Log in

The Impact of Astrocytes and Endothelial Cells on Glioblastoma Stemness Marker Expression in Multicellular Spheroids

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Glioblastoma multiforme (GBM), the most common primary brain tumor in adults, is extremely malignant and lethal. GBM tumors are highly heterogenous, being comprised of cellular and matrix components, which contribute to tumor cell invasion, cancer stem cell maintenance, and drug resistance. Here, we developed a heterotypic 3D spheroid model integrating GBM cells with astrocytes and endothelial cells (ECs) to better simulate the cellular components of the tumor microenvironment and investigate their impact on the stemness marker expression of GBM cells, which has not been previously investigated.

Methods

We used U87 GBM cells, C8-D1A mouse astrocytes, and human umbilical vein ECs to construct co- and tri-culture spheroid models in low-attachment U-well plates. We characterized the expression of known stemness markers NESTIN, SOX2, CD133, NANOG, and OCT4 in these models and compared it to respective mixed monoculture spheroids (control) using qRT-PCR and immunostaining.

Results

We incorporated GBM cells and astrocytes/ECs in 1:1, 1:2, 1:4, and 1:9 ratio and observed spontaneous self-assembled spheroids in all coculture conditions. We observed changing spheroid size dynamics over 7 days and an increased expression in stemness markers in GBM-astrocyte and GBM-EC coculture spheroids in 1:4 and 1:9 coculture conditions, respectively. In a triculture model employing GBM cells, astrocytes, and ECs in a 1:4:9 ratio, we found an increased expression of all the stemness markers.

Conclusions

We elucidated the impact of astrocytes and ECs on GBM stemness marker expression. This multicellular spheroid model may provide an important tool for investigating the crosstalk between cell types in GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Akay, M., J. Hite, N. G. Avci, Y. Fan, Y. Akay, G. Lu, and J. J. Zhu. Drug screening of human GBM spheroids in brain cancer chip. Sci. Rep. 8:15423, 2018.

    Article  Google Scholar 

  2. Angelucci, C., A. D’Alessio, G. Lama, E. Binda, A. Mangiola, A. L. Vescovi, G. Proietti, L. Masuelli, R. Bei, B. Fazi, S. A. Ciafre, and G. Sica. Cancer stem cells from peritumoral tissue of glioblastoma multiforme: the possible missing link between tumor development and progression. Oncotarget. 9:28116–28130, 2018.

    Article  Google Scholar 

  3. Auffinger, B., A. L. Tobias, Y. Han, G. Lee, D. Guo, M. Dey, M. S. Lesniak, and A. U. Ahmed. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ. 21:1119–1131, 2014.

    Article  Google Scholar 

  4. Avci, N. G., Y. Fan, A. Dragomir, Y. M. Akay, and M. Akay. Investigating the influence of HUVECs in the formation of glioblastoma spheroids in high-throughput three-dimensional microwells. IEEE Trans. Nanobiosci. 14:790–796, 2015.

    Article  Google Scholar 

  5. Berg, T. J., C. Marques, V. Pantazopoulou, E. Johansson, K. von Stedingk, D. Lindgren, P. Jeannot, E. J. Pietras, T. Bergstrom, F. J. Swartling, V. Governa, J. Bengzon, M. Belting, H. Axelson, M. Squatrito, and A. Pietras. The irradiated brain microenvironment supports glioma stemness and survival via astrocyte-derived transglutaminase 2. Cancer Res. 81:2101–2115, 2021.

    Article  Google Scholar 

  6. Bradshaw, A., A. Wickremesekera, H. D. Brasch, A. M. Chibnall, P. F. Davis, S. T. Tan, and T. Itinteang. Cancer stem cells in glioblastoma multiforme. Front. Surg. 3:48, 2016.

