Log in

Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer’s Disease

  • Review
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Changes in the transition metal homeostasis in the brain are closely linked with Alzheimer’s disease (AD), including intraneuronal iron accumulation and extracellular copper and zinc pooling in the amyloid plague. The brain copper, zinc, and iron surplus are commonly acknowledged characteristics of AD, despite disagreements among some. This has led to the theory that oxidative stress resulting from abnormal homeostasis of these transition metals may be a causative explanation behind AD. In the nervous system, the interaction of metals with proteins appears to be an essential variable in the development or suppression of neurodegeneration. Chelation treatment may be an option for treating neurodegeneration induced by transition metal ion dyshomeostasis. Some clinicians even recommend using chelating agents as an adjunct therapy for AD. The current review also looks at the therapeutic strategies that have been attempted, primarily with metal-chelating drugs. Metal buildup in the nervous system, as reported in the AD, could be the result of compensatory mechanisms designed to improve metal availability for physiological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced from Huang et al. [226] with the kind permission of the Copyright © holder, AAAS, 2023, an open-access article distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AD:

Alzheimer’s disease

ABAD:

Aβ binding alcohol dehydrogenase

APP:

Amyloid precursor protein

ATP:

Adenosine triphosphate

BBB:

Blood-brain barrier

CNS:

Central nervous system

COX:

Cytochrome oxidase

Cu:

Copper

ETC:

Electron transport chain

Fe:

Iron

GWAS:

Genome-wide association studies

GSH:

Glutathione

NFTs:

Neurofibrillary tangles

NMDARs:

N-Methyl-d-aspartic acid receptors

ROS:

Reactive oxygen species

SNP:

Single-nucleotide polymorphisms

Zn:

Zinc

References

  1. An L (2022) 2022 Alzheimer’s disease facts and figures. Alzheimer’s Dementia 18(4):700–789. https://doi.org/10.1002/alz.12638

    Article  Google Scholar 

  2. Puentes-Díaz N, Chaparro D, Morales-Morales D, Flores-Gaspar A, Alí-Torres J (2023) Role of metal cations of copper, Iron, and aluminum and multifunctional ligands in Alzheimer’s disease: experimental and computational insights. ACS omega 8(5):4508–4526. https://doi.org/10.1021/acsomega.2c06939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang X, Wang X, Guo Z (2018) Metal-involved theranostics: An emerging strategy for fighting Alzheimer’s disease. Coord Chem Rev 362:72–84. https://doi.org/10.1016/j.ccr.2018.03.010

    Article  CAS  Google Scholar 

  4. Wang P, Wang Z-Y (2017) Metal ions influx is a double edged sword for the pathogenesis of Alzheimer’s disease. Ageing Res Rev 35:265–290. https://doi.org/10.1016/j.arr.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  5. Eisenstein RS (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20(1):627–662. https://doi.org/10.1146/annurev.nutr.20.1.627

    Article  CAS  PubMed  Google Scholar 

  6. Vilella A, Daini E, De Benedictis C, Grabrucker A (2020) Targeting metal homeostasis as a therapeutic strategy for Alzheimer’s disease. Exon Publications:83–98. https://doi.org/10.36255/exonpublications.alzheimersdisease.2020.ch5

  7. DeBenedictis CA, Raab A, Ducie E, Howley S, Feldmann J, Grabrucker AM (2020) Concentrations of essential trace metals in the brain of animal species—a comparative study. Brain Sci 10(7):460. https://doi.org/10.3390/brainsci10070460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57(9):399–411. https://doi.org/10.1016/s0753-3322(03)00081-7

    Article  CAS  PubMed  Google Scholar 

  9. Prasad AS (2008) Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol 43(5):370–377. https://doi.org/10.1016/j.exger.2007.10.013

    Article  CAS  PubMed  Google Scholar 

  10. Peña MM, Lee J, Thiele DJ (1999) A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 129(7):1251–1260. https://doi.org/10.1093/jn/129.7.1251

    Article  PubMed  Google Scholar 

  11. Zheng W, Monnot AD (2012) Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther 133(2):177–188. https://doi.org/10.1016/j.pharmthera.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  12. Sensi SL, Granzotto A, Siotto M, Squitti R (2018) Copper and zinc dysregulation in Alzheimer’s disease. Trends Pharmacol Sci 39(12):1049–1063. https://doi.org/10.1016/j.tips.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  13. Zhao J, Gao W, Yang Z, Li H, Gao Z (2019) Nitration of amyloid-β peptide (1–42) as a protective mechanism for the amyloid-β peptide (1–42) against copper ion toxicity. J Inorg Biochem 190:15–23. https://doi.org/10.1016/j.**orgbio.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  14. Wang L, Yin Y-L, Liu X-Z, Shen P, Zheng Y-G, Lan X-R, Lu C-B, Wang J-Z (2020) Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl Neurodegener 9(1):1–13. https://doi.org/10.1016/j.nbd.2022.105824

    Article  CAS  Google Scholar 

  15. Myhre O, Utkilen H, Duale N, Brunborg G, Hofer T, longevity c (2013) Metal dyshomeostasis and inflammation in Alzheimer’s and Parkinson’s diseases: possible impact of environmental exposures. Oxidative medicine 2013. https://doi.org/10.1155/2013/726954

  16. Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460(7257):823–830. https://doi.org/10.1038/nature08300

    Article  CAS  PubMed  Google Scholar 

  17. Markesbery W, Lovell M (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 19(1):33–36. https://doi.org/10.1016/s0197-4580(98)00009-8

    Article  CAS  PubMed  Google Scholar 

  18. Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO et al (2021) Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer’s disease: limitations, and current and future perspectives. J Trace Elem Med Biol 67:126779. https://doi.org/10.1016/j.jtemb.2021.126779

    Article  CAS  PubMed  Google Scholar 

  19. Bush AI (2000) Metals and neuroscience. Curr Opin Chem Biol 4(2):184–191. https://doi.org/10.1016/j.nbd.2015.08.012

    Article  CAS  PubMed  Google Scholar 

  20. Itoh M, Ebadi M, Swanson S (1983) The presence of zinc-binding proteins in brain. J Neurochem 41(3):823–829. https://doi.org/10.1111/j.1471-4159.1983.tb04814.x

    Article  CAS  PubMed  Google Scholar 

  21. Dreosti I (1989) Neurobiology of zinc. In: Zinc in human biology. Springer, pp 235–247. https://springer.longhoe.net/chapter/https://doi.org/10.1007/978-1-4471-3879-2_15

  22. Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238. https://doi.org/10.1159/000109536

    Article  CAS  PubMed  Google Scholar 

  23. Duce JA, Bush AI (2010) Biological metals and Alzheimer’s disease: implications for therapeutics and diagnostics. Prog Neurobiol 92(1):1–18. https://doi.org/10.1016/j.pneurobio.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  24. Thompson R, Peterson D, Mahoney W, Cramer M, Maliwal BP, Suh SW, Frederickson C, Fierke C et al (2002) Fluorescent zinc indicators for neurobiology. J Neurosci Methods 118(1):63–75. https://doi.org/10.1016/s0165-0270(02)00144-9

    Article  CAS  PubMed  Google Scholar 

  25. Squitti R, Reale G, Tondolo V, Crescenti D, Bellini S, Moci M, Caliandro P, Padua L et al (2023) Imbalance of essential metals in traumatic brain injury and its possible link with disorders of consciousness. Int J Mol Sci 24(7):6867. https://doi.org/10.3390/ijms24076867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sarris J, Ravindran A, Yatham LN, Marx W, Rucklidge JJ, McIntyre RS, Akhondzadeh S, Benedetti F et al (2022) Clinician guidelines for the treatment of psychiatric disorders with nutraceuticals and phytoceuticals: The World Federation of Societies of Biological Psychiatry (WFSBP) and Canadian Network for Mood and Anxiety Treatments (CANMAT) Taskforce. World J Biol Psychiatry 23(6):424–455. https://doi.org/10.1080/15622975.2021.2013041

    Article  CAS  PubMed  Google Scholar 

  27. Squitti R, Pal A, Picozza M, Avan A, Ventriglia M, Rongioletti MC, Hoogenraad T (2020) Zinc Therapy in early Alzheimer’s disease: Safety and potential therapeutic efficacy. Biomolecules 10(8):1164. https://doi.org/10.3390/biom10081164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6(4):221–230. https://doi.org/10.1006/nbdi.1999.0250

