Log in

Intrathecal Fumagillin Alleviates Chronic Neuropathy-Induced Nociceptive Sensitization and Modulates Spinal Astrocyte-Neuronal Glycolytic and Angiogenic Proteins

  • Research
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Nociceptive sensitization is accompanied by the upregulation of glycolysis in the central nervous system in neuropathic pain. Growing evidence has demonstrated glycolysis and angiogenesis to be related to the inflammatory processes. This study investigated whether fumagillin inhibits neuropathic pain by regulating glycolysis and angiogenesis. Fumagillin was administered through an intrathecal catheter implanted in rats with chronic constriction injury (CCI) of the sciatic nerve. Nociceptive, behavioral, and immunohistochemical analyses were performed to evaluate the effects of the inhibition of spinal glycolysis-related enzymes and angiogenic factors on CCI-induced neuropathic pain. Fumagillin reduced CCI-induced thermal hyperalgesia and mechanical allodynia from postoperative days (POD) 7 to 14. The expression of angiogenic factors, vascular endothelial growth factor (VEGF) and angiopoietin 2 (ANG2), increased in the ipsilateral lumbar spinal cord dorsal horn (SCDH) following CCI. The glycolysis-related enzymes, pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA) significantly increased in the ipsilateral lumbar SCDH following CCI on POD 7 and 14 compared to those in the control rats. Double immunofluorescence staining indicated that VEGF and PKM2 were predominantly expressed in the astrocytes, whereas ANG2 and LDHA were predominantly expressed in the neurons. Intrathecal infusion of fumagillin significantly reduced the expression of angiogenic factors and glycolytic enzymes upregulated by CCI. The expression of hypoxia-inducible factor-1α (HIF-1α), a crucial transcription factor that regulates angiogenesis and glycolysis, was also upregulated after CCI and inhibited by fumagillin. We concluded that intrathecal fumagillin may reduce the expression of ANG2 and LDHA in neurons and VEGF and PKM2 in the astrocytes of the SCDH, further attenuating spinal angiogenesis in neuropathy-induced nociceptive sensitization. Hence, fumagillin may play a role in the inhibition of peripheral neuropathy-induced neuropathic pain by modulating glycolysis and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Dahlhamer J, Lucas J, Zelaya C, Nahin R, Mackey S, DeBar L, Kerns R, Von Korff M et al (2018) Prevalence of chronic pain and high-impact chronic pain among adults - United States, 2016  MMWR Morb Mortal Wkly Rep 67(36):1001–1006

    Article  PubMed  PubMed Central  Google Scholar 

  2. van Hecke O, Austin S, Khan RA, Smith BH, Torrance N (2014) Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain 155(4):654–662

    Article  PubMed  Google Scholar 

  3. Alles SRA, Smith P (2018) Etiology and pharmacology of neuropathic pain. Pharmacol Rev 70(2):315–347

    Article  CAS  PubMed  Google Scholar 

  4. Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, Gilron I, Haanpää M et al (2015)  Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 14(2):162–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weng HR, Taing K, Chen L, Penney A (2023) EZH2 methyltransferase regulates neuroinflammation and neuropathic pain. Cells 12(7):1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wen ZH, Huang S, Kuo HM, Chen CT, Chen NF, Chen WF, Tsui KH et al (2021) Fumagillin attenuates spinal angiogenesis, neuroinflammation, and pain in neuropathic rats after chronic constriction injury. Biomedicines 9(9):1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Afridi R, Kim J, Rahman MH, Suk K (2020) Metabolic regulation of glial phenotypes: implications in neuron-glia interactions and neurological disorders. Front Cell Neurosci 14:20

    Article  PubMed  PubMed Central  Google Scholar 

  8. Martínez-Cuesta MÁ, Blanch-Ruiz M, Ortega-Luna R, Sánchez-López A, Álvarez Á (2020) Structural and functional basis for understanding the biological significance of P2X7 receptor. Int J Mol Sci 21(22):8454

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brandes RP, Rezende F (2021) Glycolysis and inflammation: partners in crime! Circ Res 129(1):30–32

    Article  CAS  PubMed  Google Scholar 

  10. Victor VM, Nuñez C, D’Ocón P, Taylor CT, Esplugues JV, Moncada S (2009) Regulation of oxygen distribution in tissues by endothelial nitric oxide. Circ Res 104:1178–1183

