. (eds.) Geometric Aspects of Functional Analysis. Springer Lecture Notes in Math., vol. 1376, pp. 251–260. Springer, Berlin (1989)

    Chapter  Google Scholar 

  2. Barthe, F.: Inégalités de Brascamp–Lieb et convexité. C.R. Acad. Sci. Paris Sér. I Math. 324, 885–888 (1997)

    MATH  MathSciNet  Google Scholar 

  3. Barthe, F.: On a reverse form of the Brascamp–Lieb inequality. Invent. Math. 134, 355–361 (1998)

    Article  MathSciNet  Google Scholar 

  4. Barthe, F.: Optimal Young’s inequality and its converse: a simple proof. Geom. Funct. Anal. 8, 234–242 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barthe, F.: The Brunn–Minkowski theorem and related geometric and functional inequalities. In: International Congress of Mathematicians, vol. II, pp. 1529–1546. Eur. Math. Soc., Zürich (2006)

    Google Scholar 

  6. Barthe, F., Cordero-Erausquin, D.: Inverse Brascamp-Lieb inequalities along the heat equation. In: Geometric Aspects of Functional Analysis. Lecture Notes in Math., vol. 1850, pp. 65–71. Springer, Berlin (2004)

    Google Scholar 

  7. Barthe, F., Cordero-Erausquin, D., Maurey, B.: Entropy of spherical marginals and related inequalities. J. Math. Pures Appl. 86, 89–99 (2006)

    MATH  MathSciNet  Google Scholar 

  8. Barthe, F., Huet, N.: On Gaussian Brunn–Minkowski inequalities. Stud. Math. 191, 283–304 (2009)

    Article  MATH  Google Scholar 

  9. Beckner, W.: Inequalities in Fourier analysis on ℝn. Proc. Natl. Acad. Sci. U.S.A. 72, 638–641 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. Beckner, W.: Inequalities in Fourier analysis. Ann. Math. 102, 159–182 (1975)

    Article  MathSciNet  Google Scholar 

  11. Bennett, J., Carbery, A., Christ, M., Tao, T.: The Brascamp–Lieb inequalities: finiteness, structure and extremals. Geom. Funct. Anal. 17, 1343–1415 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bennett, J., Bez, N., Carbery, A.: Heat-flow monotonicity related to the Hausdorff–Young inequality (submitted)

  13. Borell, C.: The Ehrhard inequality. C.R. Math. Acad. Sci. Paris 337, 663–666 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Brascamp, H.J., Lieb, E.H.: Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Adv. Math. 20, 151–173 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  15. Carlen, E.A., Lieb, E.H., Loss, M.: A sharp analog of Young’s inequality on S N and related entropy inequalities. J. Geom. Anal. 14, 487–520 (2004)

    MATH  MathSciNet  Google Scholar 

  16. Carlen, E.A., Lieb, E.H., Loss, M.: An inequality of Hadamard type for permanents. Methods Appl. Anal. 13, 1–17 (2006)

    MATH  MathSciNet  Google Scholar 

  17. Leindler, L.: On a certain converse of Hölder’s inequality. Acta Sci. Math. Szeged 33, 217–223 (1972)

    MATH  MathSciNet  Google Scholar 

  18. Valdimarsson, S.: Optimisers for the Brascamp–Lieb inequality. Isr. J. Math. 168, 253–274 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Bennett.

Additional information

Both authors were supported by EPSRC grant EP/E022340/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, J., Bez, N. Closure Properties of Solutions to Heat Inequalities. J Geom Anal 19, 584–600 (2009). https://doi.org/10.1007/s12220-009-9070-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-009-9070-2

Keywords

Mathematics Subject Classification (2000)

Navigation