Log in

Numerical simulation of the transient cavitating turbulent flows around the Clark-Y hydrofoil using modified partially averaged Navier-Stokes method

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This paper presents the implementation and assessment of a modified Partially averaged Navier-Stokes (PANS) turbulence model which can successfully predict the transient cavitating turbulent flows. The proposed model treats the standard k-ε model as the parent model, and its main distinctive features are to (1) formulate the unresolved-to-total kinetic energy ratio (f k ) based on the local grid size as well as turbulence length scale, and (2) vary the f k -field both in space and time. Numerical simulation used the modified PANS model for the sheet/cloud cavitating flows around a three-dimensional Clark-Y hydrofoil. The available experimental data and calculations of the standard k-ε model, the f k = 0.8 PANS model, the f k = 0.5 PANS model are also provided for comparisons. The results show that the modified PANS model accurately captures the transient cavitation features as observed in experiments, namely, the attached sheet cavity grows in the flow direction until to a maximum length and then it breaks into a highly turbulent cloud cavity with three-dimensional structures in nature. Time-averaged drag/lift coefficients together with the streamwise velocity profiles predicted by the proposed model are in good agreement with the experimental data, and improvements are shown when compared with results of the standard k-ε model, the f k = 0.8 PANS model and the f k = 0.5 PANS model. Overall, the modified PANS model shows its encouraging capability of predicting the transient cavitating turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Luo, B. Ji and Y. Tsujimoto, A review of cavitation in hydraulic machinery, J. of Hydrodynamics, Ser. B, 28 (3) (2016) 335–358.

    Google Scholar 

  2. R. E. A. Arndt, Cavitation in fluid machinery and hydraulic structures, Annual Review of Fluid Mechanics, 13 (1) (1981) 273–326.

    Article  MathSciNet  Google Scholar 

  3. R. E. A. Arndt, Cavitation in vortical flows, Annual Review of Fluid Mechanics, 34 (1) (2002) 143–175.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Kubota, H. Kato and H. Yamaguchi, A new modelling of cavitating flows: A numerical study of unsteady cavitation on a hydrofoil section, J. of Fluid Mechanics, 240 (1) (1992) 59–96.

    Article  Google Scholar 

  5. O. Coutier-Delgosha, R. Fortes-Patella and J. L. Reboud, Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation, J. of Fluids Engineering, 125 (1) (2003) 38–45.

    Article  Google Scholar 

  6. C. L. Merkle, J. Feng and P. E. Buelow, Computational modeling of the dynamics of sheet cavitation, Proc. of 3rd International Symposium on Cavitation, Grenoble, France (1998) 47–54.

    Google Scholar 

  7. R. F. Kunz, D. A. Boger, D. R. Stinebring, T. S. Chyczewski, J. W. Lindau, H. J. Gibeling, S. Venkateswaran and T. R. Govindan, A preconditioned navier-stokes method for twophase flows with application to cavitation prediction, Computers & Fluids, 29 (8) (2000) 849–875.

    Article  MATH  Google Scholar 

  8. A. K. Singhal, M. M. Athavale, H. Li and Y. Jiang, Mathematical basis and validation of the full cavitation model, J. of Fluids Engineering, 124 (3) (2002) 617–624.

    Article  Google Scholar 

  9. I. Senocak and W. Shyy, Interfacial dynamics-based modelling of turbulent cavitating flows, part-1: Model development and steady-state computations, International J. for Numerical Methods in Fluids, 44 (9) (2004) 975–995.

    Article  MATH  Google Scholar 

  10. A. Ducoin, B. Huang and Y. L. Young, Numerical modeling of unsteady cavitating flows around a stationary hydrofoil, International J. of Rotating Machinery, 2012 (2012) 17.

    Article  Google Scholar 

  11. S. Frikha, O. Coutier-Delgosha and J. A. Astolfi, Influence of the cavitation model on the simulation of cloud cavitation on 2d foil section, International J. of Rotating Machinery (2008) 146234.

    Google Scholar 

  12. M. Morgut, E. Nobile and I. Biluš, Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil, International J. of Multiphase Flow, 37 (6) (2011) 620–626.

    Article  Google Scholar 

  13. O. Coutier-Delgosha, F. Deniset, J. A. Astolfi and J.-B. Leroux, Numerical prediction of cavitating flow on a twodimensional symmetrical hydrofoil and comparison to experiments, J. of Fluids Engineering, 129 (3) (2007) 279–292.

    Article  Google Scholar 

  14. B. Huang, Y. L. Young, G. Wang and W. Shyy, Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation, J. of Fluids Engineering, 135 (7) (2013) 071301–071301.

