Log in

Sex Differences in Cardiomyopathy

  • Women and Heart Disease (E. Michos, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract  

Purpose of Review

Heart failure (HF) is a significant cause of morbidity and mortality worldwide with unique phenotypes in men and women. Cardiomyopathy is a common cause of HF with distinct sex differences. This review focuses on sex differences in common types of cardiomyopathies.

Recent Findings

Genetic cardiomyopathies tend to affect men in part due to differences in X-chromosomes, while peripartum cardiomyopathy uniquely affects women of childbearing age. Moreover, women are more likely to develop cardiomyopathies related to emotional distress, inflammatory states, and certain cancer treatments. Sex hormones have been implicated in the pathogenesis of sex differences in cardiomyopathy. Data on sex differences in diagnosis, treatment response, and outcomes remain limited due to significant underrepresentation of women in studies. Finally, pregnancy may be pursued with close monitoring in most cases with notable exceptions, though official guidelines are limited.

Summary

Striking differences exist in HF between men and women, largely attributable to sex differences in the pathogenesis of cardiomyopathies, an important cause of HF. For many cardiomyopathies, presentation, disease trajectories, and treatment responses differ significantly between sexes, yet available data remain limited. Elucidating these sex-specific differences may refine screening, diagnosis, and treatment of cardiomyopathies. More studies are needed to aid in understanding the nuances between sexes which may enhance tailored preventive and therapeutic strategies for women and men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

HF:

Heart failure

HFpEF:

Heart failure with preserved ejection fraction

HFrEF:

Heart failure with reduced ejection fraction

LVH:

Left ventricular hypertrophy

DCM:

Dilated cardiomyopathy

CAD:

Coronary artery disease

CMR:

Cardiac magnetic resonance

PPCM:

Peripartum cardiomyopathy

ECG:

Electrocardiogram

BNP:

Brain natriuretic peptide

GDMT:

Guideline-directed medical therapy

ACE-I:

Ace inhibitor

ARB:

Angiotensin receptor blocker

LV:

Left ventricle

ICD:

Implantable cardioverter defibrillator

ACS:

Acute coronary syndrome

HCM:

Hypertrophic cardiomyopathy

BB:

Beta blocker

SCD:

Sudden cardiac death

RCM:

Restrictive cardiomyopathy

AL:

Light chain

ATTR:

Transthyretin amyloid

AA:

Amyloid A

HH:

Hereditary hemochromatosis

ARVC:

Arrhythmogenic right ventricular cardiomyopathy

References

  1. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858.

    Article  Google Scholar 

  2. Lloyd-Jones DM, Larson MG, Leip EP, Beiser A, D’Agostino RB, Kannel WB, et al. Lifetime risk for develo** congestive heart failure: the Framingham Heart Study. Circulation. 2002;106(24):3068–72.

    Article  PubMed  Google Scholar 

  3. Pfeffer MA, Shah AM, Borlaug BA. Heart failure with preserved ejection fraction in perspective. Circ Res. 2019;124(11):1598–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sotomi Y, Hikoso S, Nakatani D, Mizuno H, Okada K, Dohi T, et al. Sex differences in heart failure with preserved ejection fraction. J Am Heart Assoc. 2021;10(5):e018574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Regitz-Zagrosek V, Kararigas G. Mechanistic pathways of sex differences in cardiovascular disease. Physiol Rev. 2017;97(1):1–37.

    Article  PubMed  Google Scholar 

  6. Savji N, Meijers WC, Bartz TM, Bhambhani V, Cushman M, Nayor M, et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 2018;6(8):701–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shah SJ, Lam CSP, Svedlund S, Saraste A, Hage C, Tan RS, et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J. 2018;39(37):3439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams D, Stout MJ, Rosenbloom JI, Olsen MA, Joynt Maddox KE, Deych E, et al. Preeclampsia predicts risk of hospitalization for heart failure with preserved ejection fraction. J Am Coll Cardiol. 2021;78(23):2281–90.

