Log in

Interplay Between Zika Virus-Induced Autophagy and Neural Stem Cell Fate Determination

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The Zika virus (ZIKV) outbreaks and its co-relation with microcephaly have become a global health concern. It is primarily transmitted by a mosquito, but can also be transmitted from an infected mother to her fetus causing impairment in brain development, leading to microcephaly. However, the underlying molecular mechanism of ZIKV-induced microcephaly is poorly understood. In this study, we explored the role of ZIKV non-structural protein NS4A and NS4B in ZIKV pathogenesis in a well-characterized primary culture of human fetal neural stem cells (fNSCs). We observed that the co-transfection of NS4A and NS4B altered the neural stem cell fate by arresting proliferation and inducing premature neurogenesis. NS4A + NS4B transfection in fNSCs increased autophagy and dysregulated notch signaling. Further, it also altered the regulation of downstream genes controlling cell proliferation. Additionally, we reported that 3 methyl-adenine (3-MA), a potent autophagy inhibitor, attenuated the deleterious effects of NS4A and NS4B as evidenced by the rescue in Notch1 expression, enhanced proliferation, and reduced premature neurogenesis. Our attempts to understand the mechanism of autophagy induction indicate the involvement of mitochondrial fission and ROS. Collectively, our findings highlight the novel role of NS4A and NS4B in mediating NSC fate alteration through autophagy-mediated notch degradation. The study also helps to advance our understanding of ZIKV-induced neuropathogenesis and suggests autophagy as a potential target for anti-ZIKV therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated during this study are available from the corresponding author on reasonable request.

References

  1. Wen Z, Song H, Ming G (2017) How does Zika virus cause microcephaly? Genes Dev 31:849–861. https://doi.org/10.1101/gad.298216.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ss P, S D, S T, et al (2017) Overview on the current status of Zika virus pathogenesis and animal related research. J Neuroimmune Pharmacol : Off J Soc NeuroImmune Pharmacol 12. https://doi.org/10.1007/s11481-017-9743-8

  3. Dong S, **ao MZX, Liang Q (2023) Modulation of cellular machineries by Zika virus-encoded proteins. J Med Virol 95:e28243. https://doi.org/10.1002/jmv.28243

    Article  CAS  PubMed  Google Scholar 

  4. Liang Q, Luo Z, Zeng J et al (2016) Zika Virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19:663–671. https://doi.org/10.1016/j.stem.2016.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miner JJ, Diamond MS (2017) Zika virus pathogenesis and tissue tropism. Cell Host Microbe 21:134–142. https://doi.org/10.1016/j.chom.2017.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mlakar J, Korva M, Tul N et al (2016) Zika virus associated with microcephaly. N Engl J Med 374:951–958. https://doi.org/10.1056/NEJMoa1600651

    Article  CAS  PubMed  Google Scholar 

  7. Carteaux G, Maquart M, Bedet A et al (2016) Zika virus associated with meningoencephalitis. N Engl J Med 374:1595–1596. https://doi.org/10.1056/NEJMc1602964

    Article  PubMed  Google Scholar 

  8. Mécharles S, Herrmann C, Poullain P et al (2016) Acute myelitis due to Zika virus infection. The Lancet 387:1481. https://doi.org/10.1016/S0140-6736(16)00644-9

    Article  Google Scholar 

  9. Styczynski AR, Malta JMAS, Krow-Lucal ER et al (2017) Increased rates of Guillain-Barré syndrome associated with Zika virus outbreak in the Salvador metropolitan area, Brazil. PLoS Negl Trop Dis 11:e0005869. https://doi.org/10.1371/journal.pntd.0005869

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu D, Li C, Qin C-F, Xu Z (2019) Update on the animal models and underlying mechanisms for ZIKV-induced microcephaly. Annu Rev Virol 6:459–479. https://doi.org/10.1146/annurev-virology-092818-015740

    Article  CAS  PubMed  Google Scholar 

  11. Barbelanne M, Tsang WY (2014) Molecular and cellular basis of autosomal recessive primary microcephaly. Biomed Res Int 2014:547986. https://doi.org/10.1155/2014/547986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McDonell LM, Warman Chardon J, Schwartzentruber J et al (2014) The utility of exome sequencing for genetic diagnosis in a familial microcephaly epilepsy syndrome. BMC Neurol 14:22. https://doi.org/10.1186/1471-2377-14-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tanaka AJ, Cho MT, Millan F et al (2015) Mutations in SPATA5 are associated with microcephaly, intellectual disability, seizures, and hearing loss. Am J Hum Genet 97:457–464. https://doi.org/10.1016/j.ajhg.2015.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Merfeld E, Ben-Avi L, Kennon M, Cerveny KL (2017) Potential mechanisms of Zika-linked microcephaly. Wiley Interdiscip Rev Dev Biol 6:e273. https://doi.org/10.1002/wdev.273

