Log in

The Weyl transform of a measure

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

(1) Suppose \(\mu \) is a smooth measure on a smooth hypersurface of positive Gaussian curvature in \({\mathbb {R}}^{2n}\). If \(n\ge 2\), then \(W(\mu )\), the Weyl transform of \(\mu \) is a compact operator, and if \(p>n\ge 6\), then \(W(\mu )\) belongs to the p-Schatten class. (2) There exist Schatten class operators with linearly dependent quantum translates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chavel I, Riemannian geometry, Cambridge Studies in Advanced Mathematics, vol. 98 (2006) (Cambridge: Cambridge University Press)

    Book  Google Scholar 

  2. Edgar G A and Rosenblatt J M, Difference equations over locally compact abelian groups, Trans. Amer. Math. Soc. 253 (1979) 273–289

    Article  MathSciNet  MATH  Google Scholar 

  3. Folland G B (1989) Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122 (Princeton, NJ: Princeton University Press)

    Google Scholar 

  4. Folland G B, Introduction to partial differential equations, second ed. (1995) (Princeton, NJ: Princeton University Press)

  5. Guillemin V and Pollack A, Differential topology (1974) (Englewood Cliffs, NJ: Prentice-Hall Inc.)

  6. Hopf H, Differential geometry in the large, Lecture Notes in Mathematics, vol. 1000 (1983) (Berlin: Springer-Verlag), Notes taken by Peter Lax and John Gray, with a preface by S S Chern

  7. Hörmander L, The analysis of linear partial differential operators. I, second ed., Grundlehren der mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 256 (1990) (Berlin: Springer-Verlag), Distribution theory and Fourier analysis

  8. Mumford D, Tata lectures on theta. III, Progress in Mathematics, vol. 97 (1991) (Boston, MA: Birkhäuser Boston Inc.), with the collaboration of Madhav Nori and Peter Norman

  9. Rudin W, Functional analysis, second ed., International Series in Pure and Applied Mathematics, (1991) (New York: McGraw-Hill Inc.)

  10. Stein E M, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43 (1993) (Princeton, NJ: Princeton University Press), with the assistance of Timothy S Murphy, Monographs in Harmonic Analysis, III

  11. Szegö G, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, vol. 23 (1939) (New York: American Mathematical Society)

    Google Scholar 

  12. Thangavelu S, Spherical means on the Heisenberg group and a restriction theorem for the symplectic Fourier transform, Rev. Mat. Iberoamericana 7(2) (1991) 135–155

    Article  MathSciNet  MATH  Google Scholar 

  13. Thangavelu S, On Paley–Wiener theorems for the Heisenberg group, J. Funct. Anal. 115(1) (1993) 24–44

    Article  MathSciNet  MATH  Google Scholar 

  14. Thangavelu S, Harmonic analysis on the Heisenberg group, Progress in Mathematics, vol. 159 (1998) (Boston, MA: Birkhäuser Boston Inc.)

    Book  MATH  Google Scholar 

  15. Vemuri M K, Realizations of the canonical representation, Proc. Indian Acad. Sci. – Math. Sci. 118(1) (2008) 115–131

    Article  MathSciNet  MATH  Google Scholar 

  16. Vemuri M K, Benedicks’ theorem for the Weyl transform, J. Math. Anal. Appl. 452(1) (2017) 209–217

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for a suggestion which substantially simplified the original argument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansi Mishra.

Additional information

Communicated by Sameer Chavan.

Appendix

Appendix

We prove Lemma 2.2 here. We need another technical lemma.

Lemma A.1

Let M be a compact connected smooth hypersurface in \({\mathbb {R}}^m\) with positive Gaussian curvature. Let H be an affine subspace of \({\mathbb {R}}^m\) and suppose H intersects M transversally. Let \(N=M\cap H\). Then N is a smooth hypersurface in H, and for all \(y\in N\) and \(X, Y \in T_yN\), we have

$$\begin{aligned} K_{(N \subseteq H)}(X,Y) \ge K_{(M \subseteq {\mathbb {R}}^m)}(X,Y), \end{aligned}$$

where \(K_{(N \subseteq H)}\) and \(K_{(M \subseteq {\mathbb {R}}^m)}\) are the second fundamental forms with respect to the inward pointing normal on the smooth hypersurfaces N and M respectively.