    Article  PubMed  Google Scholar 

  9. Lau ES, Wang D, Roberts M, Taylor CN, Murugappan G, Shadyab AH, et al. Infertility and risk of heart failure in the women’s health initiative. J Am Coll Cardiol. 2022;79(16):1594–603.

    Article  PubMed  Google Scholar 

  10. Ho JE, Enserro D, Brouwers FP, Kizer JR, Shah SJ, Psaty BM, et al. Predicting heart failure with preserved and reduced ejection fraction: the International Collaboration on Heart Failure Subtypes. Circ Heart Fail. 2016;9(6).

  11. Lam CSP, Arnott C, Beale AL, Chandramouli C, Hilfiker-Kleiner D, Kaye DM, et al. Sex differences in heart failure. Eur Heart J. 2019;40(47):3859–68.

    Article  PubMed  Google Scholar 

  12. Lannou S, Mansencal N, Couchoud C, Lassalle M, Dubourg O, Stengel B, et al. The public health burden of cardiomyopathies: insights from a nationwide inpatient study. J Clin Med. 2020;9(4):920.

    Article  PubMed Central  Google Scholar 

  13. Japp AG, Gulati A, Cook SA, Cowie MR, Prasad SK. The diagnosis and evaluation of dilated cardiomyopathy. J Am Coll Cardiol. 2016;67(25):2996–3010.

    Article  PubMed  Google Scholar 

  14. Cannata A, Fabris E, Merlo M, Artico J, Gentile P, Pio Loco C, et al. Sex differences in the long-term prognosis of dilated cardiomyopathy. Can J Cardiol. 2020;36(1):37–44.

    Article  PubMed  Google Scholar 

  15. Fairweather D, Cooper LT Jr, Blauwet LA. Sex and gender differences in myocarditis and dilated cardiomyopathy. Curr Probl Cardiol. 2013;38(1):7–46.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cocker MS, Abdel-Aty H, Strohm O, Friedrich MG. Age and gender effects on the extent of myocardial involvement in acute myocarditis: a cardiovascular magnetic resonance study. Heart. 2009;95(23):1925–30.

    Article  CAS  PubMed  Google Scholar 

  17. Bozkurt B, Colvin M, Cook J, Cooper LT, Deswal A, Fonarow GC, et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation. 2016;134(23):e579–646.

    Article  PubMed  Google Scholar 

  18. Hammes SR, Levin ER. Minireview: recent advances in extranuclear steroid receptor actions. Endocrinology. 2011;152(12):4489–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cavasin MA, Tao ZY, Yu AL, Yang XP. Testosterone enhances early cardiac remodeling after myocardial infarction, causing rupture and degrading cardiac function. Am J Physiol Heart Circ Physiol. 2006;290(5):H2043–50.

    Article  CAS  PubMed  Google Scholar 

  20. Pelliccia F, Limongelli G, Autore C, Gimeno-Blanes JR, Basso C, Elliott P. Sex-related differences in cardiomyopathies. Int J Cardiol. 2019;286:239–43.

    Article  PubMed  Google Scholar 

  21. Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vissing CR, Rasmussen TB, Dybro AM, Olesen MS, Pedersen LN, Jensen M, et al. Dilated cardiomyopathy caused by truncating titin variants: long-term outcomes, arrhythmias, response to treatment and sex differences. J Med Genet. 2021;58(12):832–41.

    Article  CAS  PubMed  Google Scholar 

  23. van Rijsingen IA, Nannenberg EA, Arbustini E, Elliott PM, Mogensen J, Hermans-van Ast JF, et al. Gender-specific differences in major cardiac events and mortality in lamin A/C mutation carriers. Eur J Heart Fail. 2013;15(4):376–84.