    Article  CAS  PubMed  Google Scholar 

  11. Doyle TM, Salvemini D (2021) Mini-review: mitochondrial dysfunction and chemotherapy-induced neuropathic pain. Neurosci Lett 760:136087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lim TK, Rone M, Lee S, Antel JP, Zhang J (2015) Mitochondrial and bioenergetics dysfunction in trauma-induced painful peripheral neuropathy. Mol Pain 11:58

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lewis JE, Gilmour K, Moorhead MJ, Perry SF, Markham MR (2014) Action potential energetics at the organismal level reveal a trade-off in efficiency at high firing rates. J Neurosci 34(1):197–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang B, Liu S, Fan B, Xu X, Chen Y, Lu R, Xu Z, Liu X (2018) PKM2 is involved in neuropathic pain by regulating ERK and STAT3 activation in rat spinal cord. J Headache Pain 19(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ludman T, Melemedjian O (2019) Bortezomib-induced aerobic glycolysis contributes to chemotherapy-induced painful peripheral neuropathy. Mol Pain 15:1744806919837429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Melkonian EA, Schury MP (2022) Biochemistry, Anaerobic Glycolysis In: StatPearls, Treasure Island (FL): StatPearls Publishing; 2024 Jan

  17. Soto-Heredero G, Gómez de Las Heras MM, Gabandé-Rodríguez E, Oller J, Mittelbrunn M (2020) Glycolysis - a key player in the inflammatory response. Febs j 287(16):3350–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Valvona CJ et al (2016) The regulation and function of lactate dehydrogenase A: therapeutic potential in brain tumor. Brain Pathol 26(1):3–17

    Article  CAS  PubMed  Google Scholar 

  19. Yang W, Lu Z (2015) Pyruvate kinase M2 at a glance. J Cell Sci 128:1655–1660

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jafary F, Ganjalikhany M, Moradi A, Hemati M, Jafari S (2019) Novel peptide inhibitors for lactate dehydrogenase A (LDHA): a survey to inhibit LDHA activity via disruption of protein-protein interaction. Sci Rep 9(1):4686

    Article  PubMed  PubMed Central  Google Scholar 

  21. Laughton JD, Charnay Y, Belloir B, Pellerin L, Magistretti PJ, Bouras C (2000) Differential messenger RNA distribution of lactate dehydrogenase LDH-1 and LDH-5 isoforms in the rat brain. Neuroscience 96(3):619–625

    Article  CAS  PubMed  Google Scholar 

  22. Damasceno LEA, Prado DS, Veras FP, Fonseca MM, Toller-Kawahisa JE, Rosa MH, Públio GA, Martins TV,  et al. (2020) PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation. J Exp Med, 217(10).

  23. Zhao Y, Xu H (2022) Microglial lactate metabolism as a potential therapeutic target for Alzheimer’s disease. Mol Neurodegener 17(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  24. Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, Simmet T, Seufferlein T (2016) PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer 15:3

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lin H, Muramatso R, Maedera N, Tsunematsu H, Hamaguchi M, Koyama Y, Kuroda M, Ono K et al (2018) Extracellular lactate dehydrogenase a release from damaged neurons drives central nervous system angiogenesis. EBioMedicine 27:71–85

    Article  PubMed  Google Scholar 

  26. Sung C-S, Cheng H-J, Chen N-F, Tang S-H, Kuo H-M, Sung P-J, Chen W-F, Wen Z-H (2023) Antinociceptive effects of aaptamine, a sponge component, on peripheral neuropathy in rats. Mar Drugs 21(2):113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dudley A, Griffioen A (2005) Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 26(3):313–347

    Article  Google Scholar 

  28. Lapel M, Weston P, Strassheim D, Karoor V, Burns N, Lyubchenko T, Paucek P, Stenmark K, Gerasimovskaya E (2017) Glycolysis and oxidative phosphorylation are essential for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial cells. Am J Physiol Cell Physiol 312(1):C56–C70

    Article  PubMed  Google Scholar 

  29. Jackson JR, Seed M, Kircher CH, Willoughby DA, Winkler JD (1997) The codependence of angiogenesis and chronic inflammation. FASEB J 11:457–465

    Article  CAS  PubMed  Google Scholar 

  30. Costa C, Incio J, Soares R (2007) Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis 10:149–166

    Article  PubMed  Google Scholar 

  31. Chae S-S, Kamoun WS, Farrar CT, Kirkpatrick ND, Niemeyer E, de Graff AMA, Sorensen AG, Munn LL, Jain RK, Fukumura D (2010) Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin Cancer Res 16:3618–3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998

