Log in

Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson’s Disease

  • Review
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson's disease (PD) is a prevalent and burdensome neurodegenerative disorder that has been extensively researched to understand its complex etiology, diagnosis, and treatment. The interplay between genetic and environmental factors in PD makes its pathophysiology difficult to comprehend, emphasizing the need for further investigation into genetic and epigenetic markers involved in the disease. Early diagnosis is crucial for optimal management of the disease, and the development of novel diagnostic biomarkers is ongoing. Although many efforts have been made in the field of recognition and interpretation of the mechanisms involved in the pathophysiology of the disease, the current knowledge about PD is just the tip of the iceberg. By scrutinizing genetic and epigenetic patterns underlying PD, new avenues can be opened for dissecting the pathology of the disorder, leading to more precise and efficient diagnostic and therapeutic approaches. This review emphasizes the importance of studying dysregulated cell signaling pathways and molecular processes associated with genes and epigenetic alterations in understanding PD, paving the way for the development of novel therapeutic strategies to combat this devastating disease.

Graphical Abstract

Epigenetic signaling cascade in PD. Figure was extracted from the Pathway Studio, Elsevier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

    Article  CAS  PubMed  Google Scholar 

  2. Poewe W et al (2017) Parkinson disease. Nat Rev Dis Prim 3(1):1–21. https://doi.org/10.1038/nrdp.2017.13

    Article  Google Scholar 

  3. Hipp MS, Kasturi P, Hartl FU (2019) The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 20(7):421–435. https://doi.org/10.1038/s41580-019-0101-y

    Article  CAS  PubMed  Google Scholar 

  4. Skipper L, Liu J-J, Tan E-K (2006) Polymorphisms in candidate genes: implications for the current treatment of Parkinson’s disease. Expert Opin Pharmacother 7(7):849–855. https://doi.org/10.1517/14656566.7.7.849

    Article  CAS  PubMed  Google Scholar 

  5. Sharma A et al (2019) Common genetic variants associated with Parkinson’s disease display widespread signature of epigenetic plasticity. Sci Rep 9(1):18464. https://doi.org/10.1038/s41598-019-54865-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(R2):R183–R194. https://doi.org/10.1093/hmg/ddm159

    Article  CAS  PubMed  Google Scholar 

  7. Puschmann A (2013) Monogenic Parkinson’s disease and parkinsonism: clinical phenotypes and frequencies of known mutations. Parkinsonism Relat Disord 19(4):407–415. https://doi.org/10.1016/j.parkreldis.2013.01.020

    Article  PubMed  Google Scholar 

  8. Schulte C, Gasser T (2011) Genetic basis of Parkinson’s disease: inheritance, penetrance, and expression. Appl Clin Genet:67–80. https://doi.org/10.2147/TACG.S11639

  9. Smith L, Schapira AH (2022) GBA variants and Parkinson disease: mechanisms and treatments. Cells 11(8):1261. https://doi.org/10.3390/cells11081261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gan-Or Z et al (2008) Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology 70(24):2277–2283. https://doi.org/10.1212/01.wnl.0000304039.11891.29

    Article  CAS  PubMed  Google Scholar 

  11. Sidransky E, Lopez G (2012) The link between the GBA gene and parkinsonism. The Lancet Neurol 11(11):986–998. https://doi.org/10.1016/S1474-4422(12)70190-4

    Article  CAS  PubMed  Google Scholar 

  12. Pedersen CC et al (2021) A systematic review of associations between common SNCA variants and clinical heterogeneity in Parkinson’s disease. npj. Parkinson's Dis 7(1):54. https://doi.org/10.1038/s41531-021-00196-5

    Article  Google Scholar 

  13. Chittoor-Vinod VG, Nichols RJ, Schüle B (2021) Genetic and environmental factors influence the pleomorphy of LRRK2 parkinsonism. Int J Mol Sci 22(3):1045. https://doi.org/10.3390/ijms22031045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lucchini RG et al (2020) Metal exposure and SNCA rs356219 polymorphism associated with Parkinson disease and parkinsonism. Front Neurol 11:556337. https://doi.org/10.3389/fneur.2020.556337

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen B et al (2019) Interactions between iron and α-synuclein pathology in Parkinson’s disease. Free Radic Biol Med 141:253–260. https://doi.org/10.1016/j.freeradbiomed.2019.06.024

    Article  CAS  PubMed  Google Scholar 

  16. Yılmazer S et al (2021) Low Levels of LRRK2 Gene expression are associated with LRRK2 SNPs and contribute to Parkinson’s disease progression. Neuro Mol Med 23:292–304. https://doi.org/10.1007/s12017-020-08619-x

    Article  CAS  Google Scholar 

  17. Lake J et al (2022) Coding and noncoding variation in LRRK2 and Parkinson’s disease risk. Mov Disord 37(1):95–105. https://doi.org/10.1002/mds.28787

    Article  CAS  PubMed  Google Scholar 

  18. Guadagnolo D et al (2021) Genotype-phenotype correlations in monogenic Parkinson disease: a review on clinical and molecular findings. Front Neurol 12:648588. https://doi.org/10.3389/fneur.2021.648588

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cilia R et al (2014) LRRK2 mutations in Parkinson’s disease: confirmation of a gender effect in the Italian population. Parkinsonism Relat Disord 20(8):911–914. https://doi.org/10.1016/j.parkreldis.2014.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jia R et al (2023) The relationship between iron and LRRK2 in a 6-OHDA-induced Parkinson’s disease model. Int J Mol Sci 24(4):3709. https://doi.org/10.3390/ijms24043709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu Y-R et al (2020) Rare VPS35 A320V variant in taiwanese Parkinson’s disease indicates disrupted CI-MPR sorting and impaired mitochondrial morphology. Brain Sci 10(11):783. https://doi.org/10.3390/brainsci10110783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zimprich A et al (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89(1):168–175. https://doi.org/10.1016/j.ajhg.2011.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lesage S et al (2012) Identification of VPS35 mutations replicated in French families with Parkinson disease. Neurology 78(18):1449–1450. https://doi.org/10.1212/WNL.0b013e318253d5f2

    Article  CAS  PubMed  Google Scholar 

  24. Shiner T et al (2021) The effect of GBA mutations and APOE polymorphisms on dementia with Lewy bodies in Ashkenazi Jews. J Alzheimers Dis 80(3):1221–1229. https://doi.org/10.3233/JAD-201295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mallett V et al (2016) GBA p. T369M substitution in Parkinson disease: polymorphism or association? A meta-analysis. Neurology. Genetics 2(5). https://doi.org/10.1212/NXG.0000000000000104

  26. Davis MY et al (2016) Association of GBA mutations and the E326K polymorphism with motor and cognitive progression in Parkinson disease. JAMA Neurol 73(10):1217–1224. https://doi.org/10.1001/jamaneurol.2016.2245

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ortega RA et al (2022) Differences in sex-specific frequency of glucocerebrosidase variant carriers and familial parkinsonism. Mov Disord 37(11):2217–2225. https://doi.org/10.1002/mds.29197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ton ND et al (2020) Rare and novel variants of PRKN and PINK1 genes in Vietnamese patients with early-onset Parkinson’s disease. Mol Genet Genomic Med 8(10):e1463. https://doi.org/10.1002/mgg3.1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Castelo Rueda MP et al (2021) Frequency of heterozygous parkin (PRKN) variants and penetrance of Parkinson’s disease risk markers in the population-based CHRIS cohort. Front Neurol 12:706145. https://doi.org/10.3389/fneur.2021.706145

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhu W et al (2022) Heterozygous PRKN mutations are common but do not increase the risk of Parkinson’s disease. Brain 145(6):2077–2091. https://doi.org/10.1093/brain/awab456

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hayashida A et al (2021) The identified clinical features of Parkinson’s disease in homo-, heterozygous and digenic variants of PINK1. Neurobiol Aging 97:146. e1–146. e13. https://doi.org/10.1016/j.neurobiolaging.2020.06.017

    Article  CAS  PubMed  Google Scholar 

  32. Liu J et al (2020) Association between a DJ-1 polymorphism and the risk of Parkinson’s disease: a PRISMA-compliant systematic review and meta-analysis. J Int Med Res 48(8):0300060520947943. https://doi.org/10.1177/0300060520947943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abou-Sleiman PM et al (2003) The role of pathogenic DJ-1 mutations in Parkinson’s disease. Ann Neurol 54(3):283–286. https://doi.org/10.1002/ana.10675

    Article  CAS  PubMed  Google Scholar 

  34. De Marco E et al (2010) DJ-1 is a Parkinson’s disease susceptibility gene in southern Italy. Clin Genet 77(2):183–188. https://doi.org/10.1111/j.1399-0004.2009.01310.x