Proof

By the Jordan–Brower separation theorem, \(M=\partial \Omega \) where \(\Omega \) is a bounded open set in \({\mathbb {R}}^m\). Let \(\vec {n}_M\) denote the unit normal to M which points into \(\Omega \). Let \(N=M\cap H\). It is a standard fact from differential topology that N is a smooth hypersurface in H (see [5, p. 30]). Let \(\vec {n}_N\) denote the unit normal vector to N which points into \(\Omega \cap H\). Observe that \(\vec {n}_N\cdot \vec {n}_M>0\).

If W is a submanifold of the Riemannian manifold Z, let \(\vec {K}_{(W \subseteq Z)}\) denote the vector-valued second fundamental form of W in Z, i.e.,

$$\begin{aligned} \vec {K}_{(W \subseteq Z)}(X,Y)={\text {Proj}}_{TZ \ominus TW} \nabla _X Y, \end{aligned}$$

where \(\nabla \) is the Levi–Civita connection on Z and \(TZ \ominus TW\) denotes the orthogonal complement of the tangent bundle of W in the tangent bundle of Z. Moreover, if \(\vec n\) is a unit normal vector field along W, we may define the second fundamental form of W with respect to \(\vec n\) by

$$\begin{aligned} K_{(W\subseteq Z)}=\vec {K}_{(W\subseteq Z)}\cdot \vec {n}. \end{aligned}$$

Let \(x\in N\) and let \(X, Y \in T_xN\). We have orthogonal decompositions

$$\begin{aligned} \begin{aligned} \vec {K}_{(N \subseteq {\mathbb {R}}^m)}(X,Y) =&\; \vec {K}_{(N \subseteq H)}(X,Y) + \vec {K}_{(H \subseteq {\mathbb {R}}^m)}(X,Y), \qquad \text {and}\\ \vec {K}_{(N \subseteq {\mathbb {R}}^m)}(X,Y) =&\; \vec {K}_{(N \subseteq M)}(X,Y) + \vec {K}_{(M \subseteq {\mathbb {R}}^m)}(X,Y). \end{aligned} \end{aligned}$$

Since \(\vec {K}_{(H \subseteq {\mathbb {R}}^m)}(X,Y)=0\), it follows that

$$\begin{aligned} \vec {K}_{(N \subseteq H)}(X,Y) = \vec {K}_{(N \subseteq M)}(X,Y) + \vec {K}_{(M \subseteq {\mathbb {R}}^m)}(X,Y) \end{aligned}$$

Since \(\vec {K}_{(N \subseteq M)}(X,Y)\) is tangent to M, it follows that

$$\begin{aligned} \begin{aligned} K_{(N \subseteq H)}(X,Y) \vec {n}_N \cdot \vec {n}_M =&\; \vec {K}_{(N \subseteq H)}(X,Y) \cdot \vec {n}_M\\ =&\; \vec {K}_{(M \subseteq {\mathbb {R}}^m)}(X,Y) \cdot \vec {n}_M\\ =&\; K_{(M \subseteq {\mathbb {R}}^m)}(X,Y). \end{aligned} \end{aligned}$$

Therefore

$$\begin{aligned} K_{(N \subseteq H)}(X,Y) = \frac{K_{(M \subseteq {\mathbb {R}}^m)}(X,Y)}{ \vec {n}_M\cdot \vec {n}_N} \ge K_{(M \subseteq {\mathbb {R}}^m)}(X,Y). \end{aligned}$$

Taking \(H=\{(x,y) \,|\,y \in {\mathbb {R}}^n\}\) in Lemma A.1, we see that \(S_x\) is a smooth hypersurface in H with \(K_{(S_x \subseteq H)}(X,Y) \ge K_{(S \subseteq {\mathbb {R}}^{2n})}(X,Y)\). Since \(\Pi _2\) is an isometry between H and \({\mathbb {R}}^n\), it follows that \(\Pi _2(S_x)\) is a smooth hypersurface in \({\mathbb {R}}^n\) with \(K_{(\Pi _2(S_x) \subseteq {\mathbb {R}}^n)}(X,Y) \ge K_{(S \subseteq {\mathbb {R}}^{2n})}(X,Y)\). Therefore the smallest principal curvature of \(\Pi _2(S_x)\) is greater than or equal to the smallest principal curvature of S. Therefore the Gaussian curvature of \(S_x\) is bounded below by the \((n-1)\)-th power of the smallest principal curvature of S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, M., Vemuri, M.K. The Weyl transform of a measure. Proc Math Sci 133, 29 (2023). https://doi.org/10.1007/s12044-023-00748-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-023-00748-0

Keywords

2010 Mathematics Subject Classification

Navigation