    Article  CAS  PubMed  Google Scholar 

  29. Hung YH, Bush AI, Cherny RA (2010) Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 15:61–76. https://doi.org/10.1007/s00775-009-0600-y

    Article  CAS  PubMed  Google Scholar 

  30. Lutsenko S, Bhattacharjee A, Hubbard AL (2010) Copper handling machinery of the brain. Metallomics 2(9):596–608. https://doi.org/10.1039/c0mt00006j

    Article  CAS  PubMed  Google Scholar 

  31. Schlief ML, Gitlin JD (2006) Copper homeostasis in the CNS: a novel link between the NMDA receptor and copper homeostasis in the hippocampus. Mol Neurobiol 33:81–90. https://doi.org/10.1385/mn:33:2:81

    Article  CAS  PubMed  Google Scholar 

  32. Matheou CJ, Younan ND, Viles JH (2015) Cu2+ accentuates distinct misfolding of Aβ (1–40) and Aβ (1–42) peptides, and potentiates membrane disruption. Biochem J 466(2):233–242. https://doi.org/10.1042/bj20141168

    Article  CAS  PubMed  Google Scholar 

  33. Sastre M, Ritchie CW, Hajji N (2015) Metal ions in Alzheimer’s disease brain. JSM Alzheimer’s Dis Relat Dement 2(1):1014

  34. Connor JR, Menzies SL, Burdo JR, Boyer PJ (2001) Iron and iron management proteins in neurobiology. Pediatr Neurol 25(2):118–129. https://doi.org/10.1016/s0887-8994(01)00303-4

    Article  CAS  PubMed  Google Scholar 

  35. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108(5):1517–1549. https://doi.org/10.1021/cr800447y

    Article  CAS  PubMed  Google Scholar 

  36. Pfaender S, Grabrucker AM (2014) Characterization of biometal profiles in neurological disorders. Metallomics 6(5):960–977. https://doi.org/10.1039/c4mt00008k

    Article  CAS  PubMed  Google Scholar 

  37. Walsh D, Minogue A, Sala Frigerio C, Fadeeva J, Wasco W, Selkoe D (2007) The APP family of proteins: similarities and differences. Biochemical Society Transactions, vol 35. Portland Press Ltd. https://doi.org/10.1042/bst0350416

  38. Barnham KJ, McKinstry WJ, Multhaup G, Galatis D, Morton CJ, Curtain CC, Williamson NA, White AR et al (2003) Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain: a regulator of neuronal copper homeostasis. J Biol Chem 278(19):17401–17407. https://doi.org/10.1074/jbc.M300629200

    Article  CAS  PubMed  Google Scholar 

  39. Bush AI, Multhaup G, Moir RD, Williamson TG, Small DH, Rumble B, Pollwein P, Beyreuther K et al (1993) A novel zinc (II) binding site modulates the function of the beta A4 amyloid protein precursor of Alzheimer’s disease. J Biol Chem 268(22):16109–16112. https://doi.org/10.1016/S0021-9258(19)85394-2

    Article  CAS  PubMed  Google Scholar 

  40. Venti A, Giordano T, Eder P, Bush AI, Lahiri DK, Greig NH, Rogers JT (2004) The integrated role of desferrioxamine and phenserine targeted to an iron-responsive element in the APP-mRNA 5′-untranslated region. Ann N Y Acad Sci 1035(1):34–48. https://doi.org/10.1196/annals.1332.003

    Article  CAS  PubMed  Google Scholar 

  41. Lovell M, Robertson J, Teesdale W, Campbell J, Markesbery W (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158(1):47–52. https://doi.org/10.1016/j.pneurobio.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  42. Minicozzi V, Stellato F, Comai M, Dalla Serra M, Potrich C, Meyer-Klaucke W, Morante S (2008) Identifying the minimal copper-and zinc-binding site sequence in amyloid-β peptides. J Biol Chem 283(16):10784–10792. https://doi.org/10.1074/jbc.m707109200

    Article  CAS  PubMed  Google Scholar 

  43. Cherny RA, Atwood CS, **linas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I et al (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30(3):665–676. https://doi.org/10.1016/s0896-6273(01)00317-8

    Article  CAS  PubMed  Google Scholar 

  44. Telling ND, Everett J, Collingwood JF, Dobson J, van der Laan G, Gallagher JJ, Wang J et al (2017) Iron biochemistry is correlated with amyloid plaque morphology in an established mouse model of Alzheimer’s disease. Cell Chem Biol 24(10):1205-1215.e1203. https://doi.org/10.1016/j.chembiol.2017.07.014

    Article  CAS  PubMed  Google Scholar 

  45. Dong Y, Chen X, Liu Y, Shu Y, Chen T, Xu L, Li M, Guan X (2018) Do low-serum vitamin E levels increase the risk of Alzheimer disease in older people? Evidence from a meta-analysis of case-control studies. Int J Geriatr Psychiatry 33(2):e257–e263. https://doi.org/10.1002/gps.4780

    Article  PubMed  Google Scholar 

  46. Chapleau M, La Joie R, Yong K, Agosta F, Allen IE, Apostolova L, Best J, Boon BD et al (2024) Demographic, clinical, biomarker, and neuropathological correlates of posterior cortical atrophy: an international cohort study and individual participant data meta-analysis. Lancet Neurol 23(2):168–177. https://doi.org/10.1016/S1474-4422(23)00414-3

    Article  CAS  PubMed  Google Scholar 

  47. Squitti R, Polimanti R, Bucossi S, Ventriglia M, Mariani S, Manfellotto D, Vernieri F, Cassetta E et al (2013) Linkage disequilibrium and haplotype analysis of the ATP7B gene in Alzheimer’s disease. Rejuvenation Res 16(1):3–10. https://doi.org/10.1089/rej.2012.1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nerattini M, Jett S, Andy C, Carlton C, Zarate C, Boneu C, Battista M, Pahlajani S et al (2023) Systematic review and meta-analysis of the effects of menopause hormone therapy on risk of Alzheimer’s disease and dementia. Front Aging Neurosci 15:1260427. https://doi.org/10.3389/fnagi.2023.1260427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schrag M, Mueller C, Oyoyo U, Smith MA, Kirsch WM (2011) Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol 94(3):296–306. https://doi.org/10.1016/j.pneurobio.2011.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cherny RA, Legg JT, McLean CA, Fairlie DP, Huang X, Atwood CS, Beyreuther K, Tanzi RE et al (1999) Aqueous dissolution of Alzheimer’s disease Aβ amyloid deposits by biometal depletion. J Biol Chem 274(33):23223–23228. https://doi.org/10.1074/jbc.274.33.23223

    Article  CAS  PubMed  Google Scholar 

  51. Perry G, Taddeo MA, Petersen RB, Castellani RJ, Harris PL, Siedlak SL, Cash AD, Liu Q et al (2003) Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease. Biometals 16:77–81. https://doi.org/10.1023/a:1020731021276

    Article  CAS  PubMed  Google Scholar 

  52. Noy D, Solomonov I, Sinkevich O, Arad T, Kjaer K, Sagi I (2008) Zinc-amyloid β interactions on a millisecond time-scale stabilize non-fibrillar Alzheimer-related species. J Am Chem Soc 130(4):1376–1383. https://doi.org/10.1021/ja076282l

    Article  CAS  PubMed  Google Scholar 

  53. Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128. https://doi.org/10.1016/S1474-4422(09)70299-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Squitti R, Ventriglia M, Simonelli I, Bonvicini C, Costa A, Perini G, Binetti G, Benussi L et al (2021) Copper imbalance in Alzheimer’s disease: meta-analysis of serum, plasma, and brain specimens, and replication study evaluating ATP7B gene variants. Biomolecules 11(7):960. https://doi.org/10.3390/biom11070960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Squitti R, Faller P, Hureau C, Granzotto A, White AR, Kepp KP (2021) Copper imbalance in Alzheimer’s disease and its link with the amyloid hypothesis: towards a combined clinical, chemical, and genetic etiology. J Alzheimers Dis 83(1):23–41. https://doi.org/10.3233/JAD-201556

    Article  CAS  PubMed  Google Scholar 

  56. Gong L, Sun J, Cong S (2023) Levels of iron and iron-related proteins in Alzheimer’s disease: a systematic review and meta-analysis. Journal of Trace Elements in Medicine Biology 127304. https://doi.org/10.1016/j.jtemb.2023.127304