    Article  CAS  PubMed  Google Scholar 

  35. Vilariño-Güell C et al (2009) ATP13A2 variability in Parkinson disease. Hum Mutat 30(3):406–410. https://doi.org/10.1002/humu.20877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin C et al (2008) Novel ATP13A2 variant associated with Parkinson disease in Taiwan and Singapore. Neurology 71(21):1727–1732. https://doi.org/10.1212/01.wnl.0000335167.72412.68

    Article  CAS  PubMed  Google Scholar 

  37. Marsili L, Mahajan A (2022) Clinical milestones in Parkinson’s disease: past, present, and future. J Neurol Sci:432. https://doi.org/10.1016/j.jns.2021.120082

  38. Findley LJ (2007) The economic impact of Parkinson’s disease. Parkinsonism Relat Disord 13:S8–S12. https://doi.org/10.1016/j.parkreldis.2007.06.003

    Article  PubMed  Google Scholar 

  39. Seppi K et al (2019) Update on treatments for nonmotor symptoms of Parkinson’s disease—an evidence-based medicine review. Mov Disord 34(2):180–198. https://doi.org/10.1002/mds.27602

    Article  PubMed  PubMed Central  Google Scholar 

  40. Henderson MX, Trojanowski JQ, Lee VM-Y (2019) α-Synuclein pathology in Parkinson’s disease and related α-synucleinopathies. Neurosci Lett 709:134316. https://doi.org/10.1016/j.neulet.2019.134316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spehlmann R, Stahl SM (1976) Dopamine acetylcholine imbalance in Parkinson’s disease. Possible regenerative overgrowth of cholinergic axon terminals. Lancet 1(7962):724–726. https://doi.org/10.1016/s0140-6736(76)93095-6

    Article  CAS  PubMed  Google Scholar 

  42. Kassubek J (2014) Diagnostic procedures during the course of Parkinson’s disease. Basal Ganglia 4(1):15–18. https://doi.org/10.1016/j.baga.2014.02.001

    Article  Google Scholar 

  43. Papuć E, Rejdak K (2020) Increased CSF NFL in non-demented Parkinson’s disease subjects reflects early white matter damage. Frontiers in Aging. Neuroscience:12. https://doi.org/10.3389/fnagi.2020.00128

  44. Tolosa E et al (2021) Challenges in the diagnosis of Parkinson’s disease. The Lancet Neurol 20(5):385–397. https://doi.org/10.1016/S1474-4422(21)00030-2

    Article  CAS  PubMed  Google Scholar 

  45. Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: a review. Jama 323(6):548–560. https://doi.org/10.1001/jama.2019.22360

    Article  PubMed  Google Scholar 

  46. Tönges L et al (2022) Blood-based biomarker in Parkinson’s disease: potential for future applications in clinical research and practice. J Neural Transm (Vienna) 129(9):1201–1217. https://doi.org/10.1007/s00702-022-02498-1

    Article  PubMed  Google Scholar 

  47. Sabaei M et al (2023) Salivary levels of disease-related biomarkers in the early stages of Parkinson’s and Alzheimer’s disease: a cross-sectional study. IBRO Neurosci Rep 14:285–292. https://doi.org/10.1016/j.ibneur.2023.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Van Heesbeen H, Smidt MPJF (2019) Entanglement of genetics and epigenetics in Parkinson’s disease. Front Neurosci 13:277. https://doi.org/10.3389/fnins.2019.00277

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cherubini M, Wade-Martins R (2018) Convergent pathways in Parkinson’s disease. Cell Tissue Res 373:79–90. https://doi.org/10.1007/s00441-017-2700-2

    Article  CAS  PubMed  Google Scholar 

  50. Klemann CJ et al (2017) Integrated molecular landscape of Parkinson’s disease. npj. Parkinson's Dis 3(1):14. https://doi.org/10.1038/s41531-017-0015-3

    Article  CAS  Google Scholar 

  51. Cai Y et al (2021) The neurodevelopmental role of dopaminergic signaling in neurological disorders. Neurosci Lett 741:135540. https://doi.org/10.1016/j.neulet.2020.135540

    Article  CAS  PubMed  Google Scholar 

  52. Emamzadeh FN, Surguchov A (2018) Parkinson’s disease: biomarkers, treatment, and risk factors. Front Neurosci 12:612. https://doi.org/10.3389/fnins.2018.00612

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mishra A, Singh S, Shukla S (2018) Physiological and functional basis of dopamine receptors and their role in neurogenesis: possible implication for Parkinson’s disease. J Exp Neurosci 12:1179069518779829. https://doi.org/10.1177/1179069518779829

    Article  PubMed  PubMed Central  Google Scholar 

  54. Blauwendraat C, Nalls MA, Singleton AB (2020) The genetic architecture of Parkinson’s disease. The Lancet Neurol 19(2):170–178. https://doi.org/10.1016/S1474-4422(19)30287-X

    Article  CAS  PubMed  Google Scholar 

  55. Hisahara S, Shimohama S (2011) Dopamine receptors and Parkinson’s disease. Int J Med Chem 2011. https://doi.org/10.1155/2011/403039

  56. Majidinia M et al (2016) The roles of non-coding RNAs in Parkinson’s disease. Mol Biol Rep 43:1193–1204. https://doi.org/10.1007/s11033-016-4054-3

    Article  CAS  PubMed  Google Scholar 

  57. Alkanli N, Ay A (2019) The relationship between alpha-synuclein (SNCA) gene polymorphisms and development risk of Parkinson’s disease. In: Synucleins-Biochemistry and Role in Diseases. IntechOpen. https://doi.org/10.5772/intechopen.82808

    Chapter  Google Scholar 

  58. Platt NJ et al (2012) Striatal dopamine transmission is subtly modified in human A53Tα-synuclein overexpressing mice. PLoS One 7(5):e36397. https://doi.org/10.1371/journal.pone.0036397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hattori N, Mizuno Y (2004) Pathogenetic mechanisms of parkin in Parkinson’s disease. Lancet 364(9435):722–724. https://doi.org/10.1016/S0140-6736(04)16901-8

    Article  CAS  PubMed  Google Scholar 

  60. Kamienieva I, Duszyński J, Szczepanowska J (2021) Multitasking guardian of mitochondrial quality: Parkin function and Parkinson’s disease. Transl Neurodegen 10(1):1–18. https://doi.org/10.1186/s40035-020-00229-8

    Article  CAS  Google Scholar 

  61. Vaughan RA, Foster JD (2013) Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol Sci 34(9):489–496. https://doi.org/10.1016/j.tips.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  62. Dolgacheva LP et al (2019) Role of DJ-1 in the mechanism of pathogenesis of Parkinson’s disease. J Bioenerg Biomembr 51:175–188. https://doi.org/10.1007/s10863-019-09798-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tozzi A et al (2018) Dopamine D2 receptor activation potently inhibits striatal glutamatergic transmission in a G2019S LRRK2 genetic model of Parkinson’s disease. Neurobiol Dis 118:1–8. https://doi.org/10.1016/j.nbd.2018.06.008

    Article  CAS  PubMed  Google Scholar 

  64. Zhou ZD et al (2022) The role of tyrosine hydroxylase–dopamine pathway in Parkinson’s disease pathogenesis. Cell Mol Life Sci 79(12):599. https://doi.org/10.1007/s00018-022-04574-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stott SR et al (2019) Loss of FBXO7 results in a Parkinson’s -like dopaminergic degeneration via an RPL23–MDM2–TP53 pathway. J Pathol 249(2):241–254. https://doi.org/10.1002/path.5312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Park J et al (2022) The role of histone modifications: from neurodevelopment to neurodiseases. Signal Transduct Target Ther 7(1):217. https://doi.org/10.1038/s41392-022-01078-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pasquini J, Brooks DJ, Pavese N (2021) The cholinergic brain in Parkinson’s disease. Movement Disord Clin Pract 8(7):1012–1026. https://doi.org/10.1002/mdc3.13319

    Article  Google Scholar 

  68. Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221(2):564–573. https://doi.org/10.1016/j.bbr.2009.12.048

    Article  CAS  PubMed  Google Scholar 

  69. Creed RB et al (2019) Basal and evoked neurotransmitter levels in Parkin, DJ-1, PINK1 and LRRK2 knockout rat striatum. Neuroscience 409:169–179. https://doi.org/10.1016/j.neuroscience.2019.04.033

    Article  CAS  PubMed  Google Scholar 

  70. Myslivecek J (2021) Two players in the field: hierarchical model of interaction between the dopamine and acetylcholine signaling systems in the striatum. Biomedicines 9(1):25. https://doi.org/10.3390/biomedicines9010025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu S-Y et al (2018) The effect of LRRK2 mutations on the cholinergic system in manifest and premanifest stages of Parkinson’s disease: a cross-sectional PET study. The Lancet Neurol 17(4):309–316. https://doi.org/10.1016/S1474-4422(18)30032-2

    Article  PubMed  Google Scholar 

  72. Skaper SD (2018) Neurotrophic factors: an overview. Neurotrophic Factors: Methods and Protocols:1–17. https://doi.org/10.1007/978-1-4939-7571-6_1