    Article  PubMed  Google Scholar 

  24. Argiro A, Ho C, Day SM, van der Velden J, Cerbai E, Saberi S, et al. Sex-related differences in genetic cardiomyopathies. J Am Heart Assoc. 2022;11(9):e024947.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brambatti M, Caspi O, Maolo A, Koshi E, Greenberg B, Taylor MRG, et al. Danon disease: gender differences in presentation and outcomes. Int J Cardiol. 2019;286:92–8.

    Article  PubMed  Google Scholar 

  26. Lim KRQ, Sheri N, Nguyen Q, Yokota T. Cardiac involvement in dystrophin-deficient females: current understanding and implications for the treatment of dystrophinopathies. Genes (Basel). 2020;11(7):765.

    Article  CAS  PubMed Central  Google Scholar 

  27. Cheng Z, Fang Q. Danon disease: focusing on heart. J Hum Genet. 2012;57(7):407–10.

    Article  CAS  PubMed  Google Scholar 

  28. Kamdar F, Garry DJ. Dystrophin-deficient cardiomyopathy. J Am Coll Cardiol. 2016;67(21):2533–46.

    Article  CAS  PubMed  Google Scholar 

  29. Roos-Hesselink J, Baris L, Johnson M, De Backer J, Otto C, Marelli A, et al. Pregnancy outcomes in women with cardiovascular disease: evolving trends over 10 years in the ESC Registry Of Pregnancy And Cardiac disease (ROPAC). Eur Heart J. 2019;40(47):3848–55.

    Article  PubMed  Google Scholar 

  30. Davis MB, Arany Z, McNamara DM, Goland S, Elkayam U. Peripartum cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(2):207–21.

    Article  CAS  PubMed  Google Scholar 

  31. Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell. 2007;128(3):589–600.

    Article  CAS  PubMed  Google Scholar 

  32. Stapel B, Kohlhaas M, Ricke-Hoch M, Haghikia A, Erschow S, Knuuti J, et al. Low STAT3 expression sensitizes to toxic effects of beta-adrenergic receptor stimulation in peripartum cardiomyopathy. Eur Heart J. 2017;38(5):349–61.

    CAS  PubMed  Google Scholar 

  33. Patten IS, Rana S, Shahul S, Rowe GC, Jang C, Liu L, et al. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature. 2012;485(7398):333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Damp J, Givertz MM, Semigran M, Alharethi R, Ewald G, Felker GM, et al. Relaxin-2 and soluble Flt1 levels in peripartum cardiomyopathy: results of the multicenter IPAC study. JACC Heart Fail. 2016;4(5):380–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Arany Z, Elkayam U. Peripartum Cardiomyopathy. Circulation. 2016;133(14):1397–409.

    Article  CAS  PubMed  Google Scholar 

  36. Sliwa K, Blauwet L, Tibazarwa K, Libhaber E, Smedema JP, Becker A, et al. Evaluation of bromocriptine in the treatment of acute severe peripartum cardiomyopathy: a proof-of-concept pilot study. Circulation. 2010;121(13):1465–73.

    Article  CAS  PubMed  Google Scholar 

  37. Elkayam U, Schafer A, Chieffo A, Lansky A, Hall S, Arany Z, et al. Use of Impella heart pump for management of women with peripartum cardiogenic shock. Clin Cardiol. 2019;42(10):974–81.

    Article  PubMed  PubMed Central  Google Scholar 

  38. McNamara DM, Elkayam U, Alharethi R, Damp J, Hsich E, Ewald G, et al. Clinical outcomes for peripartum cardiomyopathy in North America: results of the IPAC Study (Investigations of Pregnancy-Associated Cardiomyopathy). J Am Coll Cardiol. 2015;66(8):905–14.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mahowald MK, Basu N, Subramaniam L, Scott R, Davis MB. Long-term outcomes in peripartum cardiomyopathy. Open Cardiovasc Med J. 2019;13(1).