    Article  CAS  PubMed  Google Scholar 

  33. Hashizume H, Falcón BL, Kuroda T, Baluk P, Coxon A, Yu D, Bready JV, Oliner JD, McDonald DM (2010) Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. Cancer Res 70:2213–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Greenberg DA, ** K (2005) From angiogenesis to neuropathology. Nature 438:954–959

    Article  CAS  PubMed  Google Scholar 

  35. Lefkove B, Govindarajan B, Arbiser JL (2007) Fumagillin: an anti-infective as a parent molecule for novel angiogenesis inhibitors. Expert Rev Anti Infect Ther 5(4):573–579

    Article  CAS  PubMed  Google Scholar 

  36. Pan D, Sanyal N, Schmieder AH, Senpan A, Kim B, Yang X, Hu G, Allen JS et al (2012) Antiangiogenic nanotherapy with lipase-labile Sn-2 fumagillin prodrug. Nanomedicine (Lond) 7(10):1507–1519

    Article  CAS  PubMed  Google Scholar 

  37. Zhou HF, Yan H, Hu Y, Springer LE, Yang X, Wickline SA, Pan D, Lanza GM et al (2014) Fumagillin prodrug nanotherapy suppresses macrophage inflammatory response via endothelial nitric oxide. ACS Nano 8(7):7305–7317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vatte S, Ugale R (2023) HIF-1, an important regulator in potential new therapeutic approaches to ischemic stroke. Neurochem Int 170:105605

    Article  CAS  PubMed  Google Scholar 

  39. Xu X, Yang M, Zhang B, Dong J, Zhuang Y, Ge Q, Niu F, Liu B (2023) HIF-1α participates in secondary brain injury through regulating neuroinflammation. Transl Neurosci 14(1):20220272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kierans SJ, Taylor CT (2021) Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J Physiol 599(1):23–37

    Article  CAS  PubMed  Google Scholar 

  41. Hsieh YL, Chou LW, Chang PL, Yang CC, Kao MJ, Hong CZ (2012) Low-level laser therapy alleviates neuropathic pain and promotes function recovery in rats with chronic constriction injury: possible involvements in hypoxia-inducible factor 1α (HIF-1α). J Comp Neurol 520(13):2903–2916

    Article  CAS  PubMed  Google Scholar 

  42. He J, Qin Z, Chen X, He W, Li D, Zhang L, Le Y, **ong Q et al (2022) HIF-1α ameliorates diabetic neuropathic pain via parkin-mediated mitophagy in a mouse model. Biomed Res Int 16:5274375

    Google Scholar 

  43. Lin YC, Huang SY, Jean YH, Chen WF, Sung CS, Kao ES, Wang HM, Chakraborty C et al (2011)  Intrathecal lemnalol, a natural marine compound obtained from formosan soft coral, attenuates nociceptive responses and the activity of spinal glial cells in neuropathic rats. Behav. Pharmacol 22:739–750

    Article  CAS  PubMed  Google Scholar 

  44. Bennett GJ, **e YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  PubMed  Google Scholar 

  45. Huang SY, Sung C, Chen WF, Chen CH, Feng CW, Yang SN, Hung HC, Chen NF, Lin PR et al (2015) Involvement of phosphatase and tensin homolog deleted from chromosome 10 in rodent model of neuropathic pain. J Neuroinflammation 12:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci 53:55–63

    CAS  Google Scholar 

  47. Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour confocal images. J Microsc 169(3):375–382

    Article  CAS  PubMed  Google Scholar 

  48. Sung CS, Cherng CH, Wen ZH, Chang WK, Huang SY, Lin SL, Chan KH, Wong CS (2012) Minocycline and fluorocitrate suppress spinal nociceptive signaling in intrathecal IL-1beta-induced thermal hyperalgesic rats. Glia 60:2004–2007

    Article  PubMed  Google Scholar 

  49. Kiguchi N, Kobayashi Y, Kadowaki Y, Fukazawa Y, Saika F, Kishioka S (2014) Vascular endothelial growth factor signaling in injured nerves underlies peripheral sensitization in neuropathic pain. J Neurochem 129(1):169–178

    Article  CAS  PubMed  Google Scholar 

  50. Breier G (2000) Functions of the VEGF/VEGF receptor system in the vascular system. Semin Thromb Hemost 26:553–559

    Article  CAS  PubMed  Google Scholar 

  51. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  CAS  PubMed  Google Scholar 