  73. Palasz E et al (2020) BDNF as a promising therapeutic agent in Parkinson’s disease. Int J Mol Sci 21(3):1170. https://doi.org/10.3390/ijms21031170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Numakawa T, Odaka H (2021) Brain-derived neurotrophic factor signaling in the pathophysiology of Alzheimer’s disease: beneficial effects of flavonoids for neuroprotection. Int J Mol Sci 22(11):5719. https://doi.org/10.3390/ijms22115719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rahmani F et al (2019) Plasma levels of brain-derived neurotrophic factor in patients with Parkinson disease: a systematic review and meta-analysis. Brain Res 1704:127–136. https://doi.org/10.1016/j.brainres.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  76. Soman SK et al (2021) Cleaved PINK1 induces neuronal plasticity through PKA-mediated BDNF functional regulation. J Neurosci Res 99(9):2134–2155. https://doi.org/10.1002/jnr.24854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Feng C-W et al (2016) Neuroprotective effect of the marine-derived compound 11-dehydrosinulariolide through DJ-1-related pathway in in vitro and in vivo models of Parkinson’s disease. Mar Drugs 14(10):187. https://doi.org/10.3390/md14100187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. López-Grueso MJ et al (2022) Deficiency of Parkinson’s related protein DJ-1 alters Cdk5 signalling and induces neuronal death by aberrant cell cycle re-entry. Cell Mol Neurobiol:1–13. https://doi.org/10.1007/s10571-022-01206-7

  79. Mesa-Infante V et al (2022) Long-term exposure to GDNF induces dephosphorylation of Ret, AKT, and ERK1/2, and is ineffective at protecting midbrain dopaminergic neurons in cellular models of Parkinson’s disease. Mol Cell Neurosci 118:103684. https://doi.org/10.1016/j.mcn.2021.103684

    Article  CAS  PubMed  Google Scholar 

  80. Conway JA et al (2020) GDNF/RET signaling in dopamine neurons in vivo. Cell Tissue Res 382:135–146. https://doi.org/10.1007/s00441-020-03268-9

    Article  CAS  PubMed  Google Scholar 

  81. Yue P et al (2017) Intranasal administration of GDNF protects against neural apoptosis in a rat model of Parkinson’s disease through PI3K/Akt/GSK3β pathway. Neurochem Res 42:1366–1374. https://doi.org/10.1007/s11064-017-2184-1

    Article  CAS  PubMed  Google Scholar 

  82. Bondarenko O, Saarma M (2021) Neurotrophic factors in Parkinson’s disease: clinical trials, open challenges and nanoparticle-mediated delivery to the brain. Front Cell Neurosci 15:682597. https://doi.org/10.3389/fncel.2021.682597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kramer ER, Liss B (2015) GDNF–Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease. FEBS Lett 589(24):3760–3772. https://doi.org/10.1016/j.febslet.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  84. Stepanova P et al (2020) Cerebral dopamine neurotrophic factor (CDNF) protects against quinolinic acid-induced toxicity in in vitro and in vivo models of Huntington’s disease. Sci Rep 10(1):19045. https://doi.org/10.1038/s41598-020-75439-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tenenbaum L (2021) CDNF: An innovative actor in disease-modifying approaches for Parkinson’s disease. Mol Ther 29(9):2634–2636. https://doi.org/10.1016/j.ymthe.2021.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stepanova P (2021) Effects of CDNF in experimental models of Huntington’s disease. DSHealth thesis series, Diss. University of Helsinki

    Google Scholar 

  87. Albert K et al (2021) Cerebral dopamine neurotrophic factor reduces α-synuclein aggregation and propagation and alleviates behavioral alterations in vivo. Mol Ther 29(9):2821–2840. https://doi.org/10.1016/j.ymthe.2021.04.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Huttunen HJ et al (2021) First-in-man clinical trial of intraputamenal cdnf in Parkinson’s disease finds a consorted biomarker response in a subgroup of subjects. Age (years) 63(6.4):63.2–68.9

    Google Scholar 

  89. Chmielarz P, Saarma M (2020) Neurotrophic factors for disease-modifying treatments of Parkinson’s disease: gaps between basic science and clinical studies. Pharmacol Rep 72:1195–1217. https://doi.org/10.1007/s43440-020-00120-3

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tavakol S (2022) The twofold role of osteogenic small molecules in Parkinson’s disease therapeutics: crosstalk of osteogenesis and neurogenesis. Biomed Res Int 2022. https://doi.org/10.1155/2022/3813541

  91. Komiya Y, Habas R (2008) Wnt signal transduction pathways. Organogenesis 4(2):68–75. https://doi.org/10.4161/org.4.2.5851

    Article  PubMed  PubMed Central  Google Scholar 

  92. Vallée A, Vallée J-N, Lecarpentier Y (2021) Parkinson’s disease: potential actions of lithium by targeting the WNT/β-catenin pathway, oxidative stress, inflammation and glutamatergic pathway. Cells 10(2):230. https://doi.org/10.3390/cells10020230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Marchetti B et al (2020) Parkinson’s disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell 19(3):e13101. https://doi.org/10.1111/acel.13101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chae W-J, Bothwell AL (2018) Canonical and non-canonical Wnt signaling in immune cells. Trends Immunol 39(10):830–847. https://doi.org/10.1016/j.it.2018.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Berwick DC, Harvey K (2012) The importance of Wnt signalling for neurodegeneration in Parkinson’s disease. Biochem Soc Trans 40(5):1123–1128. https://doi.org/10.1042/BST20120122

    Article  CAS  PubMed  Google Scholar 

  96. Vallée A, Vallée J-N, Lecarpentier Y (2021) Potential role of cannabidiol in Parkinson’s disease by targeting the WNT/β-catenin pathway, oxidative stress and inflammation. Aging (Albany NY) 13(7):10796. https://doi.org/10.18632/aging.202951

    Article  PubMed  Google Scholar 

  97. Berwick DC, Harvey K (2014) The regulation and deregulation of Wnt signaling by PARK genes in health and disease. J Mol Cell Biol 6(1):3–12. https://doi.org/10.1093/jmcb/mjt037

    Article  PubMed  Google Scholar 

  98. Maiti P, Manna J, Dunbar GL (2017) Current understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. Transl Neurodegen 6:1–35. https://doi.org/10.1186/s40035-017-0099-z

    Article  CAS  Google Scholar 

  99. Ching-Chi C et al (2020) (D620N) VPS35 causes the impairment of Wnt/β-catenin signaling cascade and mitochondrial dysfunction in a PARK17 knockin mouse model. Cell Death Dis:11(11). https://doi.org/10.1038/s41419-020-03228-9

  100. Serafino A, Cozzolino M (2023) The Wnt/β-catenin signaling: a multifunctional target for neuroprotective and regenerative strategies in Parkinson’s disease. Neural Regen Res 18(2):306. https://doi.org/10.4103/1673-5374.343908

    Article  CAS  PubMed  Google Scholar 

  101. Liu X et al (2011) Genome-wide association study identifies candidate genes for Parkinson’s disease in an Ashkenazi Jewish population. BMC Med Genet 12:1–16. https://doi.org/10.1186/1471-2350-12-104

    Article  CAS  Google Scholar 

  102. Long H-Z et al (2021) PI3K/AKT signal pathway: a target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease. Front Pharmacol 12:648636. https://doi.org/10.3389/fphar.2021.648636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhou Z et al (2022) Downregulation of PIK3CB involved in Alzheimer’s disease via apoptosis, axon guidance, and FoxO signaling pathway. Oxidative Med Cell Longev 2022. https://doi.org/10.1155/2022/1260161

  104. Li Z et al (2016) Chronic inflammation links cancer and Parkinson’s disease. Front Aging Neurosci 8:126. https://doi.org/10.3389/fnagi.2016.00126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kumar JS et al (2015) p38 MAPK and PI3K/AKT signalling cascades in Parkinson’s disease. Int J Mol Cell Med 4(2):67

    PubMed  PubMed Central  Google Scholar 

  106. Singh S, Singh TG (2020) Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: an mechanistic approach. Curr Neuropharmacol 18(10):918–935. https://doi.org/10.2174/1570159X18666200207120949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tavakol S et al (2019) The impact of the particle size of curcumin nanocarriers and the ethanol on beta_1-integrin overexpression in fibroblasts: a regenerative pharmaceutical approach in skin repair and anti-aging formulations. DARU J Pharmaceut Sci 27:159–168. https://doi.org/10.1007/s40199-019-00258-3

    Article  CAS  Google Scholar 

  108. Peng C et al (2020) The NF-κB signaling pathway, the microbiota, and gastrointestinal tumorigenesis: recent advances. Front Immunol 11:1387. https://doi.org/10.3389/fimmu.2020.01387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Baltus THL et al (2021) Association of-94 ATTG insertion/deletion NFkB1 and c.* 126G> A NFkBIA genetic polymorphisms with oxidative and nitrosative stress biomarkers in Brazilian subjects with Parkinson’s disease. Neurosci Lett 740:135487. https://doi.org/10.1016/j.neulet.2020.135487