    Google Scholar 

  7. Cavo, M., D. Delle Cave, E. D’Amone, G. Gigli, E. Lonardo, and L. L. Del Mercato. A synergic approach to enhance long-term culture and manipulation of MiaPaCa-2 pancreatic cancer spheroids. Sci. Rep. 10:10192, 2020.

    Article  Google Scholar 

  8. Chen, J. E., J. Lumibao, S. Leary, J. N. Sarkaria, A. J. Steelman, H. R. Gaskins, and B. A. C. Harley. Crosstalk between microglia and patient-derived glioblastoma cells inhibit invasion in a three-dimensional gelatin hydrogel model. J. Neuroinflammation. 17:346, 2020.

    Article  Google Scholar 

  9. Chen, W., T. **a, D. Wang, B. Huang, P. Zhao, J. Wang, X. Qu, and X. Li. Human astrocytes secrete IL-6 to promote glioma migration and invasion through upregulation of cytomembrane MMP14. Oncotarget. 7:62425, 2016.

    Article  Google Scholar 

  10. Cheng, V., F. Esteves, A. Chakrabarty, J. Cockle, S. Short, and A. Bruning-Richardson. High-content analysis of tumour cell invasion in three-dimensional spheroid assays. Oncoscience. 2:596–606, 2015.

    Article  Google Scholar 

  11. Dahan, P., J. M. Gala, C. Delmas, S. Monferran, L. Malric, D. Zentkowski, V. Lubrano, C. Toulas, E.C.-J. Moyal, and A. Lemarie. Ionizing radiations sustain glioblastoma cell dedifferentiation to a stem-like phenotype through survivin: possible involvement in radioresistance. Cell Death Dis. 5:e1543–e1543, 2014.

    Article  Google Scholar 

  12. Daster, S., N. Amatruda, D. Calabrese, R. Ivanek, E. Turrini, R. A. Droeser, P. Zajac, C. Fimognari, G. C. Spagnoli, G. Iezzi, V. Mele, and M. G. Muraro. Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment. Oncotarget. 8:1725–1736, 2017.

    Article  Google Scholar 

  13. Dilnawaz, F., and S. K. Sahoo. Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model. Eur. J. Pharm. Biopharm. 85:452–462, 2013.

    Article  Google Scholar 

  14. Dirkse, A., A. Golebiewska, T. Buder, P. V. Nazarov, A. Muller, S. Poovathingal, N. H. C. Brons, S. Leite, N. Sauvageot, D. Sarkisjan, M. Seyfrid, S. Fritah, D. Stieber, A. Michelucci, F. Hertel, C. Herold-Mende, F. Azuaje, A. Skupin, R. Bjerkvig, A. Deutsch, A. Voss-Bohme, and S. P. Niclou. Stem cell-associated heterogeneity in glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat. Commun. 10:1787, 2019.

    Article  Google Scholar 

  15. Fessler, E., T. Borovski, and J. P. Medema. Endothelial cells induce cancer stem cell features in differentiated glioblastoma cells via bFGF. Mol. Cancer. 14:157, 2015.

    Article  Google Scholar 

  16. Gunay, G., H. A. Kirit, A. Kamatar, O. Baghdasaryan, S. Hamsici, and H. Acar. The effects of size and shape of the ovarian cancer spheroids on the drug resistance and migration. Gynecol. Oncol. 159(2):563–572, 2020.

    Article  Google Scholar 

  17. Hemmati, H. D., I. Nakano, J. A. Lazareff, M. Masterman-Smith, D. H. Geschwind, M. Bronner-Fraser, and H. I. Kornblum. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. U.S.A. 100:15178–15183, 2003.

    Article  Google Scholar 

  18. Herrera-Perez, R. M., S. L. Voytik-Harbin, J. N. Sarkaria, K. E. Pollok, M. L. Fishel, and J. L. Rickus. Presence of stromal cells in a bioengineered tumor microenvironment alters glioblastoma migration and response to STAT3 inhibition. PLoS ONE. 13:e0194183, 2018.