  52. Seabrook TJ, Littlewood-Evans A, Brinkmann V, Pollinger B, Schnell C, Hiestand PC (2010) Angiogenesis is present in experimental autoimmune encephalomyelitis and pro-angiogenic factors are increased in multiple sclerosis lesions. J. Neuroinflamm 7:95

    Article  Google Scholar 

  53. Johnson EA, Guignet M, Dao TL, Hamilton TA, Kan RK (2015) Interleukin-18 expression increases in response to neurovascular damage following soman-induced status epilepticus in rats. J. Inflamm 12:43

    Article  Google Scholar 

  54. Gantenbein AR, Sándor PS (2006) Physiological parameters as biomarkers migraine. Headache 46:1069–1074

    Article  PubMed  Google Scholar 

  55. Montoro CI, Duschek S, de Guevara CM, Reyes Del Paso GA (2016) Patterns of cerebral blood flow modulation during painful stimulation in fibromyalgia: a transcranial doppler sonography study.  Pain Med 17:2256–2267

    Article  PubMed  Google Scholar 

  56. Kusumbe AP, Ramasamy S, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507:323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kamenaga T, Kuroda Y, Nagai K, Tsubosaka M, Takashima Y, Kikuchi K, Fujita M, Ikuta K et al (2021) Cryopreserved human adipose-derived stromal vascular fraction maintains fracture healing potential via angiogenesis and osteogenesis in an immunodeficient rat model. Stem Cell Res Ther 12:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB (2019) Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 146:97–125

    Article  CAS  PubMed  Google Scholar 

  59. Tas SW, Maracle C, Balogh E, Szekanecz Z (2016) Targeting of proangiogenic signalling pathways in chronic inflammation. Nat Rev Rheumatol 2016 12(2):111–122

    Article  CAS  Google Scholar 

  60. Tsivelekas K, Evangelopoulos DS, Pallis D, Benetos IS, Papadakis SA, Vlamis J, Pneumaticos SG (2022) Angiogenesis in spinal cord injury: progress and treatment. Cureus 30(5):e25475

    Google Scholar 

  61. Cao Y, Langer R, Ferrara N (2023) Targeting angiogenesis in oncology, ophthalmology and beyond. Nat Rev Drug Discov 22:476–495

    Article  CAS  PubMed  Google Scholar 

  62. Yang Y, Torbey M (2020) Angiogenesis and blood-brain barrier permeability in vascular remodeling after stroke. Curr Neuropharmacol 18:1250–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tsuji-Tamura K, Ogawa M (2018) Morphology regulation in vascular endothelial cells. Inflamm Regen 38:25

    Article  PubMed  PubMed Central  Google Scholar 

  64. Evans CE, Iruela-Arispe M, Zhao YY (2021) Mechanisms of endothelial regeneration and vascular repair and their application to regenerative medicine. Am J Pathol 191:52–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Apte RS, Chen D, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176:1248–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tsuji-Tamura K, Ogawa M (2016) Inhibition of the PI3K-Akt and mTORC1 signaling pathways promotes the elongation of vascular endothelial cells. J Cell Sci 129:1165–1178

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Y, Liu J, Zou T, Qi Y, Yi B, Dissanayaka WL, Zhang C (2021) DPSCs treated by TGF-β1 regulate angiogenic sprouting of three-dimensionally co-cultured HUVECs and DPSCs through VEGF-Ang-Tie2 signaling. Stem Cell Res Ther 12(1):281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Augustin HG, Koh G, Thurston G, Alitalo K (2009)  Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10(3):165–177

    Article  CAS  PubMed  Google Scholar 

  69. Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G, Gale NW, Witzenrath M, Rosseau S, Suttorp N, Sobke A, Herrmann M, Preissner KT, Vajkoczy P, Augustin HG (2006) Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12(2):235–239

    Article  CAS  PubMed  Google Scholar 

  70. Imhof BA, Aurrand-Lions M (2006) Angiogenesis and inflammation face off. Nat Med 12(2):171–172

    Article  CAS  PubMed  Google Scholar 

  71. Kim H, Koh G (2011)  Ang2, the instigator of inflammation. Blood 118(18):4767–4768

    Article  PubMed  Google Scholar 

  72. Li Z, Korhonen EA, Merlini A, Strauss J, Wihuri E, Nurmi H, Antila S, Paech J et al (2020) Angiopoietin-2 blockade ameliorates autoimmune neuroinflammation by inhibiting leukocyte recruitment into the CNS. J Clin Invest 130(4):1977–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Koh YJ, Kim H-Z, Hwang S-I, Lee JE, Oh N, Jung K, Kim M, Kim KE et al (2010) Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage. Cancer Cell 18(2):171–184