  57. Ayton S, Portbury S, Kalinowski P, Agarwal P, Diouf I, Schneider JA, Morris MC, Bush AI (2021) Regional brain iron associated with deterioration in Alzheimer’s disease: a large cohort study and theoretical significance. Alzheimer Dementia 17(7):1244–1256. https://doi.org/10.1002/alz.12282

    Article  Google Scholar 

  58. Ventriglia M, Brewer GJ, Simonelli I, Mariani S, Siotto M, Bucossi S, Squitti R (2015) Zinc in Alzheimer’s disease: a meta-analysis of serum, plasma, and cerebrospinal fluid studies. J Alzheimers Dis 46(1):75–87. https://doi.org/10.3233/JAD-141296

    Article  CAS  PubMed  Google Scholar 

  59. Panghal A (1868) Flora SJS (2024) Nanotechnology in the diagnostic and therapy for Alzheimer’s disease. Biochim Biophys Acta 3:130559. https://doi.org/10.1016/j.bbagen.2024.130559

    Article  CAS  Google Scholar 

  60. Abubakar MB, Sanusi KO, Ugusman A, Mohamed W, Kamal H, Ibrahim NH, Khoo CS, Kumar J (2022) Alzheimer’s disease: an update and insights into pathophysiology. Front Aging Neurosci 14:742408. https://doi.org/10.3389/fnagi.2022.742408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14(3):457–487. https://doi.org/10.1111/j.1582-4934.2010.01010.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20(3):148–160. https://doi.org/10.1038/s41583-019-0132-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s disease. Neurosci Bull 30(2):271–281. https://doi.org/10.1007/s12264-013-1423-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bai R, Guo J, Ye XY, **e Y, **e T (2022) Oxidative stress: the core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res Rev 77:101619. https://doi.org/10.1016/j.arr.2022.101619

    Article  CAS  PubMed  Google Scholar 

  65. Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, Boonpraman N, Yi SS et al (2021) NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol 41:101947. https://doi.org/10.1016/j.redox.2021.101947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Takeuchi M, Yamagishi S (2008) Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer’s disease. Curr Pharm Des 14(10):973–978. https://doi.org/10.2174/138161208784139693

    Article  CAS  PubMed  Google Scholar 

  67. Gella A, Durany N (2009) Oxidative stress in Alzheimer disease. Cell Adh Migr 3(1):88–93. https://doi.org/10.4161/cam.3.1.7402

    Article  PubMed  PubMed Central  Google Scholar 

  68. Peña-Bautista C, Baquero M, Vento M, Cháfer-Pericás C (2019) Free radicals in Alzheimer’s disease: lipid peroxidation biomarkers. Clin Chim Acta 491:85–90. https://doi.org/10.1016/j.cca.2019.01.021

    Article  CAS  PubMed  Google Scholar 

  69. Butterfield DA, Hensley K, Cole P, Subramaniam R, Aksenov M, Aksenova M, Bummer PM, Haley BE et al (1997) Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: relevance to Alzheimer’s disease. J Neurochem 68(6):2451–2457. https://doi.org/10.1046/j.1471-4159.1997.68062451.x

    Article  CAS  PubMed  Google Scholar 

  70. He W, Wang C, Chen Y, He Y, Cai Z (2017) Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-κB signaling, oxidative stress and neuroinflammation. Pharmacol Rep : PR 69(6):1341–1348. https://doi.org/10.1016/j.pharep.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  71. Aaseth J, Skalny AV, Roos PM, Alexander J, Aschner M, Tinkov AA (2021) Copper, iron, selenium and lipo-glycemic dysmetabolism in Alzheimer’s disease. Int J Mol Sci 22:17. https://doi.org/10.3390/ijms22179461

    Article  CAS  Google Scholar 

  72. Rogers JT, Bush AI, Cho HH, Smith DH, Thomson AM, Friedlich AL, Lahiri DK, Leedman PJ et al (2008) Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer’s disease. Biochem Soc Trans 36(Pt 6):1282–1287. https://doi.org/10.1042/bst0361282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mezzaroba L, Alfieri DF, Colado Simão AN, Vissoci Reiche EM (2019) The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 74:230–241. https://doi.org/10.1016/j.neuro.2019.07.007

    Article  CAS  PubMed  Google Scholar 

  74. Miura T, Suzuki K, Kohata N, Takeuchi H (2000) Metal binding modes of Alzheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes. Biochemistry 39(23):7024–7031. https://doi.org/10.1021/bi0002479

    Article  CAS  PubMed  Google Scholar 

  75. Butterfield DA (2002) Amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. Rev Free Radic Res 36(12):1307–1313. https://doi.org/10.1080/1071576021000049890

    Article  CAS  Google Scholar 

  76. Li W, Zhang J, Su Y, Wang J, Qin M, Wang W (2007) Effects of zinc binding on the conformational distribution of the amyloid-beta peptide based on molecular dynamics simulations. J Phys Chem B 111(49):13814–13821. https://doi.org/10.1021/jp076213t

    Article  CAS  PubMed  Google Scholar 

  77. Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA (2000) In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 74(1):270–279. https://doi.org/10.1046/j.1471-4159.2000.0740270.x

    Article  CAS  PubMed  Google Scholar 

  78. Ashraf A, Jeandriens J, Parkes HG, So PW (2020) Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer’s disease: evidence of ferroptosis. Redox Biol 32:101494. https://doi.org/10.1016/j.redox.2020.101494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hofer T, Perry G (2016) Nucleic acid oxidative damage in Alzheimer’s disease-explained by the hepcidin-ferroportin neuronal iron overload hypothesis? J Trace Elem Med Biol 38:1–9. https://doi.org/10.1016/j.jtemb.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  80. Bhatia V, Sharma S (2021) Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer’s disease. J Neurol Sci 421:117253. https://doi.org/10.1016/j.jns.2020.117253

    Article  CAS  PubMed  Google Scholar 

  81. Grimm A, Eckert A (2017) Brain aging and neurodegeneration: from a mitochondrial point of view. J Neurochem 143(4):418–431. https://doi.org/10.1111/jnc.14037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Swerdlow RH, Burns JM (1842) Khan SM (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochem Biophys Acta 8:1219–1231. https://doi.org/10.1016/j.bbadis.2013.09.010

    Article  CAS  Google Scholar 

  83. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464. https://doi.org/10.1016/j.redox.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  84. Desler C, Lillenes MS, Tønjum T, Rasmussen LJ (2018) The role of mitochondrial dysfunction in the progression of Alzheimer’s disease. Curr Med Chem 25(40):5578–5587. https://doi.org/10.2174/0929867324666170616110111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sen A, Nelson TJ, Alkon DL, Hongpaisan J (2018) Loss in PKC Epsilon causes downregulation of MnSOD and BDNF expression in neurons of Alzheimer’s disease hippocampus. J Alzheim Dis : JAD 63(3):1173–1189. https://doi.org/10.3233/jad-171008

    Article  CAS  Google Scholar 

  86. Anantharaman M, Tangpong J, Keller JN, Murphy MP, Markesbery WR, Kiningham KK, St Clair DK (2006) Beta-amyloid mediated nitration of manganese superoxide dismutase: implication for oxidative stress in a APPNLH/NLH X PS-1P264L/P264L double knock-in mouse model of Alzheimer’s disease. Am J Pathol 168(5):1608–1618. https://doi.org/10.2353/ajpath.2006.051223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yao J, Du H, Yan S, Fang F, Wang C, Lue LF, Guo L, Chen D et al (2011) Inhibition of amyloid-beta (Abeta) peptide-binding alcohol dehydrogenase-Abeta interaction reduces Abeta accumulation and improves mitochondrial function in a mouse model of Alzheimer’s disease. J Neurosci 31(6):2313–2320. https://doi.org/10.1523/jneurosci.4717-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Echtay KS (2007) Mitochondrial uncoupling proteins—what is their physiological role? Free Radical Biol Med 43(10):1351–1371. https://doi.org/10.1016/j.freeradbiomed.2007.08.011

    Article  CAS  Google Scholar 

  89. de la Monte SM, Wands JR (2006) Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J Alzheim Dis : JAD 9(2):167–181. https://doi.org/10.3233/jad-2006-9209

    Article  Google Scholar 

  90. Wu Z, Zhang J, Zhao B (2009) Superoxide anion regulates the mitochondrial free Ca2+ through uncoupling proteins. Antioxid Redox Signal 11(8):1805–1818. https://doi.org/10.1089/ars.2009.2427