    Article  Google Scholar 

  19. Hong, X., K. Chedid, and S. N. Kalkanis. Glioblastoma cell line-derived spheres in serumcontaining medium versus serum-free medium: a comparison of cancer stem cell properties. Int. J. Oncol. 41:1693–1700, 2012.

    Article  Google Scholar 

  20. Ishiguro, T., H. Ohata, A. Sato, K. Yamawaki, T. Enomoto, and K. Okamoto. Tumor-derived spheroids: relevance to cancer stem cells and clinical applications. Cancer Sci. 108:283–289, 2017.

    Article  Google Scholar 

  21. Khosla, K., C. C. Naus, and W. C. Sin. Cx43 in neural progenitors promotes glioma invasion in a 3D culture system. Int. J. Mol. Sci. 21(15):5216, 2020.

    Article  Google Scholar 

  22. Kievit, F. M., K. Wang, A. E. Erickson, S. K. Lan Levengood, R. G. Ellenbogen, and M. Zhang. Modeling the tumor microenvironment using chitosan-alginate scaffolds to control the stem-like state of glioblastoma cells. Biomater. Sci. 4:610–613, 2016.

    Article  Google Scholar 

  23. Kondapaneni, R. V., and S. S. Rao. Matrix stiffness and cluster size collectively regulate dormancy versus proliferation in brain metastatic breast cancer cell clusters. Biomater. Sci. 8:6637–6646, 2020.

    Article  Google Scholar 

  24. Kyffin, J. A., C. R. Cox, J. Leedale, H. E. Colley, C. Murdoch, P. Mistry, S. D. Webb, and P. Sharma. Preparation of primary rat hepatocyte spheroids utilizing the liquid-overlay technique. Curr. Protoc. Toxicol. 81:e87, 2019.

    Article  Google Scholar 

  25. Lazzari, G., V. Nicolas, M. Matsusaki, M. Akashi, P. Couvreur, and S. Mura. Multicellular spheroid based on a triple co-culture: a novel 3D model to mimic pancreatic tumor complexity. Acta Biomater. 78:296–307, 2018.

    Article  Google Scholar 

  26. Le, D. M., A. Besson, D. K. Fogg, K.-S. Choi, D. M. Waisman, C. G. Goodyer, B. Rewcastle, and V. W. Yong. Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator–plasmin cascade. J. Neurosci. 23:4034–4043, 2003.

    Article  Google Scholar 

  27. Lee, J., S. Kotliarova, Y. Kotliarov, A. Li, Q. Su, N. M. Donin, S. Pastorino, B. W. Purow, N. Christopher, W. Zhang, J. K. Park, and H. A. Fine. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 9:391–403, 2006.

    Article  Google Scholar 

  28. Leung, B. M., S. C. Lesher-Perez, T. Matsuoka, C. Moraes, and S. Takayama. Media additives to promote spheroid circularity and compactness in hanging drop platform. Biomater. Sci. 3:336–344, 2015.

    Article  Google Scholar 

  29. Lim, W., H. H. Hoang, D. You, J. Han, J. E. Lee, S. Kim, and S. Park. Formation of size-controllable tumour spheroids using a microfluidic pillar array (muFPA) device. Analyst. 143:5841–5848, 2018.

    Article  Google Scholar 

  30. Lin, Q., Z. Liu, F. Ling, and G. Xu. Astrocytes protect glioma cells from chemotherapy and upregulate survival genes via gap junctional communication. Mol. Med. Rep. 13:1329–1335, 2016.

    Article  Google Scholar 

  31. Liu, Y. J., Y. C. Ma, W. J. Zhang, Z. Z. Yang, D. S. Liang, Z. F. Wu, and X. R. Qi. Combination therapy with micellarized cyclopamine and temozolomide attenuate glioblastoma growth through Gli1 down-regulation. Oncotarget. 8:42495–42509, 2017.