    Article  CAS  PubMed  Google Scholar 

  110. Dolatshahi M et al (2021) Nuclear factor-kappa B (NF-κB) in pathophysiology of Parkinson disease: diverse patterns and mechanisms contributing to neurodegeneration. Eur J Neurosci 54(1):4101–4123. https://doi.org/10.1111/ejn.15242

    Article  CAS  Google Scholar 

  111. Hoenen C et al (2016) Alpha-synuclein proteins promote pro-inflammatory cascades in microglia: stronger effects of the A53T mutant. PLoS One 11(9):e0162717. https://doi.org/10.1371/journal.pone.0162717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Russo I et al (2015) Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-κB p50 signaling in cultured microglia cells. J Neuroinflammation 12(1):1–13. https://doi.org/10.1186/s12974-015-0449-7

    Article  CAS  Google Scholar 

  113. López de Maturana R et al (2016) Mutations in LRRK2 impair NF-κB pathway in iPSC-derived neurons. J Neuroinflammation 13:1–15. https://doi.org/10.1186/s12974-016-0761-x

    Article  CAS  Google Scholar 

  114. Lin Z et al (2021) DJ-1 inhibits microglial activation and protects dopaminergic neurons in vitro and in vivo through interacting with microglial p65. Cell Death Dis 12(8):715. https://doi.org/10.1038/s41419-021-04002-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kopan R (2012) Notch signaling. Cold Spring Harb Perspect Biol 4(10):a011213. https://doi.org/10.1101/cshperspect.a011213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tavakol S et al (2015) The effect of Noggin supplementation in Matrigel nanofiber-based cell culture system for derivation of neural-like cells from human endometrial-derived stromal cells. J Biomed Mater Res A 103(1):1–7. https://doi.org/10.1002/jbm.a.35079

    Article  CAS  PubMed  Google Scholar 

  117. Lasky JL, Wu H (2005) Notch signaling, brain development, and human disease. Pediatr Res 57(7):104–109. https://doi.org/10.1203/01.PDR.0000159632.70510.3D

    Article  Google Scholar 

  118. Kapoor A, Nation DA (2021) Role of Notch signaling in neurovascular aging and Alzheimer’s disease. In: Seminars in cell & developmental biology. Elsevier. https://doi.org/10.1016/j.semcdb.2020.12.011

    Chapter  Google Scholar 

  119. Ho RX-Y et al (2020) Loss of MINAR2 impairs motor function and causes Parkinson’s disease-like symptoms in mice. Brain. Communications 2(1):fcaa047. https://doi.org/10.1093/braincomms/fcaa047

    Article  CAS  Google Scholar 

  120. Imai Y et al (2015) The Parkinson’s disease-associated protein kinase LRRK2 modulates notch signaling through the endosomal pathway. PLoS Genet 11(9):e1005503. https://doi.org/10.1371/journal.pgen.1005503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Desplats P et al (2012) α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of Notch1. J Biol Chem 287(38):31691–31702. https://doi.org/10.1074/jbc.M112.354522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yoon J-H et al (2017) Parkin mediates neuroprotection through activation of Notch1 signaling. Neuroreport 28(4):181–186. https://doi.org/10.1097/WNR.0000000000000726

    Article  CAS  PubMed  Google Scholar 

  123. Yang C, Qi Y, Sun Z (2021) The role of Sonic hedgehog pathway in the development of the central nervous system and aging-related neurodegenerative diseases. Front Mol Biosci 8:711710. https://doi.org/10.3389/fmolb.2021.711710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Carballo GB et al (2018) A highlight on Sonic hedgehog pathway. Cell Commun Signal 16:1–15. https://doi.org/10.1186/s12964-018-0220-7

    Article  CAS  Google Scholar 

  125. Ketabforoush AHME et al (2023) Masitinib: the promising actor in the next season of the Amyotrophic Lateral Sclerosis treatment series. Biomed Pharmacother 160:114378. https://doi.org/10.1016/j.biopha.2023.114378

    Article  CAS  PubMed  Google Scholar 

  126. Schmidt S et al (2022) Primary cilia and SHH signaling impairments in human and mouse models of Parkinson’s disease. Nat Commun 13(1):4819. https://doi.org/10.1038/s41467-022-32229-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dhekne HS et al (2018) A pathway for Parkinson’s disease LRRK2 kinase to block primary cilia and Sonic hedgehog signaling in the brain. Elife 7:e40202. https://doi.org/10.7554/eLife.40202

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lashgari N-A et al (2021) The involvement of JAK/STAT signaling pathway in the treatment of Parkinson’s disease. J Neuroimmunol 361:577758. https://doi.org/10.1016/j.jneuroim.2021.577758

    Article  CAS  PubMed  Google Scholar 

  129. Hu X et al (2021) The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 6(1):402. https://doi.org/10.1038/s41392-021-00791-1

    Article  PubMed  PubMed Central  Google Scholar 

  130. Qin H et al (2016) Inhibition of the JAK/STAT pathway protects against α-synuclein-induced neuroinflammation and dopaminergic neurodegeneration. J Neurosci 36(18):5144–5159. https://doi.org/10.1523/JNEUROSCI.4658-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Choi D-J, Kwon J-K, Joe E-H (2018) A Parkinson’s disease gene, DJ-1, regulates astrogliosis through STAT3. Neurosci Lett 685:144–149. https://doi.org/10.1016/j.neulet.2018.08.025

    Article  CAS  PubMed  Google Scholar 

  132. Kim, J.-h., et al., DJ-1 facilitates the interaction between STAT1 and its phosphatase, SHP-1, in brain microglia and astrocytes: a novel anti-inflammatory function of DJ-1. Neurobiol Dis, 2013. 60: p. 1-10. DOI: https://doi.org/10.1016/j.nbd.2013.08.007

  133. Hiew L-F et al (2021) TGF-β/smad signalling in neurogenesis: implications for neuropsychiatric diseases. Cells 10(6):1382. https://doi.org/10.3390/cells10061382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Muñoz MD, de la Fuente N, Sánchez-Capelo A (2020) TGF-β/Smad3 signalling modulates GABA neurotransmission: implications in Parkinson’s disease. Int J Mol Sci 21(2):590. https://doi.org/10.3390/ijms21020590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Corona JC, Duchen MR (2016) PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med 100:153–163. https://doi.org/10.1016/j.freeradbiomed.2016.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Behl T et al (2021) Elucidating the neuroprotective role of PPARs in Parkinson’s disease: a neoteric and prospective target. Int J Mol Sci 22(18):10161. https://doi.org/10.3390/ijms221810161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yakunin E et al (2014) The regulation of catalase activity by PPAR γ is affected by α-synuclein. Ann Clin Transl Neurol 1(3):145–159. https://doi.org/10.1002/acn3.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hindeya Gebreyesus H, Gebrehiwot Gebremichael T (2020) The potential role of astrocytes in Parkinson’s disease (PD). Med Sci 8(1):7. https://doi.org/10.3390/medsci8010007

    Article  CAS  Google Scholar 

  139. Zhong Z et al (2021) Fecal microbiota transplantation exerts a protective role in MPTP-induced Parkinson’s disease via the TLR4/PI3K/AKT/NF-κB pathway stimulated by α-synuclein. Neurochem Res 46:3050–3058. https://doi.org/10.1007/s11064-021-03411-0

    Article  CAS  PubMed  Google Scholar 

  140. Wang S et al (2022) Functional cooperation of α-synuclein and tau is essential for proper corticogenesis. J Neurosci 42(37):7031–7046. https://doi.org/10.1523/JNEUROSCI.0396-22.2022

    Article  CAS  PubMed  Google Scholar 

  141. Harvey K, Outeiro TF (2019) The role of LRRK2 in cell signalling. Biochem Soc Trans 47(1):197–207. https://doi.org/10.1042/BST20180464

    Article  CAS  PubMed  Google Scholar 

  142. Wang Y et al (2021) LRRK2-NFATc2 pathway associated with neuroinflammation may be a potential therapeutic target for Parkinson’s disease. J Inflamm Res 14:2583. https://doi.org/10.2147/JIR.S301531

    Article  PubMed  PubMed Central  Google Scholar 

  143. Ravinther AI et al (2022) Molecular pathways involved in LRRK2-linked Parkinson’s disease: a systematic review. Int J Mol Sci 23(19):11744. https://doi.org/10.3390/ijms231911744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kim S, Lee M, Choi YK (2020) The role of a neurovascular signaling pathway involving hypoxia-inducible factor and notch in the function of the central nervous system. Biomol Ther 28(1):45. https://doi.org/10.4062/biomolther.2019.119

    Article  CAS  Google Scholar 

  145. Lei R et al (2019) Inactivating the ubiquitin ligase Parkin suppresses cell proliferation and induces apoptosis in human keloids. J Cell Physiol 234(9):16601–16608. https://doi.org/10.1002/jcp.28332