    Article  PubMed  PubMed Central  Google Scholar 

  15. Garcez PP, Loiola EC, Madeiro da Costa R et al (2016) Zika virus impairs growth in human neurospheres and brain organoids. Science 352:816–818. https://doi.org/10.1126/science.aaf6116

    Article  CAS  PubMed  Google Scholar 

  16. Qian X, Nguyen HN, Song MM et al (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254. https://doi.org/10.1016/j.cell.2016.04.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang H, Hammack C, Ogden SC et al (2016) Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18:587–590. https://doi.org/10.1016/j.stem.2016.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li C, Xu D, Ye Q et al (2016) Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19:120–126. https://doi.org/10.1016/j.stem.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  19. Shao Q, Herrlinger S, Yang S-L et al (2016) Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage. Development 143:4127–4136. https://doi.org/10.1242/dev.143768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu K-Y, Zuo G-L, Li X-F et al (2016) Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice. Cell Res 26:645–654. https://doi.org/10.1038/cr.2016.58

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yuan L, Huang X-Y, Liu Z-Y et al (2017) A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science 358:933–936. https://doi.org/10.1126/science.aam7120

    Article  CAS  PubMed  Google Scholar 

  22. Bhagat R, Prajapati B, Narwal S et al (2018) Zika virus E protein alters the properties of human fetal neural stem cells by modulating microRNA circuitry. Cell Death Differ 25:1837–1854. https://doi.org/10.1038/s41418-018-0163-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cugola FR, Fernandes IR, Russo FB et al (2016) The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534:267–271. https://doi.org/10.1038/nature18296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goodfellow FT, Willard KA, Wu X et al (2018) Strain-dependent consequences of Zika virus infection and differential impact on neural development. Viruses 10:E550. https://doi.org/10.3390/v10100550

    Article  CAS  Google Scholar 

  25. Dong X, Levine B (2013) Autophagy and viruses: adversaries or allies? J Innate Immun 5:480–493. https://doi.org/10.1159/000346388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chiramel AI, Best SM (2018) Role of autophagy in Zika virus infection and pathogenesis. Virus Res 254:34–40. https://doi.org/10.1016/j.virusres.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  27. Ebrahimi-Fakhari D, Saffari A, Wahlster L et al (2016) Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Brain 139:317–337. https://doi.org/10.1093/brain/awv371

    Article  PubMed  Google Scholar 

  28. Iossifov I, Ronemus M, Levy D et al (2012) De Novo Gene disruptions in children on the autistic spectrum. Neuron 74:285–299. https://doi.org/10.1016/j.neuron.2012.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Courchesne E, Pierce K, Schumann CM et al (2007) Map** early brain development in autism. Neuron 56:399–413. https://doi.org/10.1016/j.neuron.2007.10.016

    Article  CAS  PubMed  Google Scholar 

  30. Wu X, Fleming A, Ricketts T et al (2016) Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun 7:10533. https://doi.org/10.1038/ncomms10533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Venkatesh K, Reddy LVK, Abbas S et al (2017) NOTCH Signaling Is Essential for Maturation, Self-Renewal, and Tri-Differentiation of In Vitro Derived Human Neural Stem Cells. Cell Reprogram 19:372–383. https://doi.org/10.1089/cell.2017.0009

    Article  CAS  PubMed  Google Scholar 

  32. Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221:117–124. https://doi.org/10.1002/path.2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao C, Cao W, Bao L et al (2010) Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol 12:781–790. https://doi.org/10.1038/ncb2082

    Article  CAS  PubMed  Google Scholar 

  34. Zhou Z-D, Kumari U, **ao Z-C, Tan E-K (2010) Notch as a molecular switch in neural stem cells. IUBMB Life 62:618–623. https://doi.org/10.1002/iub.362

    Article  CAS  PubMed  Google Scholar 

  35. Wu Y-T, Tan H-L, Shui G et al (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III Phosphoinositide 3-Kinase. J Biol Chem 285:10850–10861. https://doi.org/10.1074/jbc.M109.080796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36:30–38. https://doi.org/10.1016/j.tibs.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  37. Khacho M, Clark A, Svoboda DS et al (2016) Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19:232–247. https://doi.org/10.1016/j.stem.2016.04.015

    Article  CAS  PubMed  Google Scholar 

  38. Marbán-Castro E, Goncé A, Fumadó V et al (2021) Zika virus infection in pregnant women and their children: A review. Eur J Obstet Gynecol Reprod Biol 265:162–168. https://doi.org/10.1016/j.ejogrb.2021.07.012

    Article  PubMed  Google Scholar 

  39. Dang JW, Tiwari SK, Qin Y, Rana TM (2019) Genome-wide integrative analysis of Zika-virus-infected neuronal stem cells reveals roles for MicroRNAs in cell cycle and stemness. Cell Rep 27:3618-3628.e5. https://doi.org/10.1016/j.celrep.2019.05.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rothan HA, Fang S, Mahesh M, Byrareddy SN (2019) Zika virus and the metabolism of neuronal cells. Mol Neurobiol 56:2551–2557. https://doi.org/10.1007/s12035-018-1263-x