    Article  CAS  PubMed  Google Scholar 

  91. Frost GR, Jonas LA, Li YM (2019) Friend, foe or both? Immune activity in Alzheimer’s disease. Front Aging Neurosc 11:337. https://doi.org/10.3389/fnagi.2019.00337

    Article  CAS  Google Scholar 

  92. Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17(3):157–172. https://doi.org/10.1038/s41582-020-00435-y

    Article  PubMed  Google Scholar 

  93. Villa V, Thellung S, Bajetto A, Gatta E, Robello M, Novelli F, Tasso B, Tonelli M et al (2016) Novel celecoxib analogues inhibit glial production of prostaglandin E2, nitric oxide, and oxygen radicals reverting the neuroinflammatory responses induced by misfolded prion protein fragment 90–231 or lipopolysaccharide. Pharmacol Res 113(Pt A):500–514. https://doi.org/10.1016/j.phrs.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  94. Brosseron F, Krauthausen M, Kummer M, Heneka MT (2014) Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: a comparative overview. Mol Neurobiol 50(2):534–544. https://doi.org/10.1007/s12035-014-8657-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cribbs DH, Berchtold NC, Perreau V, Coleman PD, Rogers J, Tenner AJ, Cotman CW (2012) Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation 9:179. https://doi.org/10.1186/1742-2094-9-179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP (2006) Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation 3:27. https://doi.org/10.1186/1742-2094-3-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Martínez Leo EE, Segura Campos MR (2019) Systemic oxidative stress: a key point in neurodegeneration—a review. J Nutr Health Aging 23(8):694–699. https://doi.org/10.1007/s12603-019-1240-8

    Article  PubMed  Google Scholar 

  98. Ashour NH, El-Tanbouly DM, El Sayed NS, Khattab MM (2021) Roflumilast ameliorates cognitive deficits in a mouse model of amyloidogenesis and tauopathy: involvement of nitric oxide status, Aβ extrusion transporter ABCB1, and reversal by PKA inhibitor H89. Prog Neuropsychopharmacol Biol Psychiatry 111:110366. https://doi.org/10.1016/j.pnpbp.2021.110366

    Article  CAS  PubMed  Google Scholar 

  99. Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D (2014) Neuroinflammation: the role and consequences. Neurosci Res 79:1–12. https://doi.org/10.1016/j.neures.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  100. Mishra A, Kim HJ, Shin AH, Thayer SA (2012) Synapse loss induced by interleukin-1β requires pre- and post-synaptic mechanisms. J Neuroimmune Pharmacol 7(3):571–578. https://doi.org/10.1007/s11481-012-9342-7

    Article  PubMed  PubMed Central  Google Scholar 

  101. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190. https://doi.org/10.1016/s0092-8674(03)00521-x

    Article  CAS  PubMed  Google Scholar 

  102. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Sci (New York, NY) 352(6286):712–716. https://doi.org/10.1126/science.aad8373

    Article  CAS  Google Scholar 

  103. Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheim Dementia 12(6):719–732. https://doi.org/10.1016/j.jalz.2016.02.010

    Article  Google Scholar 

  104. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, **e T et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153(3):707–720. https://doi.org/10.1016/j.cell.2013.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, Rosenkrantz LL, Imboywa S et al (2013) CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 16(7):848–850. https://doi.org/10.1038/nn.3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH et al (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78(4):631–643. https://doi.org/10.1016/j.neuron.2013.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lee HJ, Korshavn KJ, Kochi A, Derrick JS, Lim MH (2014) Cholesterol and metal ions in Alzheimer’s disease. Chem Soc Rev 43(19):6672–6682. https://doi.org/10.1039/C4CS00005F

    Article  CAS  PubMed  Google Scholar 

  108. Xu JJ, Guo S, Xue R, **ao L, Kou JN, Liu YQ, Han JY, Fu JJ et al (2021) Adalimumab ameliorates memory impairments and neuroinflammation in chronic cerebral hypoperfusion rats. Aging 13(10):14001–14014. https://doi.org/10.18632/aging.203009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang Y, Zhao Y, Zhang J, Yang G (2020) Mechanisms of NLRP3 inflammasome activation: its role in the treatment of Alzheimer’s disease. Neurochem Res 45(11):2560–2572. https://doi.org/10.1007/s11064-020-03121-z

    Article  CAS  PubMed  Google Scholar 

  110. Hanslik KL, Ulland TK (2020) The role of microglia and the Nlrp3 inflammasome in Alzheimer’s disease. Front Neurol 11:570711. https://doi.org/10.3389/fneur.2020.570711

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chiu YJ, Lin CH, Lee MC, Hsieh-Li HM, Chen CM, Wu YR, Chang KH, Lee-Chen GJ (2021) Formulated Chinese medicine Shaoyao Gancao Tang reduces NLRP1 and NLRP3 in Alzheimer’s disease cell and mouse models for neuroprotection and cognitive improvement. Aging 13(11):15620–15637. https://doi.org/10.18632/aging.203125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fox LM, Yamamoto A (2015) Chapter 7 - macroautophagy of aggregation-prone proteins in neurodegenerative disease. In: Hayat MA (ed) Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging. Academic Press, Amsterdam, pp 117–137. https://doi.org/10.1016/B978-0-12-801043-3.00007-8

  113. Ashrafian H, Zadeh EH, Khan RH (2021) Review on Alzheimer’s disease: Inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol 167:382–394. https://doi.org/10.1016/j.ijbiomac.2020.11.192

    Article  CAS  PubMed  Google Scholar 

  114. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842. https://doi.org/10.1038/nm1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hu NW, Smith IM, Walsh DM, Rowan MJ (2008) Soluble amyloid-beta peptides potently disrupt hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction in vivo. Brain 131(Pt 9):2414–2424. https://doi.org/10.1093/brain/awn174

    Article  PubMed  Google Scholar 

  116. Sigurdsson EM, Knudsen E, Asuni A, Fitzer-Attas C, Sage D, Quartermain D, Goni F, Frangione B et al (2004) An attenuated immune response is sufficient to enhance cognition in an Alzheimer’s disease mouse model immunized with amyloid-beta derivatives. J Neurosci 24(28):6277–6282. https://doi.org/10.1523/jneurosci.1344-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118(1):103–113. https://doi.org/10.1007/s00401-009-0522-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Barage SH, Sonawane KD (2015) Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 52:1–18. https://doi.org/10.1016/j.npep.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  119. Paroni G, Bisceglia P, Seripa D (2019) Understanding the amyloid hypothesis in Alzheimer’s disease. J Alzheim Dis : JAD 68(2):493–510. https://doi.org/10.3233/jad-180802

    Article  CAS  Google Scholar 

  120. van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D et al (2023) Lecanemab in Early Alzheimer’s Disease. N Engl J Med 388(1):9–21. https://doi.org/10.1056/NEJMoa2212948

    Article  PubMed  Google Scholar 

  121. Carma Hassan JC (2024) Biogen discontinues Alzheimer’s medication Aduhelm. Accessed March 18 2024

  122. Celej MS, Sarroukh R, Goormaghtigh E, Fidelio GD, Ruysschaert JM, Raussens V (2012) Toxic prefibrillar α-synuclein amyloid oligomers adopt a distinctive antiparallel β-sheet structure. Biochem J 443(3):719–726. https://doi.org/10.1042/bj20111924

    Article  CAS  PubMed  Google Scholar 

  123. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6(1):11–22. https://doi.org/10.1038/nrn1587

    Article  CAS  PubMed  Google Scholar 

  124. Baumketner A, Bernstein SL, Wyttenbach T, Bitan G, Teplow DB, Bowers MT, Shea JE (2006) Amyloid beta-protein monomer structure: a computational and experimental study. Protein Sci 15(3):420–428. https://doi.org/10.1110/ps.051762406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ding F, Borreguero JM, Buldyrey SV, Stanley HE, Dokholyan NV (2003) Mechanism for the alpha-helix to beta-hairpin transition. Proteins 53(2):220–228. https://doi.org/10.1002/prot.10468

    Article  CAS  PubMed  Google Scholar 

  126. Bruno MA, Leon WC, Fragoso G, Mushynski WE, Almazan G, Cuello AC (2009) Amyloid β-induced nerve growth factor dysmetabolism in Alzheimer disease. J Neuropathol Exp Neurol 68(8):857–869. https://doi.org/10.1097/NEN.0b013e3181aed9e6

