Log in

A nano-molar sensitive fluorescence sensor for cucurbit[7]uril

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Cucurbit[n]urils (CB[n], n = 5–8) are the most important class of host molecules that are widely applied in various important applications. Until now, no sensitive sensor has been developed exclusively for detecting cucurbiturils. Here, we have utilized the supramolecular assembly of acriflavine and graphene oxide (ACF-GO) as a fluorescence sensor for the detection of cucurbituril family members such as CB[5], CB[6] and CB[7] with the discrimination of fluorescence intensities. Among them, CB[7] displayed the highest sensitivity, which can be detected as low as nano-molar concentration, and that allowed us to make a facile fluorescence method of detection for CB[7] and other CBs.

Graphical abstract

Supramolecular assembly of acriflavine on the graphene oxide turn-off the fluorescence of acriflavine and upon interaction with cucurbit[7]uril, that released the acriflavine to the solution and turn-on the fluorescence, which allowed to detect the CB[7] to the lowest of nano-molar concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lee J W, Samal S, Selvapalam N, Kim H J and Kim K 2003 Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry Acc. Chem. Res. 36 621

    Article  CAS  PubMed  Google Scholar 

  2. Flinn A, Hough G C, Stoddart J F and Williams D J 1992 Decamethylcucurbit[5]uril Angew. Chem. Int. Ed. 31 1475

    Article  Google Scholar 

  3. Isobe H, Sato S and Nakamura E 2002 Synthesis of disubstituted cucurbit[6]uril and its rotaxane derivative Org. Lett. 4 1287

    Article  CAS  PubMed  Google Scholar 

  4. Stancl A, Svec J and Sindelar V 2011 Novel supramolecular hosts based on linear and cyclic oligomers of glycoluril Isr. J. Chem. 51 592

    Article  CAS  Google Scholar 

  5. Miyahara Y, Goto K, Oka M and Inazu T 2004 Remarkably facile ring-size control in macrocyclization: synthesis of hemicucurbit[6]uril and hemicucurbit[12]uril Angew. Chem. Int. Ed. 43 5019

    Article  CAS  Google Scholar 

  6. Kim K, Selvapalam N, Ko Y H, Park K M, Kim D and Kim J 2007 Functionalized cucurbiturils and their applications Chem. Soc. Rev. 36 267

    Article  CAS  PubMed  Google Scholar 

  7. Barrow S J, Kasera S, Rowland M J, del Barrio J and Scherman O A 2015 Cucurbituril-based molecular recognition Chem. Rev. 115 12320

    Article  CAS  PubMed  Google Scholar 

  8. Cao L, Šekutor M, Zavalij P Y, Mlinarić-Majerski K, Glaser R and Isaacs L 2014 Cucurbit[7]uril⋅guest pair with an attomolar dissociation constant Angew. Chem. Int. Ed. 53 988

    Article  CAS  Google Scholar 

  9. Cheng G, Luo J, Liu Y, Chen X, Wu Z and Chen T 2020 Cucurbituril-oriented nanoplatforms in biomedical applications ACS Appl. Bio Mater. 12 8211

    Article  Google Scholar 

  10. Quan J, Zhang X, Ding Y, Li S, Qiu Y, Wang R and Zhou X 2021 Cucurbit[7]uril as a broad-spectrum antiviral agent against diverse RNA viruses Virol. Sin. 36 1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jon S Y, Selvapalam N, Oh D H, Kang J K, Kim S Y, Jeon Y J, et al. 2003 Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril J. Am. Chem. Soc. 125 10186

    Article  CAS  PubMed  Google Scholar 

  12. Kim E, Kim D, Jung H, Lee J, Paul S, Selvapalam N, et al. 2010 Facile, template-free synthesis of stimuli-responsive polymer nanocapsules for targeted drug delivery Angew. Chem. Int. Ed. 26 4405

    Article  Google Scholar 

  13. Baek K, Xu D, Murray J, Kim S and Kim K 2016 Permselective 2D-polymer-based membrane tuneable by host-guest chemistry Chem. Commun. 52 9676

    Article  CAS  Google Scholar 

  14. Pemberton B C, Singh R K, Johnson A C, Jockusch S, Da Silva J P, Ugrinov A, et al. 2011 Supramolecular photocatalysis: insights into cucurbit[8]uril catalyzed photodimerization of 6-methylcoumarin Chem. Commun. 47 6323

    Article  CAS  Google Scholar 

  15. Lee T C and Scherman O A 2010 Formation of dynamic aggregates in water by cucurbit[5]uril capped with gold nanoparticles Chem. Commun. 46 2438

    Article  CAS  Google Scholar 

  16. Prakash R, Usha G, Piramuthu L and Selvapalam N 2017 Facile detection of cucurbit[7]uril by rhodamine B-decorated nanoparticles Chem. Lett. 46 1300

    Article  CAS  Google Scholar 

  17. Prakash R, Usha G, Sivaranjana P, Karpagalakshmi K, Piramuthu L and Selvapalam N 2018 Graphene oxide based fluorescence sensor for cucurbit[7]uril New J. Chem. 42 13038

    Article  CAS  Google Scholar 

  18. Usha G, Prakash R, Karpagalakshmi K, Ramalakshmi S, Piramuthu L, Yang C and Selvapalam N 2020 Supramolecular assembly of acriflavine on graphene oxide for the sensing of adenosine phosphates Anal. Sci. 36 1365

    Article  CAS  PubMed  Google Scholar 

  19. Usha G, Prakash R, Karpagalakshmi K, Ramalakshmi S, Piramuthu L, Yang C and Selvapalam N 2019 A graphene oxide-based fluorescent sensor for surfactants Anal. Methods 11 5826

    Article  CAS  Google Scholar 

  20. Day A, Arnold A P, Blanch R J and Snushall B 2001 Controlling factors in the synthesis of cucurbituril and its homologues J. Org. Chem. 66 8094

    Article  CAS  PubMed  Google Scholar 

  21. Kim J, Jung I S, Kim S Y, Lee E, Kang J K, Sakamoto S, et al. 2000 New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8) J. Am. Chem. Soc. 122 540

    Article  CAS  Google Scholar 

  22. Li D, He X, Zhao L, Li H, Zhang X, Chen J, et al. 2022 Ultrafast charge transfer dynamics of Rhodamine B with graphene oxide J. Chem. Phys. 157 214701

    Article  CAS  PubMed  Google Scholar 

  23. Nau W M and Mohanty J Taming fluorescent dyes with cucurbituril Int. J. Photoenergy 7 133

  24. Montes-Navajas P, Corma A and Garcia H 2008 Complexation and fluorescence of tricyclic basic dyes encapsulated in cucurbiturils ChemPhysChem 9 713

    Article  CAS  PubMed  Google Scholar 

  25. Kemp S, Wheate N J, Stootman F H and Aldrich-Wright J R 2007 The host-guest chemistry of proflavine with cucurbit[6,7,8]urils Supramol. Chem. 19 475

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by SERB, India, under the Early Career Research Award scheme (ECR/2015/000318). KK and RP thanks KARE for offering a University PhD fellowship. GU thanks the SERB for funding her research. All authors thank Dr S Shasi Anand, the Vice President of KARE, for constant research support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayanan Selvapalam.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpagalakshmi, K., Prakash, R., Usha, G. et al. A nano-molar sensitive fluorescence sensor for cucurbit[7]uril. J Chem Sci 136, 43 (2024). https://doi.org/10.1007/s12039-024-02285-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-024-02285-3

Keywords

Navigation