    Article  CAS  PubMed  Google Scholar 

  146. Gao W et al (2017) Up-regulation of caveolin-1 by DJ-1 attenuates rat pulmonary arterial hypertension by inhibiting TGFβ/Smad signaling pathway. Exp Cell Res 361(1):192–198. https://doi.org/10.1016/j.yexcr.2017.10.019

    Article  CAS  PubMed  Google Scholar 

  147. Pandey S et al (2020) An in silico analysis of deleterious single nucleotide polymorphisms and molecular dynamics simulation of disease linked mutations in genes responsible for neurodegenerative disorder. J Biomol Struct Dyn 38(14):4259–4272. https://doi.org/10.1080/07391102.2019.1682047

    Article  CAS  PubMed  Google Scholar 

  148. Hounjet J, Vooijs M (2021) The role of intracellular trafficking of notch receptors in ligand-independent notch activation. Biomolecules 11(9):1369. https://doi.org/10.3390/biom11091369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Huang Y et al (2022) UCHL1 promoted polarization of M1 macrophages by regulating the PI3K/AKT signaling pathway. J Inflamm Res:735–746. https://doi.org/10.2147/JIR.S343487

  150. Wang X et al (2023) Ubiquitin C-terminal hydrolase-L1: a new cancer marker and therapeutic target with dual effects. Oncol Lett 25(3):1–12. https://doi.org/10.3892/ol.2023.13709

    Article  CAS  Google Scholar 

  151. Zhong J et al (2012) UCHL1 acts as a colorectal cancer oncogene via activation of the β-catenin/TCF pathway through its deubiquitinating activity. Int J Mol Med 30(2):430–436. https://doi.org/10.3892/ijmm.2012.1012

    Article  CAS  PubMed  Google Scholar 

  152. Ghosh P, Saadat A (2021) Neurodegeneration and epigenetics: a review. Neurologia. https://doi.org/10.1016/j.nrl.2021.01.016

  153. Al Aboud NM, Tupper C, Jialal I (2018) Genetics, epigenetic mechanism. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  154. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38. https://doi.org/10.1038/npp.2012.112

    Article  CAS  PubMed  Google Scholar 

  155. Miranda-Morales E et al (2017) Implications of DNA methylation in Parkinson’s disease. Front Mol Neurosci 10:225. https://doi.org/10.3389/fnmol.2017.00225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Neidhart M (2015) DNA methylation and complex human disease. Academic Press

    Google Scholar 

  157. Cacabelos R, Tellado I, Cacabelos P (2019) The epigenetic machinery in the life cycle and pharmacoepigenetics. In: Pharmacoepigenetics. Elsevier, pp. 1–100

    Google Scholar 

  158. Bohnsack JP, Pandey SC (2021) Histone modifications, DNA methylation, and the epigenetic code of alcohol use disorder. In: International review of neurobiology. Elsevier, pp. 1–62. https://doi.org/10.1016/bs.irn.2020.08.005

    Chapter  Google Scholar 

  159. Wüllner U et al (2016) DNA methylation in Parkinson’s disease. J Neurochem 139:108–120. https://doi.org/10.1111/jnc.13646

    Article  CAS  PubMed  Google Scholar 

  160. Coppede F (2012) Genetics and epigenetics of Parkinson’s disease. Sci World J 2012:489830. https://doi.org/10.1100/2012/489830

    Article  CAS  Google Scholar 

  161. Razali K et al (2022) Integrating nutriepigenomics in Parkinson’s disease management: new promising strategy in the omics era. IBRO Neurosci Rep 13:364–372. https://doi.org/10.1016/j.ibneur.2022.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Manna I et al (2021) Roles of non-coding RNAs as novel diagnostic biomarkers in Parkinson’s disease. J Parkinsons Dis 11(4):1475–1489. https://doi.org/10.3233/JPD-212726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sun P, Hamblin MH, Yin K-J (2022) Non-coding RNAs in the regulation of blood–brain barrier functions in central nervous system disorders. Fluids Barriers CNS 19(1):1–39. https://doi.org/10.1186/s12987-022-00317-z

    Article  CAS  Google Scholar 

  164. Bertrand-Lehouillier V, Legault L-M, McGraw S (2019) Endocrine epigenetics, epigenetic profiling and biomarker identification. Elsevier. https://doi.org/10.1016/B978-0-12-801238-3.65830-0

    Book  Google Scholar 

  165. Watson CN, Belli A, Di Pietro V (2019) Small non-coding RNAs: new class of biomarkers and potential therapeutic targets in neurodegenerative disease. Front Genet:364. https://doi.org/10.3389/fgene.2019.00364

  166. Zhang H et al (2022) The role of non-coding RNAs in the pathogenesis of Parkinson’s disease: recent advancement. Pharmaceuticals 15(7):811. https://doi.org/10.3390/ph15070811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Isakova A et al (2020) A mouse tissue atlas of small noncoding RNA. Proc Natl Acad Sci 117(41):25634–25645. https://doi.org/10.1073/pnas.2002277117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Aalto AP, Pasquinelli AE (2012) Small non-coding RNAs mount a silent revolution in gene expression. Curr Opin Cell Biol 24(3):333–340. https://doi.org/10.1016/j.ceb.2012.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Srijyothi L et al (2018) Roles of non-coding RNAs in transcriptional regulation. In: Transcriptional and Post-transcriptional regulation, p. 55. https://doi.org/10.5772/intechopen.76125

    Chapter  Google Scholar 

  170. O'Brien J et al (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  CAS  Google Scholar 

  171. Li S et al (2022) MicroRNAs play a role in Parkinson’s disease by regulating microglia function: from pathogenetic involvement to therapeutic potential. Front Mol Neurosci 14:744942. https://doi.org/10.3389/fnmol.2021.744942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhao N et al (2014) Serum microRNA-133b is associated with low ceruloplasmin levels in Parkinson’s disease. Parkinsonism Relat Disord 20(11):1177–1180. https://doi.org/10.1016/j.parkreldis.2014.08.016

    Article  PubMed  Google Scholar 

  173. Cressatti M, Schipper HM (2022) Dysregulation of a heme oxygenase–synuclein axis in Parkinson disease. NeuroSci 3(2):284–299. https://doi.org/10.3390/neurosci3020020

    Article  Google Scholar 

  174. Goh SY et al (2019) Role of MicroRNAs in Parkinson’s disease. Int J Mol Sci 20(22):5649. https://doi.org/10.3390/ijms20225649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ramaswamy P et al (2020) Clinical application of circulating microRNAs in Parkinson’s disease: the challenges and opportunities as diagnostic biomarker. Ann Indian Acad Neurol 23(1):84. https://doi.org/10.4103/aian.AIAN_440_19

    Article  PubMed  PubMed Central  Google Scholar 

  176. Zhang J et al (2019) miR-let-7a suppresses α-Synuclein-induced microglia inflammation through targeting STAT3 in Parkinson’s disease. Biochem Biophys Res Commun 519(4):740–746. https://doi.org/10.1016/j.bbrc.2019.08.140

    Article  CAS  PubMed  Google Scholar 

  177. Tatura R et al (2016) Parkinson’s disease: SNCA-, PARK2-, and LRRK2-targeting microRNAs elevated in cingulate gyrus. Parkinsonism Relat Disord 33:115–121. https://doi.org/10.1016/j.parkreldis.2016.09.028

    Article  PubMed  Google Scholar 

  178. McMillan KJ et al (2017) Loss of microRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo. Mol Ther 25(10):2404–2414. https://doi.org/10.1016/j.ymthe.2017.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang J et al (2022) LncRNA miR-17-92a-1 cluster host gene (MIR17HG) promotes neuronal damage and microglial activation by targeting the microRNA-153-3p/alpha-synuclein axis in Parkinson’s disease. Bioengineered 13(2):4493–4516. https://doi.org/10.1080/21655979.2022.2033409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Su C, Yang X, Lou J (2016) Geniposide reduces α-synuclein by blocking microRNA-21/lysosome-associated membrane protein 2A interaction in Parkinson disease models. Brain Res 1644:98–106. https://doi.org/10.1016/j.brainres.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  181. Minones-Moyano E et al (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20(15):3067–3078. https://doi.org/10.1093/hmg/ddr210

    Article  CAS  PubMed  Google Scholar 

  182. Kabaria S et al (2015) Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson’s disease. FEBS Lett 589(3):319–325. https://doi.org/10.1016/j.febslet.2014.12.014

    Article  CAS  PubMed  Google Scholar 

  183. Nair VD, Ge Y (2016) Alterations of miRNAs reveal a dysregulated molecular regulatory network in Parkinson’s disease striatum. Neurosci Lett 629:99–104. https://doi.org/10.1016/j.neulet.2016.06.061