    Article  CAS  PubMed  Google Scholar 

  127. Sharp FR, DeCarli CS, ** L-W, Zhan X (2023) White matter injury, cholesterol dysmetabolism, and APP/Abeta dysmetabolism interact to produce Alzheimer’s disease (AD) neuropathology: a hypothesis and review. Front Aging Neurosci 15:1096206. https://doi.org/10.3389/fnagi.2023.1096206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Boutajangout A, Wisniewski T (2014) Tau-based therapeutic approaches for Alzheimer’s disease—a mini-review. Gerontology 60(5):381–385. https://doi.org/10.1159/000358875

    Article  CAS  PubMed  Google Scholar 

  129. Muralidar S, Ambi SV, Sekaran S, Thirumalai D, Palaniappan B (2020) Role of tau protein in Alzheimer’s disease: the prime pathological player. Int J Biol Macromol 163:1599–1617. https://doi.org/10.1016/j.ijbiomac.2020.07.327

    Article  CAS  PubMed  Google Scholar 

  130. Mamun AA, Uddin MS, Mathew B, Ashraf GM (2020) Toxic tau: structural origins of tau aggregation in Alzheimer’s disease. Neural Regen Res 15(8):1417–1420. https://doi.org/10.4103/1673-5374.274329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. **a Y, Sorrentino ZA, Kim JD, Strang KH, Riffe CJ, Giasson BI (2019) Impaired tau-microtubule interactions are prevalent among pathogenic tau variants arising from missense mutations. J Biol Chem 294(48):18488–18503. https://doi.org/10.1074/jbc.RA119.010178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Brunello CA, Merezhko M, Uronen RL, Huttunen HJ (2020) Mechanisms of secretion and spreading of pathological tau protein. Cell Mol Life Sci 77(9):1721–1744. https://doi.org/10.1007/s00018-019-03349-1

    Article  CAS  PubMed  Google Scholar 

  133. Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501(7465):45–51. https://doi.org/10.1038/nature12481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Götz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Sci (New York, NY) 293(5534):1491–1495. https://doi.org/10.1126/science.1062097

    Article  Google Scholar 

  135. Chabrier MA, Blurton-Jones M, Agazaryan AA, Nerhus JL, Martinez-Coria H, LaFerla FM (2012) Soluble aβ promotes wild-type tau pathology in vivo. J Neurosci 32(48):17345–17350. https://doi.org/10.1523/jneurosci.0172-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. DeVos SL, Corjuc BT, Commins C, Dujardin S, Bannon RN, Corjuc D, Moore BD, Bennett RE et al (2018) Tau reduction in the presence of amyloid-β prevents tau pathology and neuronal death in vivo. Brain 141(7):2194–2212. https://doi.org/10.1093/brain/awy117

    Article  PubMed  PubMed Central  Google Scholar 

  137. Blurton-Jones M, Laferla FM (2006) Pathways by which Abeta facilitates tau pathology. Curr Alzheimer Res 3(5):437–448. https://doi.org/10.2174/156720506779025242

    Article  CAS  PubMed  Google Scholar 

  138. Takashima A, Honda T, Yasutake K, Michel G, Murayama O, Murayama M, Ishiguro K, Yamaguchi H (1998) Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25–35) enhances phosphorylation of tau in hippocampal neurons. Neurosci Res 31(4):317–323. https://doi.org/10.1016/s0168-0102(98)00061-3

    Article  CAS  PubMed  Google Scholar 

  139. Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A (2002) Tau is essential to beta -amyloid-induced neurotoxicity. Proc Natl Acad Sci USA 99(9):6364–6369. https://doi.org/10.1073/pnas.092136199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kaler SG (2011) ATP7A-related copper transport diseases—emerging concepts and future trends. Nat Rev Neurol 7(1):15–29. https://doi.org/10.1038/nrneurol.2010.180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Squitti R, Siotto M, Polimanti R (2014) Low-copper diet as a preventive strategy for Alzheimer’s disease. Neurobiol Aging 35:S40–S50. https://doi.org/10.1016/j.neurobiolaging.2014.02.031

    Article  CAS  PubMed  Google Scholar 

  142. Guo JP, Pan JX, **ong L, **a WF, Cui S, **ong WC (2015) Iron Chelation Inhibits Osteoclastic Differentiation In Vitro and in Tg2576 Mouse Model of Alzheimer’s Disease. PLoS ONE 10(11):e0139395. https://doi.org/10.1371/journal.pone.0139395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yang X, Cai P, Liu Q, Wu J, Yin Y, Wang X, Kong L (2018) Novel 8-hydroxyquinoline derivatives targeting β-amyloid aggregation, metal chelation and oxidative stress against Alzheimer’s disease. Bioorg Med Chem 26(12):3191–3201. https://doi.org/10.1016/j.bmc.2018.04.043

    Article  CAS  PubMed  Google Scholar 

  144. Pavlidis N, Kofinas A, Papanikolaou MG, Miras HN, Drouza C, Kalampounias AG, Kabanos TA, Konstandi M et al (2021) Synthesis, characterization and pharmacological evaluation of quinoline derivatives and their complexes with copper(ΙΙ) in in vitro cell models of Alzheimer’s disease. J Inorg Biochem 217:111393. https://doi.org/10.1016/j.**orgbio.2021.111393

    Article  CAS  PubMed  Google Scholar 

  145. Flora SJ, Pachauri V (2010) Chelation in metal intoxication. Int J Environ Res Public Health 7(7):2745–2788. https://doi.org/10.3390/ijerph7072745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Flora SJS, Jain K, Panghal A, Patwa J (2022) Chemistry, pharmacology, and toxicology of monoisoamyl dimercaptosuccinic acid: a chelating agent for chronic metal poisoning. Chem Res Toxicol 35(10):1701–1719. https://doi.org/10.1021/acs.chemrestox.2c00129

    Article  CAS  PubMed  Google Scholar 

  147. Squitti R, Zito G (2009) Anti-copper therapies in Alzheimer’s disease: new concepts. Recent Pat CNS Drug Discovery 4(3):209–219. https://doi.org/10.2174/157488909789104802

    Article  CAS  PubMed  Google Scholar 

  148. Huang W, Wei W, Shen Z (2014) Drug-like chelating agents: a potential lead for Alzheimer’s disease. RSC Adv 4(94):52088–52099. https://doi.org/10.1039/C4RA09193K

    Article  CAS  Google Scholar 

  149. Cherny RA, Barnham KJ, Lynch T, Volitakis I, Li QX, McLean CA, Multhaup G, Beyreuther K et al (2000) Chelation and intercalation: complementary properties in a compound for the treatment of Alzheimer’s disease. J Struct Biol 130(2–3):209–216. https://doi.org/10.1006/jsbi.2000.4285

    Article  CAS  PubMed  Google Scholar 

  150. McLachlan DR, Smith WL, Kruck TP (1993) Desferrioxamine and Alzheimer's disease: video home behavior assessment of clinical course and measures of brain aluminum. Therapeutic drug monitoring 15 (6):602–607. https://cir.nii.ac.jp/crid/1571135650836546304

  151. Liu G, Garrett MR, Men P, Zhu X, Perry G, Smith MA (2005) Nanoparticle and other metal chelation therapeutics in Alzheimer disease. Biochem Biophys Acta 1741(3):246–252. https://doi.org/10.1016/j.bbadis.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  152. Crapper McLachlan DR, Dalton AJ, Kruck TP, Bell MY, Smith WL, Kalow W, Andrews DF (1991) Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet (London, England) 337(8753):1304–1308. https://doi.org/10.1016/0140-6736(91)92978-b

    Article  CAS  PubMed  Google Scholar 

  153. Kwan P, Ho A, Baum L (2022) Effects of Deferasirox in Alzheimer’s Disease and Tauopathy Animal Models. Biomolecules 12:3. https://doi.org/10.3390/biom12030365

    Article  CAS  Google Scholar 

  154. Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T (2002) Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem 82(5):1137–1147. https://doi.org/10.1046/j.1471-4159.2002.t01-1-01061.x

    Article  CAS  PubMed  Google Scholar 

  155. Brunden KR, Trojanowski JQ, Lee VM (2009) Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discovery 8(10):783–793. https://doi.org/10.1038/nrd2959

    Article  CAS  PubMed  Google Scholar 

  156. Bulic B, Pickhardt M, Schmidt B, Mandelkow EM, Waldmann H, Mandelkow E (2009) Development of tau aggregation inhibitors for Alzheimer’s disease. Angew Chem Int Ed Engl 48(10):1740–1752. https://doi.org/10.1002/anie.200802621