    Article  CAS  PubMed  Google Scholar 

  41. Garza-Lombó C, Gonsebatt ME (2016) Mammalian target of rapamycin: its role in early neural development and in adult and aged brain function. Front Cell Neurosci 10:157. https://doi.org/10.3389/fncel.2016.00157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Phan TP, Holland AJ (2021) Time is of the essence: the molecular mechanisms of primary microcephaly. Genes Dev 35:1551–1578. https://doi.org/10.1101/gad.348866.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sotthibundhu A, Promjuntuek W, Liu M et al (2018) Roles of autophagy in controlling stem cell identity: a perspective of self-renewal and differentiation. Cell Tissue Res 374:205–216. https://doi.org/10.1007/s00441-018-2829-7

    Article  CAS  PubMed  Google Scholar 

  44. Eskelinen E-L (2006) Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med 27:495–502. https://doi.org/10.1016/j.mam.2006.08.005

    Article  CAS  PubMed  Google Scholar 

  45. Lasky JL, Wu H (2005) Notch signaling, brain development, and human disease. Pediatr Res 57:104R-109R. https://doi.org/10.1203/01.PDR.0000159632.70510.3D

    Article  PubMed  Google Scholar 

  46. Ohtsuka T, Ishibashi M, Gradwohl G et al (1999) Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J 18:2196–2207. https://doi.org/10.1093/emboj/18.8.2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de la Pompa JL, Wakeham A, Correia KM et al (1997) Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124:1139–1148. https://doi.org/10.1242/dev.124.6.1139

    Article  PubMed  Google Scholar 

  48. Kageyama R, Ohtsuka T (1999) The Notch-Hes pathway in mammalian neural development. Cell Res 9:179–188. https://doi.org/10.1038/sj.cr.7290016

    Article  CAS  PubMed  Google Scholar 

  49. Tomita K, Ishibashi M, Nakahara K et al (1996) Mammalian hairy and Enhancer of split homolog 1 regulates differentiation of retinal neurons and is essential for eye morphogenesis. Neuron 16:723–734. https://doi.org/10.1016/s0896-6273(00)80093-8

    Article  CAS  PubMed  Google Scholar 

  50. Ishibashi M, Ang SL, Shiota K et al (1995) Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev 9:3136–3148. https://doi.org/10.1101/gad.9.24.3136

    Article  CAS  PubMed  Google Scholar 

  51. Imayoshi I, Kageyama R (2014) bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. Neuron 82:9–23. https://doi.org/10.1016/j.neuron.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  52. Ledur PF, Karmirian K, da Pedrosa C, SG, et al (2020) Zika virus infection leads to mitochondrial failure, oxidative stress and DNA damage in human iPSC-derived astrocytes. Sci Rep 10:1218. https://doi.org/10.1038/s41598-020-57914-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. **e X, Shu R, Yu C, et al (2022) Mammalian AKT, the emerging roles on mitochondrial function in diseases. Aging Dis 13:157–174. https://doi.org/10.14336/AD.2021.0729

Download references

Acknowledgements

We acknowledge the technical assistance from Mr. Naushad Alam and Mr. DL Meena of NBRC. Mr. Naushad also helped in performing some assays. We are thankful to Dr. Shyamala Mani, IISc, India for providing Expression vectors for the Zika virus proteins. We highly acknowledge the fellowship from Council of Scientific and Industrial Research (CSIR) to Bindu and Hriday Shanker Pandey and financial support from NBRC core funds to Prof. Pankaj Seth. We also acknowledge the support of the facilities provided under the Biotechnology Information System Network (BTISNET) grant, Department of Biotechnology (DBT), India, and Distributed Information Centre at NBRC, Manesar, India.

Funding

This study was supported by the Council of Scientific and Industrial Research (CSIR), Department of Biotechnology (DBT), and National Brain Research Centre (NBRC) core fund.

Author information

Authors and Affiliations

Authors

Contributions

Bindu designed the study, performed experiments, analyzed the data, and wrote the manuscript. Hriday Shanker Pandey helped in performing rescue experiments and writing the manuscript. Pankaj Seth helped in designing experiments, interpretation of data, and finalizing the manuscript.

Corresponding author

Correspondence to Pankaj Seth.

Ethics declarations

Ethical Approval

Strict guidelines of institutional Human ethics and stem cell research committee of NBRC, India in compliance with recommendations of the Indian Council of Medical Research (ICMR) and Department of Biotechnology (DBT), India were followed for isolation of Neural stem cells from aborted human fetus.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2599 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bindu, Pandey, H.S. & Seth, P. Interplay Between Zika Virus-Induced Autophagy and Neural Stem Cell Fate Determination. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03704-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03704-1

Keywords

Navigation