    Article  CAS  PubMed  Google Scholar 

  184. Zhang L et al (2021) MiR-30c-5p/ATG5 axis regulates the progression of Parkinson’s disease. Front Cell Neurosci 15:644507. https://doi.org/10.3389/fncel.2021.644507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yao L et al (2019) MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson’s disease. FASEB J 33(7):8648–8665. https://doi.org/10.1096/fj.201900363R

    Article  CAS  PubMed  Google Scholar 

  186. Yao L et al (2018) MicroRNA-124 regulates the expression of MEKK3 in the inflammatory pathogenesis of Parkinson’s disease. J Neuroinflammation 15:1–19. https://doi.org/10.1186/s12974-018-1053-4

    Article  CAS  Google Scholar 

  187. Fan Y et al (2020) LncRNA BDNF-AS promotes autophagy and apoptosis in MPTP-induced Parkinson’s disease via ablating microRNA-125b-5p. Brain Res Bull 157:119–127. https://doi.org/10.1016/j.brainresbull.2020.02.003

    Article  CAS  PubMed  Google Scholar 

  188. Zeng R et al (2019) MicroRNA-135b alleviates MPP+-mediated Parkinson’s disease in in vitro model through suppressing FoxO1-induced NLRP3 inflammasome and pyroptosis. J Clin Neurosci 65:125–133. https://doi.org/10.1016/j.jocn.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  189. **e X et al (2017) miR-145-5p/Nurr1/TNF-α signaling-induced microglia activation regulates neuron injury of acute cerebral ischemic/reperfusion in rats. Front Mol Neurosci 10:383. https://doi.org/10.3389/fnmol.2017.00383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Li H et al (2020) MicroRNA-150 serves as a diagnostic biomarker and is involved in the inflammatory pathogenesis of Parkinson’s disease. Mol Genet Genomic Med 8(4):e1189. https://doi.org/10.1002/mgg3.1189

    Article  PubMed  PubMed Central  Google Scholar 

  191. Thome AD et al (2016) microRNA-155 regulates alpha-synuclein-induced inflammatory responses in models of Parkinson disease. J Neurosci 36(8):2383–2390. https://doi.org/10.1523/JNEUROSCI.3900-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Caggiu E et al (2018) Differential expression of miRNA 155 and miRNA 146a in Parkinson’s disease patients. eNeurologicalSci 13:1–4. Back to cited text, (49). https://doi.org/10.1016/j.ensci.2018.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  193. Liu Y, Song Y, Zhu X (2017) MicroRNA-181a regulates apoptosis and autophagy process in Parkinson’s disease by inhibiting p38 mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinases (JNK) signaling pathways. Med Sci Monitor: Int Med J Exp Clin Res 23:1597. https://doi.org/10.12659/msm.900218

    Article  CAS  Google Scholar 

  194. Sun Q et al (2019) MicroRNA-190 alleviates neuronal damage and inhibits neuroinflammation via Nlrp3 in MPTP-induced Parkinson’s disease mouse model. J Cell Physiol 234(12):23379–23387. https://doi.org/10.1002/jcp.28907

    Article  CAS  PubMed  Google Scholar 

  195. Ren Y et al (2019) MicroRNA-195 triggers neuroinflammation in Parkinson’s disease in a Rho-associated kinase 1-dependent manner. Mol Med Rep 19(6):5153–5161. https://doi.org/10.3892/mmr.2019.10176

    Article  CAS  PubMed  Google Scholar 

  196. Chiu C-C et al (2019) Upregulated expression of microRNA-204-5p leads to the death of dopaminergic cells by targeting DYRK1A-mediated apoptotic signaling cascade. Front Cell Neurosci 13:399. https://doi.org/10.3389/fncel.2019.00399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tang C-Z et al (2019) Overexpression of microRNA-301b accelerates hippocampal microglia activation and cognitive impairment in mice with depressive-like behavior through the NF-κB signaling pathway. Cell Death Dis 10(4):316. https://doi.org/10.1038/s41419-019-1522-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Feng Y et al (2021) Effective inhibition of miR-330/SHIP1/NF-κB signaling pathway via miR-330 sponge repolarizes microglia differentiation. Cell Biol Int 45(4):785–794. https://doi.org/10.1002/cbin.11523

    Article  CAS  PubMed  Google Scholar 

  199. He Q et al (2017) Downregulation of miR-7116-5p in microglia by MPP+ sensitizes TNF-α production to induce dopaminergic neuron damage. Glia 65(8):1251–1263. https://doi.org/10.1002/glia.23153

    Article  PubMed  Google Scholar 

  200. Su L et al (2018) A meta-analysis of public microarray data identifies biological regulatory networks in Parkinson’s disease. BMC Med Genet 11(1):1–22. https://doi.org/10.1186/s12920-018-0357-7

    Article  CAS  Google Scholar 

  201. Chatterjee P et al (2017) Biological networks in Parkinson’s disease: an insight into the epigenetic mechanisms associated with this disease. BMC Genomics 18:1–17. https://doi.org/10.1186/s12864-017-4098-3

    Article  CAS  Google Scholar 

  202. Sibley CR et al (2012) Silencing of Parkinson’s disease-associated genes with artificial mirtron mimics of miR-1224. Nucleic Acids Res 40(19):9863–9875. https://doi.org/10.1093/nar/gks712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Rorbach G, Unold O, Konopka BM (2018) Distinguishing mirtrons from canonical miRNAs with data exploration and machine learning methods. Sci Rep 8(1):1–13. https://doi.org/10.1038/s41598-018-25578-3

    Article  CAS  Google Scholar 

  204. Titov II, Vorozheykin PS (2018) Comparing miRNA structure of mirtrons and non-mirtrons. BMC Genomics 19:91–102. https://doi.org/10.1186/s12864-018-4473-8

    Article  CAS  Google Scholar 

  205. Fyfe I (2020) MicroRNAs—diagnostic markers in Parkinson disease? Nat Rev Neurol 16(2):65–65. https://doi.org/10.1038/s41582-019-0305-y

    Article  PubMed  Google Scholar 

  206. Nies YH et al (2021) MicroRNA dysregulation in Parkinson’s disease: a narrative review. Front Neurosci 15:660379. https://doi.org/10.3389/fnins.2021.660379

    Article  PubMed  PubMed Central  Google Scholar 

  207. Hu B et al (2020) Therapeutic siRNA: state of the art. Signal Transduct Target Ther 5(1):101. https://doi.org/10.1038/s41392-020-0207-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Snead NM, Rossi JJ (2010) Biogenesis and function of endogenous and exogenous siRNAs. Wiley Interdiscip Rev: RNA 1(1):117–131. https://doi.org/10.1002/wrna.14

    Article  CAS  PubMed  Google Scholar 

  209. Neumeier J, Meister G (2021) siRNA specificity: RNAi mechanisms and strategies to reduce off-target effects. Front Plant Sci 11:526455. https://doi.org/10.3389/fpls.2020.526455

    Article  PubMed  PubMed Central  Google Scholar 

  210. Deng H et al (2005) Small interfering RNA targeting the PINK1 induces apoptosis in dopaminergic cells SH-SY5Y. Biochem Biophys Res Commun 337(4):1133–1138. https://doi.org/10.1016/j.bbrc.2005.09.178

    Article  CAS  PubMed  Google Scholar 

  211. Titze-de-Almeida R et al (2019) Suppressing nNOS enzyme by small-interfering RNAs protects SH-SY5Y cells and nigral dopaminergic neurons from 6-OHDA injury. Neurotox Res 36:117–131. https://doi.org/10.1007/s12640-019-00043-9

    Article  CAS  PubMed  Google Scholar 

  212. Helmschrodt C et al (2017) Polyethylenimine nanoparticle-mediated siRNA delivery to reduce α-Synuclein expression in a model of Parkinson’s disease. Mol Ther-Nucleic Acids 9:57–68. https://doi.org/10.1016/j.omtn.2017.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Yap YJ et al (2021) Development of ATP13A2-deficient in vitro model for PARK9 Parkinson’s disease. Curr Signal Transduct Ther 16(3):280–291. https://doi.org/10.2174/1574362416666210325112850

    Article  CAS  Google Scholar 

  214. Prommahom A, Dharmasaroja P (2021) Effects of eEF1A2 knockdown on autophagy in an MPP+-induced cellular model of Parkinson’s disease. Neurosci Res 164:55–69. https://doi.org/10.1016/j.neures.2020.03.013

    Article  CAS  PubMed  Google Scholar 

  215. Acharya R, Chakraborty M, Chakraborty J (2019) Prospective treatment of Parkinson’s disease by a siRNA–LDH nanoconjugate. MedChemComm 10(2):227–233. https://doi.org/10.1039/c8md00501j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Cortes H et al (2017) Nanotechnology as potential tool for siRNA delivery in Parkinson’s disease. Curr Drug Targets 18(16):1866–1879. https://doi.org/10.2174/1389450118666170321130003