    Article  CAS  PubMed  Google Scholar 

  157. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21(21):8370–8377. https://doi.org/10.1523/jneurosci.21-21-08370.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lambert C, Beraldo H, Lievre N, Garnier-Suillerot A, Dorlet P, Salerno M (2013) Bis(thiosemicarbazone) copper complexes: mechanism of intracellular accumulation. J Biol Inorg Chem 18(1):59–69. https://doi.org/10.1007/s00775-012-0949-1

    Article  CAS  PubMed  Google Scholar 

  159. McKenzie-Nickson S, Bush AI, Barnham KJ (2016) Bis(thiosemicarbazone) Metal complexes as therapeutics for neurodegenerative diseases. Curr Top Med Chem 16(27):3058–3068. https://doi.org/10.2174/1568026616666160216155746

    Article  CAS  PubMed  Google Scholar 

  160. Esmieu C, Guettas D, Conte-Daban A, Sabater L, Faller P, Hureau C (2019) Copper-targeting approaches in Alzheimer’s disease: how to improve the fallouts obtained from in vitro studies. Inorg Chem 58(20):13509–13527. https://doi.org/10.1021/acs.inorgchem.9b00995

    Article  CAS  PubMed  Google Scholar 

  161. Zheng H, Youdim MB, Weiner LM, Fridkin M (2005) Synthesis and evaluation of peptidic metal chelators for neuroprotection in neurodegenerative diseases. J Peptide Res 66(4):190–203. https://doi.org/10.1111/j.1399-3011.2005.00289.x

    Article  CAS  Google Scholar 

  162. Deraeve C, Pitié M, Mazarguil H, Meunier B (2007) Bis-8-hydroxyquinoline ligands as potential anti-Alzheimer agents. New J Chem 31(2):193–195. https://doi.org/10.1039/B616085A

    Article  CAS  Google Scholar 

  163. Bush AI (2002) Metal complexing agents as therapies for Alzheimer’s disease. Neurobiol Aging 23(6):1031–1038. https://doi.org/10.1016/s0197-4580(02)00120-3

    Article  CAS  PubMed  Google Scholar 

  164. Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R et al (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60(12):1685–1691. https://doi.org/10.1001/archneur.60.12.1685

    Article  PubMed  Google Scholar 

  165. Bolognin S, Drago D, Messori L, Zatta P (2009) Chelation therapy for neurodegenerative diseases. Med Res Rev 29(4):547–570. https://doi.org/10.1002/med.20148

    Article  CAS  PubMed  Google Scholar 

  166. Budimir A (2011) Metal ions, Alzheimer’s disease and chelation therapy. Acta Pharm (Zagreb, Croatia) 61(1):1–14. https://doi.org/10.2478/v10007-011-0006-6

    Article  CAS  Google Scholar 

  167. Yang GJ, Liu H, Ma DL, Leung CH (2019) Rebalancing metal dyshomeostasis for Alzheimer’s disease therapy. J Biol Inorg Chem 24(8):1159–1170. https://doi.org/10.1007/s00775-019-01712-y

    Article  CAS  PubMed  Google Scholar 

  168. Kenche VB, Barnham KJ (2011) Alzheimer’s disease & metals: therapeutic opportunities. Br J Pharmacol 163(2):211–219. https://doi.org/10.1111/j.1476-5381.2011.01221.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hegde ML, Bharathi P, Suram A, Venugopal C, Jagannathan R, Poddar P, Srinivas P, Sambamurti K et al (2009) Challenges associated with metal chelation therapy in Alzheimer’s disease. J Alzheim Dis : JAD 17(3):457–468. https://doi.org/10.3233/jad-2009-1068

    Article  CAS  Google Scholar 

  170. Kavirajan H, Schneider LS (2007) Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials. Lancet Neurol 6(9):782–792. https://doi.org/10.1016/s1474-4422(07)70195-3

    Article  CAS  PubMed  Google Scholar 

  171. Zatta P, Raso M, Zambenedetti P, Wittkowski W, Messori L, Piccioli F, Mauri PL, Beltramini M (2005) Copper and zinc dismetabolism in the mouse brain upon chronic cuprizone treatment. Cell Mol Life Sci 62(13):1502–1513. https://doi.org/10.1007/s00018-005-5073-8

    Article  CAS  PubMed  Google Scholar 

  172. Pritam P, Deka R, Bhardwaj A, Srivastava R, Kumar D, Jha AK, Jha NK, Villa C et al (2022) Antioxidants in Alzheimer’s disease: current therapeutic significance and future prospects. Biology 11:2. https://doi.org/10.3390/biology11020212

    Article  CAS  Google Scholar 

  173. Baptista FI, Henriques AG, Silva AM, Wiltfang J, da Cruz e Silva OA (2014) Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer's disease. ACS Chem Neurosc 5 (2):83-92 https://doi.org/10.1021/cn400213r

  174. Singh SK, Gaur R, Kumar A, Fatima R, Mishra L, Srikrishna S (2014) The flavonoid derivative 2-(4’ Benzyloxyphenyl)-3-hydroxy-chromen-4-one protects against Aβ42-induced neurodegeneration in transgenic Drosophila: insights from in silico and in vivo studies. Neurotox Res 26(4):331–350. https://doi.org/10.1007/s12640-014-9466-z

    Article  CAS  PubMed  Google Scholar 

  175. Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radical Biol Med 30(4):433–446. https://doi.org/10.1016/s0891-5849(00)00498-6

    Article  CAS  Google Scholar 

  176. Lloret A, Esteve D, Monllor P, Cervera-Ferri A, Lloret A (2019) The Effectiveness of vitamin E treatment in Alzheimer’s disease. Int J Mol Sci 20:4. https://doi.org/10.3390/ijms20040879

    Article  CAS  Google Scholar 

  177. Zhang SM, Hernán MA, Chen H, Spiegelman D, Willett WC, Ascherio A (2002) Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology 59(8):1161–1169. https://doi.org/10.1212/01.wnl.0000028688.75881.12

    Article  CAS  PubMed  Google Scholar 

  178. La Fata G, Weber P, Mohajeri MH (2014) Effects of vitamin E on cognitive performance during ageing and in Alzheimer’s disease. Nutrients 6(12):5453–5472. https://doi.org/10.3390/nu6125453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kandiah N, Ong PA, Yuda T, Ng LL, Mamun K, Merchant RA, Chen C, Dominguez J et al (2019) Treatment of dementia and mild cognitive impairment with or without cerebrovascular disease: expert consensus on the use of Ginkgo biloba extract, EGb 761(®). CNS Neurosci Ther 25(2):288–298. https://doi.org/10.1111/cns.13095

    Article  PubMed  PubMed Central  Google Scholar 

  180. Cowan CM, Sealey MA, Mudher A (2021) Suppression of tau-induced phenotypes by vitamin E demonstrates the dissociation of oxidative stress and phosphorylation in mechanisms of tau toxicity. J Neurochem 157(3):684–694. https://doi.org/10.1111/jnc.15253

    Article  CAS  PubMed  Google Scholar 

  181. Iijima-Ando K, Iijima K (2010) Transgenic Drosophila models of Alzheimer’s disease and tauopathies. Brain Struct Funct 214(2–3):245–262. https://doi.org/10.1007/s00429-009-0234-4

    Article  CAS  PubMed  Google Scholar 

  182. Casati M, Boccardi V, Ferri E, Bertagnoli L, Bastiani P, Ciccone S, Mansi M, Scamosci M et al (2020) Vitamin E and Alzheimer’s disease: the mediating role of cellular aging. Aging Clin Exp Res 32(3):459–464. https://doi.org/10.1007/s40520-019-01209-3

    Article  PubMed  Google Scholar 

  183. Veinbergs I, Van Uden E, Mallory M, Alford M, McGiffert C, DeTeresa R, Orlando R, Masliah E (2001) Role of apolipoprotein E receptors in regulating the differential in vivo neurotrophic effects of apolipoprotein E. Exp Neurol 170(1):15–26. https://doi.org/10.1006/exnr.2001.7684

    Article  CAS  PubMed  Google Scholar 

  184. Butterfield DA, Koppal T, Subramaniam R, Yatin S (1999) Vitamin E as an antioxidant/free radical scavenger against amyloid beta-peptide-induced oxidative stress in neocortical synaptosomal membranes and hippocampal neurons in culture: insights into Alzheimer’s disease. Rev Neurosci 10(2):141–149. https://doi.org/10.1515/revneuro.1999.10.2.141