    Article  Google Scholar 

  15. J. Decaix and E. Goncalvès, Compressible effects modeling in turbulent cavitating flows, European J. of Mechanics -B/Fluids, 39 (2013) 11–31.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Goncalvès, Numerical study of unsteady turbulent cavitating flows, European J. of Mechanics -B/Fluids, 30 (1) (2011) 26–40.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. T. Johansen, J. Wu and W. Shyy, Filter-based unsteady rans computations, International J. of Heat and Fluid Flow, 25 (1) (2004) 10–21.

    Article  Google Scholar 

  18. G. Chen, G. Wang, B. Huang, C. Hu and T. Liu, Numerical study on the influence of interphase interaction in sheet/cloud cavitating flows around a 2d hydrofoil, J. of Mechanical Science and Technology, 29 (3) (2015) 1075–1083.

    Article  Google Scholar 

  19. J. Yang, L. Zhou and Z. Wang, Numerical simulation of three-dimensional cavitation around a hydrofoil, J. of Fluids Engineering, 133 (8) (2011) 081301–081301.

    Article  Google Scholar 

  20. A. Gnanaskandan and K. Mahesh, Large eddy simulation of the transition from sheet to cloud cavitation over a wedge, International J. of Multiphase Flow, 83 (2016) 86–102.

    Article  MathSciNet  Google Scholar 

  21. B. Huang, Y. Zhao and G. Wang, Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows, Computers & Fluids, 92 (2014) 113–124.

    Article  Google Scholar 

  22. E. Roohi, A. P. Zahiri and M. Passandideh-Fard, Numerical simulation of cavitation around a two-dimensional hydrofoil using vof method and les turbulence model, Applied Mathematical Modelling, 37 (9) (2013) 6469–6488.

    Article  MathSciNet  Google Scholar 

  23. B. Ji, X. W. Luo, R. E. A. Arndt, X. Peng and Y. Wu, Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a naca66 hydrofoil, International J. of Multiphase Flow, 68 (2015) 121–134.

    Article  MathSciNet  Google Scholar 

  24. S. S. Girimaji, Partially-averaged navier-stokes model for turbulence: A reynolds-averaged navier-stokes to direct numerical simulation bridging method, J. of Applied Mechanics-Transactions of the Asme, 73 (3) (2006) 413–421.

    Article  MATH  Google Scholar 

  25. S. Lakshmipathy and S. S. Girimaji, Partially averaged navier-stokes (pans) method for turbulence simulations: Flow past a circular cylinder, J. of Fluids Engineering, 132 (12) (2010) 121202.

    Article  Google Scholar 

  26. E. Jeong and S. S. Girimaji, Partially averaged navierstokes (pans) method for turbulence simulations—flow past a square cylinder, J. of Fluids Engineering, 132 (12) (2010) 121203.

    Article  Google Scholar 

  27. C.-S. Song and S.-O. Park, Numerical simulation of flow past a square cylinder using partially-averaged navier-stokes model, J. of Wind Engineering and Industrial Aerodynamics, 97 (1) (2009) 37–47.

    Article  Google Scholar 

  28. D. Luo, C. Yan, H. Liu and R. Zhao, Comparative assessment of pans and des for simulation of flow past a circular cylinder, J. of Wind Engineering and Industrial Aerodynamics, 134 (2014) 65–77.

    Article  Google Scholar 

  29. X. Luo, R. Huang and B. Ji, Transient cavitating vortical flows around a hydrofoil using k partially averaged navier-stokes model, Modern Physics Letters B, 30 (1) (2016) 1550262.

    Article  MathSciNet  Google Scholar 

  30. J. T. Liu, Z. G. Zuo, Y. L. Wu, B. T. Zhuang and L. Q. Wang, A nonlinear partially-averaged navier-stokes model for turbulence, Computers & Fluids, 102 (2014) 32–40.

    Article  MathSciNet  Google Scholar 

  31. B. Ji, X. W. Luo, Y. L. Wu and H. Y. Xu, Unsteady cavitating flow around a hydrofoil simulated using the partiallyaveraged navier-stokes model, Chinese Physics Letters, 29 (7) (2012) 5.

    Article  Google Scholar 

  32. B. Ji, X. Luo, Y. Wu and K. Miyagawa, Numerical investigation of three-dimensional cavitation evolution and excited pressure fluctuations around a twisted hydrofoil, J. of Mechanical Science and Technology, 28 (7) (2014) 2659–2668.

    Article  Google Scholar 

  33. D. Luo, C. Yan and X. Wang, Computational study of supersonic turbulent-separated flows using partially averaged navier-stokes method, Acta Astronautica, 107 (2015) 234–246.