  40. Davis MB, Walsh MN. Cardio-obstetrics. Circ Cardiovasc Qual Outcomes. 2019;12(2):e005417.

    Article  PubMed  Google Scholar 

  41. Elkayam U. Risk of subsequent pregnancy in women with a history of peripartum cardiomyopathy. J Am Coll Cardiol. 2014;64(15):1629–36.

    Article  PubMed  Google Scholar 

  42. Hilfiker-Kleiner D, Haghikia A, Masuko D, Nonhoff J, Held D, Libhaber E, et al. Outcome of subsequent pregnancies in patients with a history of peripartum cardiomyopathy. Eur J Heart Fail. 2017;19(12):1723–8.

    Article  CAS  PubMed  Google Scholar 

  43. Codsi E, Rose CH, Blauwet LA. Subsequent pregnancy outcomes in patients with peripartum cardiomyopathy. Obstet Gynecol. 2018;131(2):322–7.

    Article  PubMed  Google Scholar 

  44. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.

    Article  PubMed  Google Scholar 

  45. Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375(15):1457–67.

    Article  CAS  PubMed  Google Scholar 

  46. Bansal N, Adams MJ, Ganatra S, Colan SD, Aggarwal S, Steiner R, et al. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardiooncology. 2019;5:18.

    PubMed  PubMed Central  Google Scholar 

  47. Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur J Heart Fail. 2017;19(1):9–42.

    Article  PubMed  Google Scholar 

  48. Silber JH, Jakacki RI, Larsen RL, Goldwein JW, Barber G. Increased risk of cardiac dysfunction after anthracyclines in girls. Med Pediatr Oncol. 1993;21(7):477–9.

    Article  CAS  PubMed  Google Scholar 

  49. Lipshultz SE, Lipsitz SR, Mone SM, Goorin AM, Sallan SE, Sanders SP, et al. Female sex and higher drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med. 1995;332(26):1738–43.

    Article  CAS  PubMed  Google Scholar 

  50. Wang L, Tan TC, Halpern EF, Neilan TG, Francis SA, Picard MH, et al. Major cardiac events and the value of echocardiographic evaluation in patients receiving anthracycline-based chemotherapy. Am J Cardiol. 2015;116(3):442–6.

    Article  CAS  PubMed  Google Scholar 

  51. Cote GM, Sawyer DB, Chabner BA. ERBB2 inhibition and heart failure. N Engl J Med. 2012;367(22):2150–3.

    Article  CAS  PubMed  Google Scholar 

  52. Xue J, Jiang Z, Qi F, Lv S, Zhang S, Wang T, et al. Risk of trastuzumab-related cardiotoxicity in early breast cancer patients: a prospective observational study. J Breast Cancer. 2014;17(4):363–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Onitilo AA, Engel JM, Stankowski RV. Cardiovascular toxicity associated with adjuvant trastuzumab therapy: prevalence, patient characteristics, and risk factors. Ther Adv Drug Saf. 2014;5(4):154–66.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nolan M, Oikonomou EK, Silversides CK, Hines MR, Thompson KA, Campbell BA, et al. Impact of cancer therapy-related cardiac dysfunction on risk of heart failure in pregnancy. JACC CardioOncol. 2020;2(2):153–62.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Napp LC, Cammann VL, Jaguszewski M, Szawan KA, Wischnewsky M, Gili S, et al. Coexistence and outcome of coronary artery disease in Takotsubo syndrome. Eur Heart J. 2020;41(34):3255–68.

    Article  PubMed  Google Scholar 

  56. Ghadri JR, Wittstein IS, Prasad A, Sharkey S, Dote K, Akashi YJ, et al. International expert consensus document on Takotsubo syndrome (part I): clinical characteristics, diagnostic criteria, and pathophysiology. Eur Heart J. 2018;39(22):2032–46.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ueyama T, Kasamatsu K, Hano T, Tsuruo Y, Ishikura F. Catecholamines and estrogen are involved in the pathogenesis of emotional stress-induced acute heart attack. Ann N Y Acad Sci. 2008;1148:479–85.

