Log in

Connectivity properties of the Schur–Horn map for real Grassmannians

  • Published:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Aims and scope Submit manuscript

Abstract

To any V in the Grassmannian \(\textrm{Gr}_k({\mathbb R}^n)\) of k-dimensional vector subspaces in \({\mathbb {R}}^n\) one can associate the diagonal entries of the (\(n\times n\)) matrix corresponding to the orthogonal projection of \({\mathbb {R}}^n\) to V. One obtains a map \(\textrm{Gr}_k({\mathbb {R}}^n)\rightarrow {\mathbb {R}}^n\) (the Schur–Horn map). The main result of this paper is a criterion for pre-images of vectors in \({\mathbb {R}}^n\) to be connected. This will allow us to deduce connectivity criteria for a certain class of subspaces of the real Stiefel manifold which arise naturally in frame theory. We extend in this way results of Cahill et al. (SIAM J Appl Algebra Geom 1:38–72, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Guest is actually dealing with the complex Grassmannian \(\textrm{Gr}_k({\mathbb {C}}^n)\); however he points out that similar results hold for the real Grassmannian, see [7, Remark, p. 170].

  2. Cf. also Rem. 2.2.

  3. We actually rely on the remark made in [7] on page 170.

  4. Note that \(d\in \Delta _{n,k}\) if and only if \(1-d\in \Delta _{n,n-k}\).

  5. Neither the numbers \(i_1, \ldots , i_{n'}\) nor \(j_1,\ldots , j_{n''}\) are necessarily in increasing order.

References

  1. Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14, 1–15 (1982)

    Article  MathSciNet  Google Scholar 

  2. Baird, T., Heydari, N.: Cohomology of quotients in real symplectic geometry. Alg. Geom. Topol. 22, 3249–3276 (2022)

    Article  MathSciNet  Google Scholar 

  3. Cahill, J., Mixon, D., Strawn, N.: Connectivity and irreducibility of algebraic varieties of finite unit norm tight frames. SIAM J. Appl. Algebra Geom. 1, 38–72 (2017)

    Article  MathSciNet  Google Scholar 

  4. Casazza, P.G., Leon, M.T.: Existence and construction of finite frames with a given frame operator. Int. J. Pure Appl. Math. 63, 149–157 (2010)

    MathSciNet  Google Scholar 

  5. Dykema, K., Strawn, N.: Manifold structure of spaces of spherical tight frames. Int. J. Pure Appl. Math. 28, 217–256 (2006)

    MathSciNet  Google Scholar 

  6. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  Google Scholar 

  7. Guest, M.A.: Morse theory in the 1990s, Invitations to geometry and topology, Oxford Graduate Texts in Mathematics, vol. 7, Oxford Univ. Press, Oxford, pp. 146–207 (2002)

  8. Guillemin, V., Sternberg, S.: Convexity properties of the moment map**. Invent. Math. 67, 491–513 (1982)

    Article  MathSciNet  Google Scholar 

  9. Hausmann, J.-C., Knutson, A.: Polygon spaces and Grassmannians. Enseign. Math. 43, 173–198 (1997)

    MathSciNet  Google Scholar 

  10. Hausmann, J.-C., Knutson, A.: The cohomology ring of polygon spaces. Ann. Inst. Fourier 48, 281–321 (1998)

    Article  MathSciNet  Google Scholar 

  11. Horn, A.: Doubly stochastic matrices and the diagonal of a rotation matrix. Am. J. Math. 76, 620–630 (1954)

    Article  MathSciNet  Google Scholar 

  12. Kapovich, M., Millson, J.: The symplectic geometry of polygons in Euclidean space. J. Differ. Geom. 44, 479–513 (1996)

    Article  MathSciNet  Google Scholar 

  13. Kirwan, F.C.: Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes, vol. 31. Princeton University Press, New Jersey (1984)

    Google Scholar 

  14. Łojasiewicz, S.: Triangulation of semi-analytic sets. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18, 449–474 (1964)

    MathSciNet  Google Scholar 

  15. Mallat, S.: A wavelet tour of signal processing. The sparse way, 3rd edition, with contributions from Gabriel Peyré, Elsevier/Academic Press, Amsterdam (2009)

  16. Mare, A.-L.: Connectivity and Kirwan surjectivity for isoparametric submanifolds. Int. Math. Res. Not. 55, 3427–3443 (2005)

    Article  MathSciNet  Google Scholar 

  17. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications, Springer Series in Statistics, 2nd edn. Springer, New York (2011)

    Book  Google Scholar 

  18. Mirsky, L.: Matrices with prescribed characteristic roots and diagonal elements. J. Lond. Math. Soc. 33, 14–21 (1958)

    Article  MathSciNet  Google Scholar 

  19. Needham, T., Shonkwiler, C.: Symplectic geometry and connectivity of spaces of frames. Adv. Comput. Math. 47(1), 5 (2021)

    Article  MathSciNet  Google Scholar 

  20. Needham, T., Shonkwiler, C.: Admissibility and frame homotopy for quaternionic frames. Linear Algebra Appl. 645, 237–255 (2022)

    Article  MathSciNet  Google Scholar 

  21. Schur, I.: Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Sitzungsber. Berl. Math. Ges. 22, 9–20 (1923)

    Google Scholar 

  22. Strohmer, T.: Approximation of dual Gabor frames, window decay, and wireless communications. Appl. Comput. Harmon. Anal. 11, 243–262 (2001)

    Article  MathSciNet  Google Scholar 

  23. Strohmer, T., Heath, R.W.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14, 257–275 (2003)

    Article  MathSciNet  Google Scholar 

  24. Waldron, S.: An Introduction to Finite Tight Frames, Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York (2018)

    Google Scholar 

  25. Wong, Y.-C.: A class of Schubert varieties. J. Differ. Geom. 4, 37–51 (1970)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Tom Needham and Clayton Shonkwiler for suggesting the topic of the present paper and for a fruitful exchange of ideas, Jost-Hinrich Eschenburg for helpful discussions, and the anonymous referee for carefully reading the manuscript and suggesting numerous improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustin-Liviu Mare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mare, AL. Connectivity properties of the Schur–Horn map for real Grassmannians. Abh. Math. Semin. Univ. Hambg. 94, 33–55 (2024). https://doi.org/10.1007/s12188-024-00277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-024-00277-1

Keywords

Mathematics Subject Classification

Navigation