Log in

In Vitro Culture Technology and Advanced Biotechnology Tools Toward Improvement in Gladiolus (Gladiolus species): Present Scenario and Future Prospects

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In the world's flower trade, gladiolus (Gladiolus spp.) is ranked first among bulbous flowers and eighth among cut flowers, with more than 30,000 different cultivars being grown. Mass multiplication and commercialization are restricted by the traditional propagation methods. However, the large-scale proliferation and improvement of the gladiolus have been accomplished with the aid of plant tissue culture and other biotechnological techniques. The current review includes a thorough examination of the growth and development parameters required for successful in vitro gladiolus development as well as cormel formation. Moreover, focus is being given to various techniques and methods such as in vitro cytogenetic stability and modification of chromosome number, in vitro mutagenesis and selection of pest resistance, in vitro identification and selection to develop virus-free germplasm, cryopreservation, synthetic seed technology, identifying virus diseases by RT-PCR, somaclonal variation, and protoplast and somatic hybridization. Molecular markers and their applications for genetic diversity analysis, relationships between different genotypes, and clonal stability analysis in Gladiolus species have been conducted by several research groups worldwide and are also being discussed. The article also covers efforts to enhance the functionality of plant phenotypes through genetic transformation. Future prospects for further improvement of ornamental gladiolus are also explored. Overall, the current review provides insight into the applications of basic and advanced biotechnological tools for gladiolus improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Data availability statement

Not applicable.

References

  1. Manning, J., & Goldblatt, P. (2008). The iris family: Natural history and classification (pp. 138–142). Timber Press.

    Google Scholar 

  2. Cantor, M., Butta, E., Cristea, G., & Chis, L. M. (2010). Improvement of gladiolus varietal collection in order to use as genitors in breeding work. Bulletin UASVM Horticulture, 67, 1843–5394.

    Google Scholar 

  3. Kispotta, L. M., Jha, K. K., Horo, P., Tirkey, S. K., Misra, S., & Sengupta, S. (2017). Studies on combining ability and heterosis in Gladiolus (Gladiolus hybridus). International Journal of Environmental Science and Technology, 6, 420–442. https://doi.org/10.1080/14620316.2021.1990802

    Article  CAS  Google Scholar 

  4. Kispotta, L. M., Jha, K. K., Horo, P., Tirkey, S. K., Misra, S., & Sengupta, S. (2017). Genetic variability and heritability in Gladiolus hybridus. International Journal of Environmental Science and Technology, 6, 519–528.

    Google Scholar 

  5. Pragya, P., Bhat, K. V., Misra, R. L., & Ranjan, J. K. (2010). Analysis of diversity and relation-ships among gladiolus cultivars using morphological and RAPD markers. Indian Journal of Agricultural Sciences, 80, 766–772.

    Google Scholar 

  6. Cantor, M., & Gladiolus, T. J. (2011). Wild crop relatives: Genomic and breeding resources (pp. 133–159). Springer.

    Book  Google Scholar 

  7. Valente, L., Savolainen, V., Manning, J. C., Goldblatt, P., & Vargas, P. (2011). Explaining disparities in species richness between Mediterranean floristic regions: A case study in gladiolus (Iridaceae). Global Ecology and Biogeography, 20, 881–892. https://doi.org/10.1111/j.1466-8238.2010.00644.x

    Article  Google Scholar 

  8. Anderson, N. O., Frick, J., Younis, A., & Currey, C. (2012). Heritability of cold tolerance (winter hardiness) Gladiolus grandiflorus. Plant Breed (pp. 298–312). InTech.