    Article  CAS  PubMed  Google Scholar 

  58. Singh T, Khan H, Gamble DT, Scally C, Newby DE, Dawson D. Takotsubo syndrome: pathophysiology, emerging concepts, and clinical implications. Circulation. 2022;145(13):1002–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, et al. Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N Engl J Med. 2015;373(10):929–38.

    Article  CAS  PubMed  Google Scholar 

  60. Khera R, Light-McGroary K, Zahr F, Horwitz PA, Girotra S. Trends in hospitalization for takotsubo cardiomyopathy in the United States. Am Heart J. 2016;172:53–63.

    Article  PubMed  Google Scholar 

  61. Sobue Y, Watanabe E, Ichikawa T, Koshikawa M, Yamamoto M, Harada M, et al. Physically triggered Takotsubo cardiomyopathy has a higher in-hospital mortality rate. Int J Cardiol. 2017;235:87–93.

    Article  PubMed  Google Scholar 

  62. Sliwa K, van der Meer P, Petrie MC, Frogoudaki A, Johnson MR, Hilfiker-Kleiner D, et al. Risk stratification and management of women with cardiomyopathy/heart failure planning pregnancy or presenting during/after pregnancy: a position statement from the Heart Failure Association of the European Society of Cardiology Study Group on Peripartum Cardiomyopathy. Eur J Heart Fail. 2021;23(4):527–40.

    Article  PubMed  Google Scholar 

  63. Elliott P, McKenna WJ. Hypertrophic cardiomyopathy. Lancet. 2004;363(9424):1881–91.

    Article  CAS  PubMed  Google Scholar 

  64. Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013;381(9862):242–55.

    Article  PubMed  Google Scholar 

  65. Siontis KC, Ommen SR, Geske JB. Sex, survival, and cardiomyopathy: differences between men and women with hypertrophic cardiomyopathy. J Am Heart Assoc. 2019;8(21):e014448.

    Article  PubMed  PubMed Central  Google Scholar 

  66. O’Mahony C, Jichi F, Ommen SR, Christiaans I, Arbustini E, Garcia-Pavia P, et al. International external validation study of the 2014 European Society of Cardiology Guidelines on Sudden Cardiac Death Prevention in Hypertrophic Cardiomyopathy (EVIDENCE-HCM). Circulation. 2018;137(10):1015–23.

    Article  PubMed  Google Scholar 

  67. Figtree GA, Kindmark A, Lind L, Grundberg E, Speller B, Robinson BG, et al. Novel estrogen receptor alpha promoter polymorphism increases ventricular hypertrophic response to hypertension. J Steroid Biochem Mol Biol. 2007;103(2):110–8.

    Article  CAS  PubMed  Google Scholar 

  68. Lind JM, Chiu C, Ingles J, Yeates L, Humphries SE, Heather AK, et al. Sex hormone receptor gene variation associated with phenotype in male hypertrophic cardiomyopathy patients. J Mol Cell Cardiol. 2008;45(2):217–22.

    Article  CAS  PubMed  Google Scholar 

  69. Rowin EJ, Maron MS, Wells S, Patel PP, Koethe BC, Maron BJ. Impact of sex on clinical course and survival in the contemporary treatment era for hypertrophic cardiomyopathy. J Am Heart Assoc. 2019;8(21):e012041.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lakdawala NK, Olivotto I, Day SM, Han L, Ashley EA, Michels M, et al. Associations between female sex, sarcomere variants, and clinical outcomes in hypertrophic cardiomyopathy. Circ Genom Precis Med. 2021;14(1):e003062.