    Article  CAS  PubMed  Google Scholar 

  74. Devanney NA, Stewart A, Gensel JC (2020) Microglia and macrophage metabolism in CNS injury and disease: the role of immunometabolism in neurodegeneration and neurotrauma. Exp Neurol 329:113310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miyamoto K, Ishikura K, Kume K, Ohsawa M (2019) Astrocyte-neuron lactate shuttle sensitizes nociceptive transmission in the spinal cord. Glia 67(1):27–36

    Article  PubMed  Google Scholar 

  76. Liu P, Chen T, Tan F, Tian J, Zheng L, Deng Y, Chen J, Chi X (2020) Dexmedetomidine alleviated neuropathic pain in dorsal root ganglion neurons by inhibition of anaerobic glycolysis activity and enhancement of ROS tolerance. Biosci Rep 40(5):BSR20191994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koukourakis MI, Giatromanolaki A, Sivridis E, Bougioukas G, Didilis V, Gatter KC, Harris AL, Tumour and Angiogenesis Research Group (2003) Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. Br J Cancer 89(5):877–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Giatromanolaki A, Sivridis E, Gatter KC, Turley H, Harris AL, Koukourakis MI, Angiogenesis Research Group (2006) Lactate dehydrogenase 5 (LDH-5) expression in endometrial cancer relates to the activated VEGF/VEGFR2(KDR) pathway and prognosis. Gynecol Oncol 103(3):912–918

    Article  CAS  PubMed  Google Scholar 

  79. Liu Y, Guo J, Liu Y, Wang K, Ding W, Wang H, Liu X, Zhou S, Lu XC, Yang HB, Xu C, Gao W, Zhou L et al (2018) Nuclear lactate dehydrogenase A senses ROS to produce α-hydroxybutyrate for HPV-induced cervical tumor growth. Nat Commun 9(1):4429

    Article  PubMed  PubMed Central  Google Scholar 

  80. Teixeira-Santos L, Albino-Teixeira A, Pinho D (2020) Neuroinflammation, oxidative stress and their interplay in neuropathic pain: focus on specialized pro-resolving mediators and NADPH oxidase inhibitors as potential therapeutic strategies. Pharmacol Res 162:105280

    Article  CAS  PubMed  Google Scholar 

  81. Dai CQ, Guo Y, Chu XY (2020) Neuropathic pain: the dysfunction of Drp1, mitochondria, and ROS homeostasis. Neurotox Res 38(3):553–563

    Article  CAS  PubMed  Google Scholar 

  82. Hirschhaeuser F, Sattler U, Mueller-Klieser W (2011)  Lactate: a metabolic key player in cancer. Cancer Res 71(22):6921–6925

    Article  CAS  PubMed  Google Scholar 

  83. Porporato PE, Payen V, De Saedeleer CJ, Préat V, Thissen JP, Feron O, Sonveaux P (2012) Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis 2012 15(4):581–592

    CAS  Google Scholar 

  84. Yuen TJ, Silbereis JC, Griveau A, Chang SM, Daneman R, Fancy SPJ, Zahed H, Maltepe E et al (2014) Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell 158(2):383–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Guruceaga X, Perez-Cuesta U, Abad-Diaz de Cerio A, Gonzalez O, Alonso RM, Hernando FL, Ramirez-Garcia A, Rementeria A (2019) Fumagillin, a mycotoxin of aspergillus fumigatus: biosynthesis, Biological activities, detection, and applications,. Toxins (Basel) 12(1)

  86. Castro BM, Prieto M, Silva LC (2014) Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res 54:53–67

    Article  CAS  PubMed  Google Scholar 

  87. Merrill AH Jr, Wang E, Vales TR, Smith ER, Schroeder JJ, Menaldino DS, Alexander C, Crane HM et al (1996) Fumonisin toxicity and sphingolipid biosynthesis. Adv Exp Med Biol 392:297–306

    Article  CAS  PubMed  Google Scholar 

  88. Riley RT, Wang E, Schroeder JJ, Smith ER, Plattner RD, Abbas H, Yoo HS, Merrill AH Jr (1996) Evidence for disruption of sphingolipid metabolism as a contributing factor in the toxicity and carcinogenicity of fumonisins. Nat Toxins 4(1):3–15