    Article  Google Scholar 

  32. Ma, N. K., J. K. Lim, M. F. Leong, E. Sandanaraj, B. T. Ang, C. Tang, and A. C. Wan. Collaboration of 3D context and extracellular matrix in the development of glioma stemness in a 3D model. Biomaterials. 78:62–73, 2016.

    Article  Google Scholar 

  33. McCoy, M. G., D. Nyanyo, C. K. Hung, J. P. Goerger, W. R. Zipfel, R. M. Williams, N. Nishimura, and C. Fischbach. Endothelial cells promote 3D invasion of GBM by IL-8-dependent induction of cancer stem cell properties. Sci. Rep. 9:9069, 2019.

    Article  Google Scholar 

  34. Nakod, P. S., Y. Kim, and S. S. Rao. Biomimetic models to examine microenvironmental regulation of glioblastoma stem cells. Cancer Lett. 429:41–53, 2018.

    Article  Google Scholar 

  35. Nakod, P. S., Y. Kim, and S. S. Rao. Three-dimensional biomimetic hyaluronic acid hydrogels to investigate glioblastoma stem cell behaviors. Biotechnol. Bioeng. 117:511–522, 2020.

    Article  Google Scholar 

  36. Narkhede, A. A., J. H. Crenshaw, D. K. Crossman, L. A. Shevde, and S. S. Rao. An in vitro hyaluronic acid hydrogel based platform to model dormancy in brain metastatic breast cancer cells. Acta Biomater. 107:65–77, 2020.

    Article  Google Scholar 

  37. Ngo, M. T., and B. A. C. Harley. Perivascular signals alter global gene expression profile of glioblastoma and response to temozolomide in a gelatin hydrogel. Biomaterials. 198:122–134, 2019.

    Article  Google Scholar 

  38. Oraiopoulou, M. E., M. Tampakaki, E. Tzamali, T. Tamiolakis, V. Makatounakis, A. F. Vakis, G. Zacharakis, V. Sakkalis, and J. Papamatheakis. A 3D tumor spheroid model for the T98G Glioblastoma cell line phenotypic characterization. Tissue Cell. 59:39–43, 2019.

    Article  Google Scholar 

  39. Pustchi, S. E., N. G. Avci, Y. M. Akay and M. Akay. Astrocytes decreased the sensitivity of glioblastoma cells to temozolomide and Bay 11-7082. Int. J. Mol. Sci. 21(19): 7154, 2020.

  40. Raghavan, S., P. Mehta, E. N. Horst, M. R. Ward, K. R. Rowley, and G. Mehta. Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity. Oncotarget. 7:16948–16961, 2016.

    Article  Google Scholar 

  41. Rao, S. S., J. J. Lannutti, M. S. Viapiano, A. Sarkar, and J. O. Winter. Toward 3D biomimetic models to understand the behavior of glioblastoma multiforme cells. Tissue Eng. Part B Rev. 20:314–327, 2014.

    Article  Google Scholar 

  42. Rape, A., B. Ananthanarayanan, and S. Kumar. Engineering strategies to mimic the glioblastoma microenvironment. Adv. Drug Deliv. Rev. 79–80:172–183, 2014.

    Article  Google Scholar 

  43. Rath, B. H., J. M. Fair, M. Jamal, K. Camphausen, and P. J. Tofilon. Astrocytes enhance the invasion potential of glioblastoma stem-like cells. PLoS ONE. 8:e54752, 2013.

    Article  Google Scholar 

  44. Raysi Dehcordi, S., A. Ricci, H. Di Vitantonio, D. De Paulis, S. Luzzi, P. Palumbo, B. Cinque, D. Tempesta, G. Coletti, G. Cipolloni, M. G. Cifone, and R. Galzio. Stemness marker detection in the periphery of glioblastoma and ability of glioblastoma to generate glioma stem cells: clinical correlations. World Neurosurg. 105:895–905, 2017.