    Article  CAS  PubMed  Google Scholar 

  71. Butters A, Lakdawala NK, Ingles J. Sex Differences in hypertrophic cardiomyopathy: interaction with genetics and environment. Curr Heart Fail Rep. 2021;18(5):264–73.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA, et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med. 2003;348(4):295–303.

    Article  PubMed  Google Scholar 

  73. Kim M, Kim B, Choi YJ, Lee HJ, Lee H, Park JB, et al. Sex differences in the prognosis of patients with hypertrophic cardiomyopathy. Sci Rep. 2021;11(1):4854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2020;142(25):e558–631.

    PubMed  Google Scholar 

  75. Desai MY, Wolski K, Owens A, Naidu SS, Geske JB, Smedira NG, et al. Study design and rationale of VALOR-HCM: evaluation of mavacamten in adults with symptomatic obstructive hypertrophic cardiomyopathy who are eligible for septal reduction therapy. Am Heart J. 2021;239:80–9.

    Article  CAS  PubMed  Google Scholar 

  76. Olivotto I, Oreziak A, Barriales-Villa R, Abraham TP, Masri A, Garcia-Pavia P, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2020;396(10253):759–69.

    Article  CAS  PubMed  Google Scholar 

  77. Ho CY, Mealiffe ME, Bach RG, Bhattacharya M, Choudhury L, Edelberg JM, et al. Evaluation of mavacamten in symptomatic patients with nonobstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2020;75(21):2649–60.

    Article  CAS  PubMed  Google Scholar 

  78. Pereira NL, Grogan M, Dec GW. Spectrum of restrictive and infiltrative cardiomyopathies: part 1 of a 2-part series. J Am Coll Cardiol. 2018;71(10):1130–48.

    Article  PubMed  Google Scholar 

  79. Muchtar E, Dispenzieri A, Magen H, Grogan M, Mauermann M, McPhail ED, et al. Systemic amyloidosis from A (AA) to T (ATTR): a review. J Intern Med. 2021;289(3):268–92.

    Article  CAS  PubMed  Google Scholar 

  80. AbouEzzeddine OF, Davies DR, Scott CG, Fayyaz AU, Askew JW, McKie PM, et al. Prevalence of transthyretin amyloid cardiomyopathy in heart failure with preserved ejection fraction. JAMA Cardiol. 2021;6(11):1267–74.

    Article  PubMed  Google Scholar 

  81. Caponetti AG, Rapezzi C, Gagliardi C, Milandri A, Dispenzieri A, Kristen AV, et al. Sex-related risk of cardiac involvement in hereditary transthyretin amyloidosis: insights from THAOS. JACC Heart Fail. 2021;9(10):736–46.

    Article  PubMed  Google Scholar 

  82. Kroi F, Fischer N, Gezin A, Hashim M, Rozenbaum MH. Estimating the gender distribution of patients with wild-type transthyretin amyloid cardiomyopathy: a systematic review and meta-analysis. Cardiol Ther. 2021;10(1):41–55.

    Article  PubMed  Google Scholar 

  83. Rapezzi C, Riva L, Quarta CC, Perugini E, Salvi F, Longhi S, et al. Gender-related risk of myocardial involvement in systemic amyloidosis. Amyloid. 2008;15(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  84. Zampieri M, Argiro A, Allinovi M, Tassetti L, Zocchi C, Gabriele M, et al. Sex-related differences in clinical presentation and all-cause mortality in patients with cardiac transthyretin amyloidosis and light chain amyloidosis. Int J Cardiol. 2022;351:71–7.

    Article  PubMed  Google Scholar 

  85. Baughman RP, Lower EE, du Bois RM. Sarcoidosis. Lancet. 2003;361(9363):1111–8.

    Article  CAS  PubMed  Google Scholar 

  86. Pour-Ghaz I, Kayali S, Abutineh I, Patel J, Roman S, Nayyar M, et al. Cardiac sarcoidosis: pathophysiology, diagnosis, and management. Hearts. 2021;2(2):234–50.

