Log in

Heat Kernel Bounds on Metric Measure Spaces and Some Applications

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let (X,d,μ) be a R C D (K,N) space with \(K\in \mathbb {R}\) and N∈[1,). We derive the upper and lower bounds of the heat kernel on (X,d,μ) by applying the parabolic Harnack inequality and the comparison principle, and then sharp bounds for its gradient, which are also sharp in time. For applications, we study the large time behavior of the heat kernel, the stability of solutions to the heat equation, and show the L p boundedness of (local) Riesz transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Mondino, A., Rajala, T.: Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure. Trans. Amer. Math. Soc. 367, 4661–4701 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Basel, Birkhäuser (2008)

    MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163, 1405–1490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195, 289–391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Gigli, N., Savaré, G.: Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab. 43, 339–404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio, L., Gigli, N., Savaré, G.: Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam. 29, 969–996 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambrosio, L., Mondino, A., Savaré, G.: On the Bakry-Émery condition, the gradient estimates and the Local-to-Global property of R C D (K,N) metric measure spaces, to appear in Journal of Geometric Analysis. doi:10.1007/s12220-014-9537-7(ar**v:1309.4664)

  8. Ambrosio, L., Mondino, A., Savaré, G.: Nonlinear diffusion equations and curvature conditions in metric measure spaces. pp. 1–108. ar**v:1509.07273 (2015)

  9. Auscher, P., Coulhon, T., Duong, X.T., Hofmann, S.: Riesz transform on manifolds and heat kernel regularity. Ann. Sci. École Norm. Sup. (4) 37, 911–957 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Baudoin, F., Garofalo, N.: A note on the boundedness of Riesz transform for some subelliptic operators. Int. Math. Res. Not. 2013(2), 398–421 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Bernicot, F., Coulhon, T., Frey, D.: Gaussian heat kernel bounds through elliptic Moser iteration. ar**v:1407.3906

  12. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coulhon, T., Sikora, A.: Gaussian heat kernel bounds via Phragmén-Lindelöf theorem. Proc. London Math. Soc. 3(96), 507–544 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Coulhon, T., Duong, X.T.: Riesz transforms for 1≤p≤2. Trans. Amer. Math. Soc. 351, 1151–1169 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Davies, E.B.: Non-Gaussian aspects of heat kernel behaviour. J. London Math. Soc. (2) 55, 105–125 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duong, X.T., Robinson, D.W.: Semigroup kernels, Poisson bounds and holomorphic functional calculus. J. Funct. Anal. 142(1), 89–128 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Erbar, M., Kuwada, K., Sturm, K.T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201, 993–1071 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Garofalo, N., Mondino, A.: Li-Yau and Harnack type inequalities in R C D (K,N) metric measure spaces. Nonlinear Anal. 95, 721–734 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gigli, N.: On the differential structure of metric measure spaces and applications. Mem. Amer. Math. Soc., vol. 236 (2015). no. 1113

  20. Gong, F.-Z., Wang, F.-Y.: Heat kernel estimates with application to compactness of manifolds. Quart. J. Math. 52, 171–180 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hajłasz, P., Koskela, P.: Sobolev meets Poincaré. C. R. Acad. Sci. Paris Sér. I Math. 320(10), 1211–1215 (1995)

    MATH  Google Scholar 

  22. Jiang, R.: The Li-Yau inequality and heat kernels on metric measure spaces. J. Math. Pures Appl. (9) 104, 29–57 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, H.Q.: Dimension-Free Harnack inequalities on R C D(K,) spaces, to appear in J. Theor. Probab.

  24. Li, P.: Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature. Ann. of Math. (2) 124, 1–21 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  26. Lierl, J., Saloff-Coste, L.: Parabolic Harnack inequality for time-dependent non-symmetric Dirichlet forms. ar**v:1205.6493

  27. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2) 169, 903–991 (2009)

  28. Mondino, A., Naber, A.: Structure Theory of Metric-Measure Spaces with Lower Ricci Curvature Bounds I. ar**v:1405.2222

  29. Rajala, T.: Local Poincaré inequalities from stable curvature conditions on metric spaces. Calc. Var. 44, 477–494 (2012)

  30. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16, 243–279 (2000)

  31. Sikora, A.: Riesz transform, Gaussian bounds and the method of wave equation. Math. Z. 247, 643–662 (2004)

  32. Sturm, K.T.: Heat kernel bounds on manifolds. Math. Ann. 292, 149–162 (1992)

  33. Sturm, K.T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and L p-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

  34. Sturm, K.T.: Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J. Math. 32(2), 275–312 (1995)

  35. Sturm, K.T.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. J. Math. Pures Appl. (9) 75(3), 273–297 (1996)

  36. Sturm, K.T.: On the geometry of metric measure spaces I. Acta Math. 196, 65–131 (2006)

  37. Sturm, K.T.: On the geometry of metric measure spaces II. Acta Math. 196, 133–177 (2006)

  38. Wang, F.-Y.: Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Relat. Fields 109, 417–424 (1997)

  39. Xu, G.Y.: Large time behavior of the heat kernel. J. Differ. Geom. 98, 467–528 (2014)

  40. Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1978)

  41. Zhang, H.C., Zhu, X.-P.: On a new definition of Ricci curvature on Alexandrov spaces. Acta Math. Sci. Ser. B Engl. Ed. 30, 1949–1974 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren** Jiang.

Additional information

R.J. is partially supported by NSFC (No. 11301029); H.L. is partially supported by NSFCs (No. 11401403 and No. 11371099) and the ARC grant (DP130101302); H.Z. is partially supported by NSFC (No. 11201492) and by Guangdong Natural Science Foundation (No. S2012040007550).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, R., Li, H. & Zhang, H. Heat Kernel Bounds on Metric Measure Spaces and Some Applications. Potential Anal 44, 601–627 (2016). https://doi.org/10.1007/s11118-015-9521-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-015-9521-2

Keywords

Mathematics Subject Classification (2010)

Navigation