    Article  Google Scholar 

  45. Riffle, S., and R. S. Hegde. Modeling tumor cell adaptations to hypoxia in multicellular tumor spheroids. J. Exp. Clin. Cancer Res. 36:102, 2017.

    Article  Google Scholar 

  46. Schiffer, D., L. Annovazzi, C. Casalone, C. Corona, and M. Mellai. Glioblastoma: microenvironment and niche concept. Cancers (Basel). 11(1):5, 2018.

    Article  Google Scholar 

  47. Tang, M., Q. **e, R. C. Gimple, Z. Zhong, T. Tam, J. Tian, R. L. Kidwell, Q. Wu, B. C. Prager, Z. Qiu, A. Yu, Z. Zhu, P. Mesci, H. **g, J. Schimelman, P. Wang, D. Lee, M. H. Lorenzini, D. Dixit, L. Zhao, S. Bhargava, T. E. Miller, X. Wan, J. Tang, B. Sun, B. F. Cravatt, A. R. Muotri, S. Chen, and J. N. Rich. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res. 30:833–853, 2020.

    Article  Google Scholar 

  48. Tunici, P., L. Bissola, E. Lualdi, B. Pollo, L. Cajola, G. Broggi, G. Sozzi, and G. Finocchiaro. Genetic alterations and in vivo tumorigenicity of neurospheres derived from an adult glioblastoma. Mol. Cancer. 3:25, 2004.

    Article  Google Scholar 

  49. Wei, Z., S. Kale, R. El Fatimy, R. Rabinovsky, and A. M. Krichevsky. Co-cultures of glioma stem cells and primary neurons, astrocytes, microglia, and endothelial cells for investigation of intercellular communication in the brain. Front. Neurosci. 13:361, 2019.

    Article  Google Scholar 

  50. Yang, N., T. Yan, H. Zhu, X. Liang, L. Leiss, P. O. Sakariassen, K. O. Skaftnesmo, B. Huang, D. E. Costea, P. O. Enger, X. Li, and J. Wang. A co-culture model with brain tumor-specific bioluminescence demonstrates astrocyte-induced drug resistance in glioblastoma. J. Transl. Med. 12:278, 2014.

    Article  Google Scholar 

  51. Yilmazer, A. Evaluation of cancer stemness in breast cancer and glioblastoma spheroids in vitro. 3 Biotech. 8:390, 2018.

    Article  Google Scholar 

  52. Zanoni, M., F. Piccinini, C. Arienti, A. Zamagni, S. Santi, R. Polico, A. Bevilacqua, and A. Tesei. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci. Rep. 6:19103, 2016.

    Article  Google Scholar 

  53. Zeng, Y., X. Wang, J. Wang, R. Yi, H. Long, M. Zhou, Q. Luo, Z. Zhai, Y. Song, and S. Qi. The tumorgenicity of glioblastoma cell line U87MG decreased during serial in vitro passage. Cell Mol. Neurobiol. 38:1245–1252, 2018.

    Article  Google Scholar 

  54. Zhao, W., Y. Li, and X. Zhang. Stemness-related markers in cancer. Cancer Transl. Med. 3:87–95, 2017.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (CBET 1604677) and the Alabama EPSCoR Graduate Research Fellowship (P.N.). The authors thank Dr. Yu** Bao (University of Alabama) for providing the C8D1A astrocytes and Dr. Matthew Jenny (University of Alabama) for the use of his Nanodrop 2000C spectrophotometer.

Conflict of interest

P. S. Nakod, Y. Kim, and S. S. Rao declare that they have no conflicts of interest.

Ethical Approval

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreyas S. Rao.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 14723 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakod, P.S., Kim, Y. & Rao, S.S. The Impact of Astrocytes and Endothelial Cells on Glioblastoma Stemness Marker Expression in Multicellular Spheroids. Cel. Mol. Bioeng. 14, 639–651 (2021). https://doi.org/10.1007/s12195-021-00691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-021-00691-y

Keywords

Navigation