    Article  Google Scholar 

  87. Nery PB, Beanlands RS, Nair GM, Green M, Yang J, McArdle BA, et al. Atrioventricular block as the initial manifestation of cardiac sarcoidosis in middle-aged adults. J Cardiovasc Electrophysiol. 2014;25(8):875–81.

    Article  PubMed  Google Scholar 

  88. Duvall C, Pavlovic N, Rosen N, Wand AL, Griffin J, Okada D, et al. Sex differences in presentation and outcomes of cardiac sarcoidosis. J Cardiac Fail. 2022;28(5):S16.

    Article  Google Scholar 

  89. Kalra R, Malik S, Chen KA, Ogugua F, Athwal PSS, Elton AC, et al. Sex differences in patients with suspected cardiac sarcoidosis assessed by cardiovascular magnetic resonance imaging. Circ Arrhythm Electrophysiol. 2021;14(9):e009966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nakasuka K, Ishibashi K, Hattori Y, Mori K, Nakajima K, Nagayama T, et al. Sex-related differences in the prognosis of patients with cardiac sarcoidosis treated with cardiac resynchronization therapy. Heart Rhythm. 2022.

  91. Hadid V, Patenaude V, Oddy L, Abenhaim HA. Sarcoidosis and pregnancy: obstetrical and neonatal outcomes in a population-based cohort of 7 million births. J Perinat Med. 2015;43(2):201–7.

    PubMed  Google Scholar 

  92. Brissot P, Pietrangelo A, Adams PC, de Graaff B, McLaren CE, Loreal O. Haemochromatosis. Nat Rev Dis Primers. 2018;4:18016.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Steinberg KK, Cogswell ME, Chang JC, Caudill SP, McQuillan GM, Bowman BA, et al. Prevalence of C282Y and H63D mutations in the hemochromatosis (HFE) gene in the United States. JAMA :J Am Med Assoc. 2001;285(17):2216–22.

    Article  CAS  Google Scholar 

  94. Muchtar E, Blauwet LA, Gertz MA. Restrictive cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):819–37.

    Article  CAS  PubMed  Google Scholar 

  95. Kowdley KV, Brown KE, Ahn J, Sundaram V. ACG Clinical Guideline: hereditary hemochromatosis. Am J Gastroenterol. 2019;114(8):1202–18.

    Article  PubMed  Google Scholar 

  96. Zacharski LR, Ornstein DL, Woloshin S, Schwartz LM. Association of age, sex, and race with body iron stores in adults: analysis of NHANES III data. Am Heart J. 2000;140(1):98–104.

    Article  CAS  PubMed  Google Scholar 

  97. Hou Y, Zhang S, Wang L, Li J, Qu G, He J, et al. Estrogen regulates iron homeostasis through governing hepatic hepcidin expression via an estrogen response element. Gene. 2012;511(2):398–403.

    Article  CAS  PubMed  Google Scholar 

  98. Qian Y, Yin C, Chen Y, Zhang S, Jiang L, Wang F, et al. Estrogen contributes to regulating iron metabolism through governing ferroportin signaling via an estrogen response element. Cell Signal. 2015;27(5):934–42.

    Article  CAS  PubMed  Google Scholar 

  99. Pereira NL, Grogan M, Dec GW. Spectrum of restrictive and infiltrative cardiomyopathies: part 2 of a 2-part series. J Am Coll Cardiol. 2018;71(10):1149–66.

    Article  PubMed  Google Scholar 

  100. European Association For The Study Of The L. EASL clinical practice guidelines for HFE hemochromatosis. J Hepatol. 2010;53(1):3–22.

  101. Benveniste MF, Gomez D, Carter BW, Betancourt Cuellar SL, Shroff GS, Benveniste APA, et al. Recognizing radiation therapy-related complications in the chest. Radiographics. 2019;39(2):344–66.