    Article  CAS  PubMed  Google Scholar 

  217. Kuo M-C et al (2021) The role of noncoding RNAs in Parkinson’s disease: biomarkers and associations with pathogenic pathways. J Biomed Sci 28(1):1–28. https://doi.org/10.1186/s12929-021-00775-x

    Article  CAS  Google Scholar 

  218. Zhang T, Wong G (2022) Dysregulation of human somatic piRNA expression in Parkinson’s disease subtypes and stages. Int J Mol Sci 23(5):2469. https://doi.org/10.3390/ijms23052469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Shen L et al (2021) Dysregulation of MicroRNAs and PIWI-interacting RNAs in a Caenorhabditis elegans Parkinson’s disease model overexpressing human α-Synuclein and influence of tdp-1. Front Neurosci 15:600462. https://doi.org/10.3389/fnins.2021.600462

    Article  PubMed  PubMed Central  Google Scholar 

  220. Hou J, Wei H, Liu B (2022) iPiDA-GCN: Identification of piRNA-disease associations based on Graph Convolutional Network. PLoS Comput Biol 18(10):e1010671. https://doi.org/10.1371/journal.pcbi.1010671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Huang X, Wong G (2021) An old weapon with a new function: PIWI-interacting RNAs in neurodegenerative diseases. Transl Neurodegen 10(1):1–21. https://doi.org/10.1186/s40035-021-00233-6

    Article  CAS  Google Scholar 

  222. Wang B-G et al (2020) The role of transfer RNA-derived small RNAs (tsRNAs) in digestive system tumors. J Cancer 11(24):7237. https://doi.org/10.7150/jca.46055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Liu B et al (2021) Deciphering the tRNA-derived small RNAs: origin, development, and future. Cell Death Dis 13(1):24. https://doi.org/10.1038/s41419-021-04472-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Li S, Xu Z, Sheng J (2018) tRNA-derived small RNA: a novel regulatory small non-coding RNA. Genes 9(5):246. https://doi.org/10.3390/genes9050246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Tian H, Hu Z, Wang C (2022) The therapeutic potential of tRNA-derived small RNAs in neurodegenerative disorders. Aging Dis 13(2):389. https://doi.org/10.14336/AD.2021.0903

    Article  PubMed  PubMed Central  Google Scholar 

  226. Magee R, Londin E, Rigoutsos I (2019) TRNA-derived fragments as sex-dependent circulating candidate biomarkers for Parkinson’s disease. Parkinsonism Relat Disord 65:203–209. https://doi.org/10.1016/j.parkreldis.2019.05.035

    Article  PubMed  Google Scholar 

  227. Elkordy A et al (2018) Stress-induced tRNA cleavage and tiRNA generation in rat neuronal PC12 cells. J Neurochem 146(5):560–569. https://doi.org/10.1111/jnc.14321

    Article  CAS  PubMed  Google Scholar 

  228. Wei C-W et al (2018) The role of long noncoding RNAs in central nervous system and neurodegenerative diseases. Front Behav Neurosci 12:175. https://doi.org/10.3389/fnbeh.2018.00175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Plewka P, Raczynska KD (2022) Long intergenic noncoding RNAs affect biological pathways underlying autoimmune and neurodegenerative disorders. Mol Neurobiol 59(9):5785–5808. https://doi.org/10.1007/s12035-022-02941-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ye Y et al (2018) A lincRNA-p21/miR-181 family feedback loop regulates microglial activation during systemic LPS-and MPTP-induced neuroinflammation. Cell Death Dis 9(8):803. https://doi.org/10.1038/s41419-018-0821-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kraus TF et al (2017) Altered long noncoding RNA expression precedes the course of Parkinson’s disease—a preliminary report. Mol Neurobiol 54(4):2869–2877. https://doi.org/10.1007/s12035-016-9854-x

    Article  CAS  PubMed  Google Scholar 

  232. Xu, X., et al., LincRNA-p21 inhibits cell viability and promotes cell apoptosis in Parkinson’s disease through activating α-Synuclein expression. Biomed Res Int, 2018. 2018. DOI: https://doi.org/10.1155/2018/8181374

  233. He X et al (2022) Ghrelin alleviates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Neural Regen Res 17(1):170. https://doi.org/10.4103/1673-5374.314314

    Article  CAS  PubMed  Google Scholar 

  234. Lu D, Xu A-D (2016) Mini review: circular RNAs as potential clinical biomarkers for disorders in the central nervous system. Front Genet 7:53. https://doi.org/10.3389/fgene.2016.00053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. D’Ambra E, Capauto D, Morlando M (2019) Exploring the regulatory role of circular RNAs in neurodegenerative disorders. Int J Mol Sci 20(21):5477. https://doi.org/10.3390/ijms20215477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Jia E et al (2020) Transcriptomic profiling of circular RNA in different brain regions of Parkinson’s disease in a mouse model. Int J Mol Sci 21(8):3006. https://doi.org/10.3390/ijms21083006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Wang M et al (2021) CircRNA 001372 reduces inflammation in propofol-induced neuroinflammation and neural apoptosis through PIK3CA/Akt/NF-κB by miRNA-148b-3p. J Investig Surg 34(11):1167–1177. https://doi.org/10.1080/08941939.2020.1771639

    Article  Google Scholar 

  238. Doxakis E (2022) Insights into the multifaceted role of circular RNAs: implications for Parkinson’s disease pathogenesis and diagnosis. npj. Parkinson's Disease 8(1):7. https://doi.org/10.1038/s41531-021-00265-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Kong F et al (2021) RNA-sequencing of peripheral blood circular RNAs in Parkinson disease. Medicine 100(23). https://doi.org/10.1097/MD.0000000000025888

  240. Morais P, Adachi H, Yu Y-T (2021) Spliceosomal snRNA epitranscriptomics. Front Genet 12:652129. https://doi.org/10.3389/fgene.2021.652129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Shen S et al (2021) Long non-coding RNA small nucleolar RNA host gene 14, a promising biomarker and therapeutic target in malignancy. Front Cell Dev Biol 9:746714. https://doi.org/10.3389/fcell.2021.746714

    Article  PubMed  PubMed Central  Google Scholar 

  242. Yan L, Li L, Lei J (2021) Long noncoding RNA small nucleolar RNA host gene 12/microRNA-138-5p/nuclear factor I/B regulates neuronal apoptosis, inflammatory response, and oxidative stress in Parkinson’s disease. Bioengineered 12(2):12867–12879. https://doi.org/10.1080/21655979.2021.2005928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Theotoki EI et al (2020) Dicing the disease with dicer: the implications of dicer ribonuclease in human pathologies. Int J Mol Sci 21(19):7223. https://doi.org/10.3390/ijms21197223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Armeev GA, Gribkova AK, Shaytan AK (2022) Nucleosomes and their complexes in the cryoEM era: trends and limitations. Front Mol Biosci:9. https://doi.org/10.3389/fmolb.2022.1070489

  245. Tamaru H (2010) Confining euchromatin/heterochromatin territory: jumonji crosses the line. Genes Dev 24(14):1465–1478. https://doi.org/10.1101/gad.1941010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269. https://doi.org/10.1146/annurev.biochem.75.103004.142422

    Article  CAS  PubMed  Google Scholar 

  247. Pavlou MAS, Outeiro TF (2017) Epigenetics in Parkinson’s disease. In: Neuroepigenomics in aging and disease. Springer, pp. 363–390. https://doi.org/10.1007/978-3-319-53889-1_19

    Chapter  Google Scholar 

  248. Wang R et al (2020) Imbalance of lysine acetylation contributes to the pathogenesis of Parkinson’s disease. Int J Mol Sci 21(19). https://doi.org/10.3390/ijms21197182

  249. Harrison IF, Smith AD, Dexter DT (2018) Pathological histone acetylation in Parkinson’s disease: neuroprotection and inhibition of microglial activation through SIRT 2 inhibition. Neurosci Lett 666:48–57. https://doi.org/10.1016/j.neulet.2017.12.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Toker L et al (2021) Genome-wide histone acetylation analysis reveals altered transcriptional regulation in the Parkinson’s disease brain. Mol Neurodegener 16(1):31. https://doi.org/10.1186/s13024-021-00450-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Shukla S, Tekwani BL (2020) Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front Pharmacol 11:537. https://doi.org/10.3389/fphar.2020.00537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Formisano L et al (2015) MS-275 inhibits aroclor 1254–induced SH-SY5Y neuronal cell toxicity by preventing the formation of the HDAC3/REST complex on the synapsin-1 promoter. J Pharmacol Exp Ther 352(2):236–243. https://doi.org/10.1124/jpet.114.219345

    Article  CAS  PubMed  Google Scholar 

  253. Mazzocchi M et al (2021) LMK235, a small molecule inhibitor of HDAC4/5, protects dopaminergic neurons against neurotoxin-and α-synuclein-induced degeneration in cellular models of Parkinson’s disease. Mol Cell Neurosci 115:103642. https://doi.org/10.1016/j.mcn.2021.103642