    Article  Google Scholar 

  34. A. Frendi, A. Tosh and S. Girimaji, Flow past a backwardfacing step: Comparison of pans, des and urans results with experiments, International J. for Computational Methods in Engineering Science and Mechanics, 8 (1) (2006) 23–38.

    Article  MATH  Google Scholar 

  35. L. Davidson, The pans k-e model in a zonal hybrid rans-les formulation, International J. of Heat and Fluid Flow, 46 (2014) 112–126.

    Article  Google Scholar 

  36. H. Foroutan and S. Yavuzkurt, A partially-averaged navierstokes model for the simulation of turbulent swirling flow with vortex breakdown, International J. of Heat and Fluid Flow, 50 (2014) 402–416.

    Article  Google Scholar 

  37. C. L. Hu, G. Y. Wang, G. H. Chen and B. Huang, A modified pans model for computations of unsteady turbulence cavitating flows, Science China-Physics Mechanics & Astronomy, 57 (10) (2014) 1967–1976.

    Article  Google Scholar 

  38. S. S. Girimaji and K. S. Abdol-Hamid, Partially averaged navier-stokes model for turbulence: Implementation and validation, AIAA Paper, 502 (2005) 2005.

    Google Scholar 

  39. R. Huang, X. Luo, B. Ji and Q. Ji, Turbulent flows over a backward facing step simulated using a modified partially averaged navier-stokes model, J. of Fluids Engineering, 139 (4) (2017) 044501–044501-044507.

    Article  Google Scholar 

  40. S. Lakshmipathy and S. S. Girimaji, Partially-averaged navier-stokes method for turbulent flows: K- model implementation, AIAA Paper, 119 (2006) 2006.

    Google Scholar 

  41. J. M. Ma, S. H. Peng, L. Davidson and F. J. Wang, A low reynolds number variant of partially-averaged navier-stokes model for turbulence, International J. of Heat and Fluid Flow, 32 (3) (2011) 652–669.

    Article  Google Scholar 

  42. B. A. Huang and G. Y. Wang, Partially averaged navierstokes method for time-dependent turbulent cavitating flows, J. of Hydrodynamics, 23 (1) (2011) 26–33.

    Article  Google Scholar 

  43. B. E. Launder and D. B. Spalding, Lectures in mathematical models of turbulence, Academic Press (1972).

    MATH  Google Scholar 

  44. P. J. Zwart, A. G. Gerber and T. Belamri, A two-phase flow model for predicting cavitation dynamics, Proc. of the Fifth International Conference on Multiphase Flow, Yokohama, Japan (2004) 152.

  45. R. Huang, B. Ji, X. Luo, Z. Zhai and J. Zhou, Numerical investigation of cavitation-vortex interaction in a mixed-flow waterjet pump, J. of Mechanical Science and Technology, 29 (9) (2015) 3707–3716.

    Article  Google Scholar 

  46. O. Coutier-Delgosha, J. L. Reboud and Y. Delannoy, Numerical simulation of the unsteady behaviour of cavitating flows, International J. for Numerical Methods in Fluids, 42 (5) (2003) 527–548.

    MATH  Google Scholar 

  47. P. Sagaut, Large eddy simulation for incompressible flows: An introduction, Springer, Berlin (2006).

    MATH  Google Scholar 

  48. B. Huang, Physical and numerical investigation of unsteady cavitating flows, Doctor of Philosophy Dissertation, Bei**g Institue of Technology, Bei**g (2012).

    Google Scholar 

  49. G. Wang, I. Senocak, W. Shyy, T. Ikohagi and S. Cao, Dynamics of attached turbulent cavitating flows, Progress in Aerospace Sciences, 37 (6) (2001) 551–581.

    Article  Google Scholar 

  50. J. Jeong and F. Hussain, On the identification of a vortex, J. of Fluid Mechanics, 285 (1995) 69–94.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **anwu Luo.

Additional information

Recommended by Associate Editor Shin-Hyung Rhee

**anwu Luo obtained his B.S. and M.S. from Tsinghua University, Bei**g, China in 1991 and 1997, respectively, and his Ph.D. in Mechanical Engineering from Kyushu Institute of Technology, Japan, in 2004. He is currently an Associate Professor at the Department of Thermal Engineering, Tsinghua University, China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Luo, X. & Ji, B. Numerical simulation of the transient cavitating turbulent flows around the Clark-Y hydrofoil using modified partially averaged Navier-Stokes method. J Mech Sci Technol 31, 2849–2859 (2017). https://doi.org/10.1007/s12206-017-0528-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-017-0528-z

Keywords

Navigation