    Article  PubMed  Google Scholar 

  102. Belzile-Dugas E, Eisenberg MJ. Radiation-induced cardiovascular disease: review of an underrecognized pathology. J Am Heart Assoc. 2021;10(18):e021686.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Lancellotti P, Nkomo VT, Badano LP, Bergler-Klein J, Bogaert J, Davin L, et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging. 2013;14(8):721–40.

    Article  PubMed  Google Scholar 

  104. Chang HM, Okwuosa TM, Scarabelli T, Moudgil R, Yeh ETH. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: part 2. J Am Coll Cardiol. 2017;70(20):2552–65.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Corrado D, Link MS, Calkins H. Arrhythmogenic right ventricular cardiomyopathy. N Engl J Med. 2017;376(1):61–72.

    Article  CAS  PubMed  Google Scholar 

  106. Corrado D, Thiene G. Arrhythmogenic right ventricular cardiomyopathy/dysplasia: clinical impact of molecular genetic studies. Circulation. 2006;113(13):1634–7.

    Article  PubMed  Google Scholar 

  107. Groeneweg JA, Bhonsale A, James CA, te Riele AS, Dooijes D, Tichnell C, et al. Clinical presentation, long-term follow-up, and outcomes of 1001 arrhythmogenic right ventricular dysplasia/cardiomyopathy patients and family members. Circ Cardiovasc Genet. 2015;8(3):437–46.

    Article  CAS  PubMed  Google Scholar 

  108. Bhonsale A, Groeneweg JA, James CA, Dooijes D, Tichnell C, Jongbloed JD, et al. Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur Heart J. 2015;36(14):847–55.

    Article  CAS  PubMed  Google Scholar 

  109. Rigato I, Bauce B, Rampazzo A, Zorzi A, Pilichou K, Mazzotti E, et al. Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet. 2013;6(6):533–42.

    Article  CAS  PubMed  Google Scholar 

  110. Akdis D, Saguner AM, Shah K, Wei C, Medeiros-Domingo A, von Eckardstein A, et al. Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: from a stem cell derived cardiomyocyte-based model to clinical biomarkers of disease outcome. Eur Heart J. 2017;38(19):1498–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wallace R, Calkins H. Risk stratification in arrhythmogenic right ventricular cardiomyopathy. Arrhythmia Electrophysiol Rev. 2021;10(1):26.

    Article  Google Scholar 

  112. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121(13):1533–41.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Choudhary N, Tompkins C, Polonsky B, McNitt S, Calkins H, 3rd Mark Estes NA, et al. Clinical presentation and outcomes by sex in arrhythmogenic right ventricular cardiomyopathy: findings from the North American ARVC Registry. J Cardiovasc Electrophysiol. 2016;27(5):555–62.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Corrado D, Wichter T, Link MS, Hauer RN, Marchlinski FE, Anastasakis A, et al. Treatment of arrhythmogenic right ventricular cardiomyopathy/dysplasia: an International Task Force Consensus Statement. Circulation. 2015;132(5):441–53.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Maron BJ, Udelson JE, Bonow RO, Nishimura RA, Ackerman MJ, Estes NA 3rd, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 3: Hypertrophic Cardiomyopathy, Arrhythmogenic Right Ventricular Cardiomyopathy and Other Cardiomyopathies, and Myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. Circulation. 2015;132(22):e273–80.

    PubMed  Google Scholar 

Download references

Funding

E.S.L is supported by the NIH K23-HL159243 and the American Heart Association (853922).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily S. Lau.

Ethics declarations

Conflict of Interest

Christy N. Taylor, MD, MPH, and Emily S. Lau, MD, MPH, declare they have no relevant conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Women and Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, C.N., Lau, E.S. Sex Differences in Cardiomyopathy. Curr Cardiovasc Risk Rep 16, 159–170 (2022). https://doi.org/10.1007/s12170-022-00700-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-022-00700-3

Keywords

Navigation