    Article  CAS  PubMed  Google Scholar 

  185. Yamada K, Tanaka T, Han D, Senzaki K, Kameyama T, Nabeshima T (1999) Protective effects of idebenone and alpha-tocopherol on beta-amyloid-(1–42)-induced learning and memory deficits in rats: implication of oxidative stress in beta-amyloid-induced neurotoxicity in vivo. Eur J Neurosci 11(1):83–90. https://doi.org/10.1046/j.1460-9568.1999.00408.x

    Article  CAS  PubMed  Google Scholar 

  186. Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, Woodbury P, Growdon J et al (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. New Engl J Med 336(17):1216–1222. https://doi.org/10.1056/nejm199704243361704

    Article  CAS  PubMed  Google Scholar 

  187. Butterfield D, Castegna A, Pocernich C, Drake J, Scapagnini G, Calabrese V (2002) Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J Nutr Biochem 13(8):444. https://doi.org/10.1016/s0955-2863(02)00205-x

    Article  CAS  PubMed  Google Scholar 

  188. Dringen R, Brandmann M, Hohnholt MC, Blumrich EM (2015) Glutathione-dependent detoxification processes in astrocytes. Neurochem Res 40(12):2570–2582. https://doi.org/10.1007/s11064-014-1481-1

    Article  CAS  PubMed  Google Scholar 

  189. Marí M, de Gregorio E, de Dios C, Roca-Agujetas V, Cucarull B, Tutusaus A, Morales A, Colell A (2020) Mitochondrial Glutathione: Recent Insights and Role in Disease. Antioxid (Basel, Switzerland) 9:10. https://doi.org/10.3390/antiox9100909

    Article  CAS  Google Scholar 

  190. Barbero-Camps E, Fernández A, Martínez L, Fernández-Checa JC, Colell A (2013) APP/PS1 mice overexpressing SREBP-2 exhibit combined Aβ accumulation and tau pathology underlying Alzheimer’s disease. Hum Mol Genet 22(17):3460–3476. https://doi.org/10.1093/hmg/ddt201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Allen M, Zou F, Chai HS, Younkin CS, Miles R, Nair AA, Crook JE, Pankratz VS et al (2012) Glutathione S-transferase omega genes in Alzheimer and Parkinson disease risk, age-at-diagnosis and brain gene expression: an association study with mechanistic implications. Mol Neurodegener 7:13. https://doi.org/10.1186/1750-1326-7-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Naqvi S, Panghal A, Flora SJS (2020) Nanotechnology: a promising approach for delivery of neuroprotective drugs. Front Neurosci 14:494. https://doi.org/10.3389/fnins.2020.00494

    Article  PubMed  PubMed Central  Google Scholar 

  193. Wei QY, Chen WF, Zhou B, Yang L, Liu ZL (2006) Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Biochem Biophys Acta 1760(1):70–77. https://doi.org/10.1016/j.bbagen.2005.09.008

    Article  CAS  PubMed  Google Scholar 

  194. Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheim Dis 6(4):367–377. https://doi.org/10.3233/jad-2004-6403. (discussion 443-369)

    Article  CAS  Google Scholar 

  195. Nishinaka T, Ichijo Y, Ito M, Kimura M, Katsuyama M, Iwata K, Miura T, Terada T et al (2007) Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element. Toxicol Lett 170(3):238–247. https://doi.org/10.1016/j.toxlet.2007.03.011

    Article  CAS  PubMed  Google Scholar 

  196. Serafini MM, Catanzaro M, Rosini M, Racchi M, Lanni C (2017) Curcumin in Alzheimer’s disease: Can we think to new strategies and perspectives for this molecule? Pharmacol Res 124:146–155. https://doi.org/10.1016/j.phrs.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  197. Giri RK, Rajagopal V, Kalra VK (2004) Curcumin, the active constituent of turmeric, inhibits amyloid peptide-induced cytochemokine gene expression and CCR5-mediated chemotaxis of THP-1 monocytes by modulating early growth response-1 transcription factor. J Neurochem 91(5):1199–1210. https://doi.org/10.1111/j.1471-4159.2004.02800.x

    Article  CAS  PubMed  Google Scholar 

  198. Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME, Cole GM (2001) Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging 22(6):993–1005. https://doi.org/10.1016/s0197-4580(01)00300-1

    Article  CAS  PubMed  Google Scholar 

  199. Singh SK, Srikrishna S, Castellani RJ, Perry G (2017) Antioxidants in the Prevention and Treatment of Alzheimer’s Disease. In: Al-Gubory KH, Laher I (eds) Nutritional antioxidant therapies: treatments and perspectives. Springer International Publishing, Cham, pp 523–553. https://doi.org/10.1007/978-3-319-67625-8_20

  200. Ide K, Matsuoka N, Yamada H, Furushima D, Kawakami K (2018) Effects of tea catechins on Alzheimer’s disease: recent updates and perspectives. Mol (Basel, Switzerland) 23:9. https://doi.org/10.3390/molecules23092357

    Article  CAS  Google Scholar 

  201. Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park J, Park CW et al (2001) The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 70(5):603–614. https://doi.org/10.1016/s0024-3205(01)01438-2

    Article  CAS  PubMed  Google Scholar 

  202. Haque AM, Hashimoto M, Katakura M, Hara Y, Shido O (2008) Green tea catechins prevent cognitive deficits caused by Abeta1-40 in rats. J Nutr Biochem 19(9):619–626. https://doi.org/10.1016/j.jnutbio.2007.08.008

    Article  CAS  PubMed  Google Scholar 

  203. Kaur T, Pathak CM, Pandhi P, Khanduja KL (2008) Effects of green tea extract on learning, memory, behavior and acetylcholinesterase activity in young and old male rats. Brain Cogn 67(1):25–30. https://doi.org/10.1016/j.bandc.2007.10.003

    Article  PubMed  Google Scholar 

  204. Gomes BAQ, Silva JPB, Romeiro CFR, Dos Santos SM, Rodrigues CA, Gonçalves PR, Sakai JT, Mendes PFS et al (2018) Neuroprotective mechanisms of Resveratrol in Alzheimer’s disease: role of SIRT1. Oxid Med Cell Longev 2018:8152373. https://doi.org/10.1155/2018/8152373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kong D, Yan Y, He XY, Yang H, Liang B, Wang J, He Y, Ding Y et al (2019) Effects of resveratrol on the mechanisms of antioxidants and estrogen in Alzheimer’s disease. Biomed Res Int 2019:8983752. https://doi.org/10.1155/2019/8983752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Arbo BD, André-Miral C, Nasre-Nasser RG, Schimith LE, Santos MG, Costa-Silva D, Muccillo-Baisch AL, Hort MA (2020) Resveratrol derivatives as potential treatments for Alzheimer’s and Parkinson’s disease. Front Aging Neurosci 12:103. https://doi.org/10.3389/fnagi.2020.00103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R et al (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Archives of neurology 60 (12):1685–1691. https://www.doi.org/https://doi.org/10.1001/archneur.60.12.1685

  208. Wang C-Y, **e J-W, Xu Y, Wang T, Cai J-H, Wang X, Zhao B-L, An L et al (2013) Trientine reduces BACE1 activity and mitigates amyloidosis via the AGE/RAGE/NF-κB pathway in a transgenic mouse model of Alzheimer’s disease. Antioxid Redox Signal 19(17):2024–2039. https://doi.org/10.1089/ars.2012.5158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Xu W, Xu Q, Cheng H, Tan X (2017) The efficacy and pharmacological mechanism of Zn7MT3 to protect against Alzheimer’s disease. Sci Rep 7(1):13763. https://doi.org/10.1038/s41598-017-12800-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Dedeoglu A, Cormier K, Payton S, Tseitlin KA, Kremsky JN, Lai L, Li X, Moir RD et al (2004) Preliminary studies of a novel bifunctional metal chelator targeting Alzheimer’s amyloidogenesis. Exp Gerontol 39(11–12):1641–1649. https://doi.org/10.1016/j.exger.2004.08.016

    Article  CAS  PubMed  Google Scholar 

  211. McLachlan DC, Kruck T, Kalow W, Andrews D, Dalton A, Bell M, Smith W (1991) Intramuscular desferrioxamine in patients with Alzheimer’s disease. The Lancet 337(8753):1304–1308. https://doi.org/10.1016/0140-6736(91)92978-B