    Article  CAS  PubMed  Google Scholar 

  254. Mazzocchi M et al (2019) Gene co-expression analysis identifies histone deacetylase 5 and 9 expression in midbrain dopamine neurons and as regulators of neurite growth via bone morphogenetic protein signaling. Front Cell Dev Biol 7:191. https://doi.org/10.3389/fcell.2019.00191

    Article  PubMed  PubMed Central  Google Scholar 

  255. Li B et al (2021) Acetylation of NDUFV1 induced by a newly synthesized HDAC6 inhibitor HGC rescues dopaminergic neuron loss in Parkinson models. Iscience 24(4):102302. https://doi.org/10.1016/j.isci.2021.102302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Johnston TH et al (2013) RGFP109, a histone deacetylase inhibitor attenuates L-DOPA-induced dyskinesia in the MPTP-lesioned marmoset: a proof-of-concept study. Parkinsonism Relat Disord 19(2):260–264. https://doi.org/10.1016/j.parkreldis.2012.07.001

    Article  PubMed  Google Scholar 

  257. Kim T et al (2019) HDAC inhibition by valproic acid induces neuroprotection and improvement of PD-like behaviors in LRRK2 R1441G transgenic mice. Exp Neurobiol 28(4):504. https://doi.org/10.5607/en.2019.28.4.504

    Article  PubMed  PubMed Central  Google Scholar 

  258. Li Y et al (2022) Histone deacetylases as epigenetic targets for treating Parkinson’s disease. Brain Sci 12(5):672. https://doi.org/10.3390/brainsci12050672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Sharma S, Taliyan R (2015) Targeting histone deacetylases: a novel approach in Parkinson’s disease. Parkinson’s Dis 2015. https://doi.org/10.1155/2015/303294

  260. Miller JL, Grant PA (2012) The role of DNA methylation and histone modifications in transcriptional regulation in humans. Epigenetics: Dev Dis:289–317. https://doi.org/10.1007/978-94-007-4525-4_13

  261. Basavarajappa BS, Subbanna S (2021) Histone methylation regulation in neurodegenerative disorders. Int J Mol Sci 22(9):4654. https://doi.org/10.3390/ijms22094654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Guhathakurta S et al (2021) Targeted attenuation of elevated histone marks at SNCA alleviates α-synuclein in Parkinson’s disease. EMBO Mol Med 13(2):e12188. https://doi.org/10.15252/emmm.202012188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Heinemann B et al (2014) Inhibition of demethylases by GSK-J1/J4. Nature 514(7520):E1–E2. https://doi.org/10.1038/nature13688

    Article  CAS  PubMed  Google Scholar 

  264. Mu M-D et al (2020) Therapeutic effect of a histone demethylase inhibitor in Parkinson’s disease. Cell Death Dis 11(10):927. https://doi.org/10.1038/s41419-020-03105-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Cao J, Yan Q (2012) Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front Oncol 2:26. https://doi.org/10.3389/fonc.2012.00026

    Article  PubMed  PubMed Central  Google Scholar 

  266. Buneeva O, Medvedev A (2022) Atypical ubiquitination and Parkinson’s disease. Int J Mol Sci 23(7):3705. https://doi.org/10.3390/ijms23073705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Ben Yehuda A et al (2017) Ubiquitin accumulation on disease associated protein aggregates is correlated with nuclear ubiquitin depletion, histone de-ubiquitination and impaired DNA damage response. PLoS One 12(1):e0169054. https://doi.org/10.1371/journal.pone.0169054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Navarro-Yepes J et al (2016) Inhibition of protein ubiquitination by paraquat and 1-methyl-4-phenylpyridinium impairs ubiquitin-dependent protein degradation pathways. Mol Neurobiol 53:5229–5251. https://doi.org/10.1007/s12035-015-9414-9

    Article  CAS  PubMed  Google Scholar 

  269. Li S, Le W, Deng H (2022) Genetic and epigenetic mechanisms of Parkinson’s disease. Front Neurosci 16. https://doi.org/10.3389/fnins.2022.842709

  270. Zhu D, Zhang Y, Wang S (2021) Histone citrullination: a new target for tumors. Mol Cancer 20(1):1–17. https://doi.org/10.1186/s12943-021-01373-z

    Article  CAS  Google Scholar 

  271. Mastronardi FG et al (2006) Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. J Neurosci 26(44):11387–11396. https://doi.org/10.1523/JNEUROSCI.3349-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Witalison E, Thompson PR, Hofseth LJ (2015) Protein arginine deiminases and associated citrullination: physiological functions and diseases associated with dysregulation. Curr Drug Targets 16(7):700–710. https://doi.org/10.2174/1389450116666150202160954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Petrozziello T et al (2020) Neuroinflammation and histone H3 citrullination are increased in X-linked Dystonia Parkinsonism post-mortem prefrontal cortex. Neurobiol Dis 144:105032. https://doi.org/10.1016/j.nbd.2020.105032

    Article  CAS  PubMed  Google Scholar 

  274. Ou Z et al (2021) Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front Public Health 9:776847. https://doi.org/10.3389/fpubh.2021.776847

    Article  PubMed  PubMed Central  Google Scholar 

  275. Ammal Kaidery N, Tarannum S, Thomas B (2013) Epigenetic landscape of Parkinson’s disease: emerging role in disease mechanisms and therapeutic modalities. Neurotherapeutics 10:698–708. https://doi.org/10.1007/s13311-013-0211-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Mahdieh N, Rabbani B (2013) An overview of mutation detection methods in genetic disorders. Iran J Pediatr 23(4):375

    PubMed  PubMed Central  Google Scholar 

  277. Gibney E, Nolan C (2010) Epigenetics and gene expression. Heredity 105(1):4–13. https://doi.org/10.1038/hdy.2010.54

    Article  CAS  PubMed  Google Scholar 

  278. Huang Y et al (2022) Parkinson’s disease: from genetics to molecular dysfunction and targeted therapeutic approaches. Genes Dis. https://doi.org/10.1016/j.gendis.2021.12.015

  279. Tan MM et al (2021) Genome-wide association studies of cognitive and motor progression in Parkinson’s disease. Mov Disord 36(2):424–433. https://doi.org/10.1002/mds.28342

    Article  CAS  PubMed  Google Scholar 

  280. Lanore A et al (2022) Does the expression and epigenetics of genes involved in monogenic forms of parkinson’s disease influence sporadic forms? Genes 13(3):479. https://doi.org/10.3390/genes13030479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Over L, Brüggemann N, Lohmann K (2021) Therapies for genetic forms of Parkinson’s disease: systematic literature review. J Neuromusc Dis 8(3):341–356. https://doi.org/10.3233/JND-200598

    Article  Google Scholar 

  282. Rathore AS et al (2021) Epigenetic modulation in Parkinson’s disease and potential treatment therapies. Neurochem Res 46(7):1618–1626. https://doi.org/10.1007/s11064-021-03334-w

    Article  CAS  PubMed  Google Scholar 

  283. Menon S et al (2022) Alpha-synuclein targeting therapeutics for Parkinson’s disease and related synucleinopathies. Front Neurol:809. https://doi.org/10.3389/fneur.2022.852003

  284. Navarro-Romero A, Montpeyó M, Martinez-Vicente M (2020) The emerging role of the lysosome in Parkinson’s disease. Cells 9(11):2399. https://doi.org/10.3390/cells9112399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Hegarty SV, Sullivan AM, O'Keeffe GW (2016) The epigenome as a therapeutic target for Parkinson’s disease. Neural Regen Res 11(11):1735. https://doi.org/10.4103/1673-5374.194803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Paccosi E, Proietti-De-Santis L (2023) Parkinson’s disease: from genetics and epigenetics to treatment, a miRNA-based strategy. Int J Mol Sci 24(11):9547. https://doi.org/10.3390/ijms24119547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Pardo-Moreno T et al (2023) Current treatments and new, tentative therapies for Parkinson’s disease. Pharmaceutics 15(3):770. https://doi.org/10.3390/pharmaceutics15030770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Cellular and Molecular Research Center, Iran, University of Medical Sciences, Tehran, Iran, for the finding assistance.

Funding

This work was supported by the Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran (grant number 98-4-20-13245 and 96-03-117-31785).

Author information

Authors and Affiliations

Authors

Contributions

Shayesteh Kokabi Hamidpour: writing and editing epigenetic section. Mobina Amiri: writing the cell signaling and genetic section. Arsh Haj Mohamad Ebrahim Ketabforoush: writing the introduction. Saeede Saeedi: writing the epigenic section. Abdolhamid Angaji: conceptualization. Shima Tavakol: conceptualization, methodology, supervision, writing—editing and review, and funding acquisition.

Corresponding author

Correspondence to Shima Tavakol.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidpour, S.K., Amiri, M., Ketabforoush, A.H.M.E. et al. Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson’s Disease. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04128-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04128-1

Keywords

Navigation