    Article  CAS  PubMed  Google Scholar 

  89. Hannun YA, Bell R (1989) Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243:500–507

    Article  CAS  PubMed  Google Scholar 

  90. Veronica Kalhori KK, Asghar MY, Bergelin N, Jaakkola P (2013) Sphingosine-1-phosphate as a regulator of hypoxia-induced factor-1α in thyroid follicular carcinoma cell. PLoS One 8(6):e66189

    Article  PubMed  PubMed Central  Google Scholar 

  91. Krock BL, Skuli N, Simon MC (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2(12):1117–1133

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sanmarco LM, Rone JM, Polonio CM, Lahore GF, Giovannoni F, Ferrara K, Gutierrez-Vazquez C, Li N, Sokolovska A, Plasencia A, Akl CF, Nanda P, Heck ES, Li Z et al (2023) Lactate limits CNS autoimmunity by stabilizing HIF-1α in dendritic cells. Nature 620(7975):881–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pucino V, Certo M, Bulusu V, Cucchi D, Goldmann K, Pontarini E, Haas R, Smith J et al (2019) Lactate Buildup at the site of chronic inflammation promotes Disease by inducing CD4(+) T cell metabolic rewiring. Cell Metab 30(6):1055-1074e1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang ZH, Peng WB, Zhang P, Yang XP, Zhou Q (2021) Lactate in the tumour microenvironment: from immune modulation to therapy. EBioMedicine 73:103627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chaoguang Y, Pan R-Y, Guan F, Yuan Z (2024) Lactate metabolism in neurodegenerative diseases. Neural Regen Res 19(1):69–74

    Article  Google Scholar 

  96. Qi W, Keenan HA, Li Q, Ishikado A, Kannt A, Sadowski T, Yorek MA, Wu I-H, Lockhart S et al (2017) Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med 23(6):753–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Guo D, Gu J, Jiang H, Ahmed A, Zhang Z, Gu Y (2016) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to the development of pulmonary arterial hypertension. J Mol Cell Cardiol 91:179–187

    Article  CAS  PubMed  Google Scholar 

  98. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE, van den Bosch MW, Quinn SR et al (2015) Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab 21(1):65–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen CC, Chen Y, Hsiao HY, Chang C, Chern Y (2013) Neurovascular abnormalities in brain disorders: highlights with angiogenesis and magnetic resonance imaging studies. J Biomed Sci 20:47–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Feng Y et al (2022) Pyruvate kinase M2 (PKM2) improve symptoms of post-ischemic stroke depression by activating VEGF to mediate the MAPK/ERK pathway. Brain Behav 12(1):e2450

    Article  CAS  PubMed  Google Scholar 

  101. Dai M et al (2023) LDHA as a regulator of T cell fate and its mechanisms in disease. Biomed Pharmacother 158:114164

    Article  CAS  PubMed  Google Scholar 

  102. Kong E et al (2022) Glycometabolism reprogramming of glial cells in central nervous system: novel target for neuropathic pain. Front Immunol 13:861290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Grammas P (2011) Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer’s disease. J Neuroinflammation 8:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The illustrations (Fig. 8) were created using BioRender.com.

Funding

This study was supported by National Science and Technology Council, Taiwan, 109-2314-B-075-045-MY3, and Taipei Veterans General Hospital, Taiwan, V113C-056.

Author information

Authors and Affiliations

Authors

Contributions

ZHW and CSS designed the experiments; ZHW and CSS supervised the design and course of the experiments; HJC, SYH and SHT performed the experiments; SYH, WNT, NFC, FWS and CSS performed the analyses and interpretation of the experiments; ZHW, ZSW and CSS wrote the manuscript; ZHW and CSS reviewed and edited the manuscript. All of the authors read and approved the final manuscript.

Corresponding author

Correspondence to Chun-Sung Sung.

Ethics declarations

Ethics Approval

All animal experiments were approved by the Institutional Animal Care and Use Committee of National Sun Yat-sen University (Approval No. IACUC-111-37).

Consent to Participate

Not applicable.

Consent for Publication

Consent for publication was obtained from the participants.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, ZH., Wu, ZS., Cheng, HJ. et al. Intrathecal Fumagillin Alleviates Chronic Neuropathy-Induced Nociceptive Sensitization and Modulates Spinal Astrocyte-Neuronal Glycolytic and Angiogenic Proteins. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04254-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04254-w

Keywords

Navigation