    Article  Google Scholar 

  212. Faux NG, Ritchie CW, Gunn A, Rembach A, Tsatsanis A, Bedo J, Harrison J, Lannfelt L et al (2010) PBT2 rapidly improves cognition in Alzheimer’s disease: additional phase II analyses. J Alzheim Dis 20(2):509–516. https://doi.org/10.3233/JAD-2010-1390

    Article  CAS  Google Scholar 

  213. Lee J-Y, Friedman JE, Angel I, Kozak A, Koh J-Y (2004) The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human β-amyloid precursor protein transgenic mice. Neurobiol Aging 25(10):1315–1321. https://doi.org/10.1016/j.neurobiolaging.2004.01.005

    Article  CAS  PubMed  Google Scholar 

  214. Cacciatore I, Marinelli L, Di Stefano A, Di Marco V, Orlando G, Gabriele M, Gatta DMP, Ferrone A et al (2018) Chelating and antioxidant properties of l-Dopa containing tetrapeptide for the treatment of neurodegenerative diseases. Neuropeptides 71:11–20. https://doi.org/10.1016/j.npep.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  215. Carrasco-Castilla J, Hernández-Álvarez AJ, Jiménez-Martínez C, Jacinto-Hernández C, Alaiz M, Girón-Calle J, Vioque J, Dávila-Ortiz G (2012) Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Food Chem 135(3):1789–1795. https://doi.org/10.1016/j.foodchem.2012.06.016

    Article  CAS  PubMed  Google Scholar 

  216. Chen H-M, Muramoto K, Yamauchi F, Nokihara K (1996) Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J Agric 44(9):2619–2623. https://doi.org/10.1021/jf950833m

    Article  Google Scholar 

  217. El Ghazouani A, Basle A, Firbank SJ, Knapp CW, Gray J, Graham DW, Dennison C (2011) Copper-binding properties and structures of methanobactins from Methylosinus trichosporium OB3b. Inorg Chem 50(4):1378–1391. https://doi.org/10.1021/ic101965j

    Article  CAS  PubMed  Google Scholar 

  218. McCabe JW, Vangala R, Angel LA (2017) Binding selectivity of methanobactin from Methylosinus trichosporium OB3b for copper (I), silver (I), zinc (II), nickel (II), cobalt (II), manganese (II), lead (II), and iron (II). J Am Soc Mass Spectrom 28(12):2588–2601. https://doi.org/10.1007/s13361-017-1778-9

    Article  CAS  PubMed  Google Scholar 

  219. Jadhav K, Jhilta A, Singh R, Ray E, Sharma N, Shukla R, Singh AK, Verma RK (2023) Clofazimine nanoclusters show high efficacy in experimental TB with amelioration in paradoxical lung inflammation. Biomaterials Advances 154:213594. https://doi.org/10.1016/j.bioadv.2023.213594

    Article  CAS  PubMed  Google Scholar 

  220. Singh R, Jadhav K, Vaghasiya K, Ray E, Shukla R, Verma RK (2023) New generation smart drug delivery systems for rheumatoid arthritis. Curr Pharm Des 29(13):984–1001. https://doi.org/10.2174/1381612829666230406102935

    Article  CAS  PubMed  Google Scholar 

  221. Jadhav K, Ray E, Vaghasiya K, Verma RK (2022) Neurodegenerative disorders due to inhalation of various small particles. In: Nanomedical Drug Delivery for Neurodegenerative Diseases. Elsevier, pp 41–54. https://doi.org/10.1016/B978-0-323-85544-0.00010-1

  222. Shukla R, Thok K, Alam I, Singh R (2020) Nanophytomedicine market: global opportunity analysis and industry forecast. Nanophytomedicine: Concept to Clinic:19–31. https://springer.longhoe.net/chapter/https://doi.org/10.1007/978-981-15-4909-0_2

  223. Vaghasiya K, Ray E, Singh R, Jadhav K, Sharma A, Khan R, Katare OP, Verma RK (2021) Efficient, enzyme responsive and tumor receptor targeting gelatin nanoparticles decorated with concanavalin-A for site-specific and controlled drug delivery for cancer therapy. Mater Sci Eng: C 123:112027. https://doi.org/10.1016/j.msec.2021.112027

    Article  CAS  Google Scholar 

  224. Huang Y, Chang Y, Liu L, Wang J (2021) Nanomaterials for modulating the aggregation of β-amyloid peptides. Mol (Basel, Switzerland) 26(14):4301. https://doi.org/10.3390/molecules26144301

    Article  CAS  Google Scholar 

  225. Liu G, Men P, Harris PL, Rolston RK, Perry G, Smith MA (2006) Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci Lett 406(3):189–193. https://doi.org/10.1016/j.neulet.2006.07.020

    Article  CAS  PubMed  Google Scholar 

  226. Huang Q, Jiang C, **a X, Wang Y, Yan C, Wang X, Lei T, Yang X et al (2023) Pathological BBB crossing melanin-like nanoparticles as metal-ion chelator and neuroinflammation regulator against Alzheimer’s disease. Research. 6:0180. https://doi.org/10.34133/research.0180

  227. Kowalczyk J, Grapsi E, Espargaro A, Caballero AB, Juárez-Jiménez J, Busquets MA, Gamez P, Sabate R et al (2021) Dual effect of prussian blue nanoparticles on Aβ40 aggregation: β-Sheet fibril reduction and copper dyshomeostasis regulation. Biomacromol 22(2):430–440. https://doi.org/10.1021/acs.biomac.0c01290

    Article  CAS  Google Scholar 

  228. Li M, Liu Z, Ren J, Qu X (2012) Inhibition of metal-induced amyloid aggregation using light-responsive magnetic nanoparticle prochelator conjugates. Chem Sci 3(3):868–873. https://doi.org/10.1039/C1SC00631B

    Article  CAS  Google Scholar 

  229. Li M, Shi P, Xu C, Ren J, Qu X (2013) Cerium oxide caged metal chelator: anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer’s disease treatment. Chem Sci 4(6):2536–2542. https://doi.org/10.1039/C3SC50697E

  230. Guan Y, Gao N, Ren J, Qu X (2016) Rationally designed CeNP@ MnMoS4 core-shell nanoparticles for modulating multiple facets of Alzheimer’s disease. Chem - A Eur J 22(41):14523–14526. https://doi.org/10.1002/chem.201603233

    Article  CAS  Google Scholar 

  231. Li M, Guan Y, Ding C, Chen Z, Ren J, Qu X (2016) An ultrathin graphitic carbon nitride nanosheet: a novel inhibitor of metal-induced amyloid aggregation associated with Alzheimer’s disease. J Mater Chem B Chem Sci 4(23):4072–4075. https://doi.org/10.1039/C6TB01215A

    Article  CAS  Google Scholar 

  232. Gong L, Zhang X, Ge K, Yin Y, Machuki JOA, Yang Y, Shi H, Geng D et al (2021) Carbon nitride-based nanocaptor: an intelligent nanosystem with metal ions chelating effect for enhanced magnetic targeting phototherapy of Alzheimer’s disease. Biomaterials 267:120483. https://doi.org/10.1016/j.biomaterials.2020.120483

    Article  CAS  PubMed  Google Scholar 

  233. Zhang C, Yang K, Yu S, Su J, Yuan S, Han J, Chen Y, Gu J et al (2019) Design, synthesis and biological evaluation of hydroxypyridinone-coumarin hybrids as multimodal monoamine oxidase B inhibitors and iron chelates against Alzheimer’s disease. Eur J Med Chem 180:367–382. https://doi.org/10.1016/j.ejmech.2019.07.031

    Article  CAS  PubMed  Google Scholar 

  234. Weinreb O, Amit T, Bar-Am O, Youdim MB (2016) Neuroprotective effects of multifaceted hybrid agents targeting MAO, cholinesterase, iron and β-amyloid in ageing and Alzheimer’s disease. British J Pharmacol 173(13):2080–2094. https://doi.org/10.1111/bph.13318

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are also thankful to Chembiodraw for providing a platform for drawing illustrations.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Archna Panghal: writing—original draft. Raghuraj Singh: writing—original draft. Krishna Jadhav: writing—original draft. Ashima Thakur: writing—original draft. Rahul Kumar Verma— review and editing. Charan Singh: writing—review and editing. Manoj Goyal: writing—review and editing. Jayant Kumar: conceptualization and writing—review and editing. Ajay G. Namdeo: review and editing.

Corresponding author

Correspondence to Jayant Kumar.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Panghal, A., Jadhav, K. et al. Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer’s Disease. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04256-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04256-8

Keywords

Navigation