    Google Scholar 

  9. Datta, S. K. (2020). Breeding of Ornamentals: Gladiolus. International Journal of Life Sciences, 9, 115–133. https://doi.org/10.5958/2319-1198.2020.00007.X

    Article  Google Scholar 

  10. Larson, R. A. (2012). Introduction to floriculture. Elsevier.

    Google Scholar 

  11. Ohri, D. (2013). Cytogenetics of domestication and improvement of garden gladiolus and bougainvillea. Nucleus, 56, 149–153. https://doi.org/10.1007/s13237-013-0091-7

    Article  Google Scholar 

  12. Manzoor, A., Ahmad, T., Bashir, M. A., Baig, M. M. Q., Quresh, A. A., Shah, M. K. N., & Hafiz, I. A. (2018). Induction and identification of colchicine induced polyploidy in Gladiolus grandiflorus‘White Prosperity.’ Folia Horticulturae, 30, 307–319. https://doi.org/10.2478/fhort-2018-0026

    Article  Google Scholar 

  13. Kadam, J. J., Agale, R. C., Rite, S. C., & Pandav, S. M. (2014). Exploration of fungicides and phyto-extract against Fusarium Oxysporum f. sp. gladioli causing corm rot of gladiolus. Discover Agriculture, 2, 61–64.

    Google Scholar 

  14. Chaudhary, V., Kumar, M., Sharma, S., Kumar, N., Kumar, V., Yadav, H. K., Sharma, S., & Sirohi, U. (2018). Assessment of genetic diversity and population structure in gladiolus (Gladiolus hybridus Hort.) by ISSR markers. Physiology and Molecular Biology of Plants, 24, 493–501. https://doi.org/10.1007/s12298-018-0519-2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thorpe, T. A. (2007). History of plant tissue culture. Molecular Biotechnology, 37, 169–180. https://doi.org/10.1007/s12033-007-0031-3

    Article  CAS  PubMed  Google Scholar 

  16. Kumar, M., Sirohi, U., Malik, S., Kumar, S., Ahirwar, G. K., Chaudhary, V., Yadav, M. K., Singh, J., Kumar, A., & Pal, V. (2022). Prakash S Methods and factors influencing in vitro propagation efficiency of ornamental tuberose (Polianthes species): A systematic review of recent developments and future prospects. Horticulturae, 8, 998. https://doi.org/10.3390/horticulturae8110998

    Article  Google Scholar 

  17. Mehbub, H., Akter, A., Akter, M. A., Mandal, M. S. H., Hoque, M. A., Tuleja, M., & Mehraj, H. (2022). Tissue culture in ornamentals: Cultivation factors, propagation techniques, and its application. Plants, 11, 3208. https://doi.org/10.3390/plants11233208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Winter, P., & Kahl, G. (1995). Molecular marker technologies for plant improvement. World Journal of Microbiology & Biotechnolog, 11, 438–448. https://doi.org/10.1007/BF00364619

    Article  CAS  Google Scholar 

  19. Henry, R. (1997). Molecular markers in plant improvement. In R. Susi (Ed.), Practical Applications of Plant Molecular Biology (pp. 99–132). Chapman & Hall.

  20. Baird, G., Abbott, A., Ballard, R., Sosinski, B., & Rajapakse, S. (1997). DNA diagnostics in horticulture. In P. Gresshoff (Ed.), Current Topics in Plant Molecular Biology: Technology Transfer of Plant Biotechnology (pp. 111–130). CRC Press.

    Google Scholar 

  21. Collard, B. C. Y., & Mackill, D. J. (2008). Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences., 363, 557–572. https://doi.org/10.1098/rstb.2007.2170

    Article  CAS  Google Scholar 

  22. Kamo, K., Blowers, A., Smith, F., Van Eck, J., & Lawson, R. (1995). Stable transformation of gladiolus using suspension cells and callus. Journal of the American Society for Horticultural Science, 120, 347–352. https://doi.org/10.21273/JASHS.120.2.347

    Article  Google Scholar 

  23. Kamo, K., Blowers, A., Smith, F., & Van Eck, J. (1995). Stable transformation of gladiolus by particle gun bombardment of cormels. Plant Science, 110, 105–111. https://doi.org/10.1016/0168-9452(95)04195-Z

    Article  CAS  Google Scholar 

  24. Memon, N., Qasim, M., Jaskani, M. J., Khooharo, A. A., Hussain, Z., & Ahmad, I. (2013). Comparison of various explants on the basis of efficient shoot regeneration in gladiolus. Pakistan Journal of Botany, 45, 877–885.

    Google Scholar 

  25. Ascough, G. D., Erwin, J. E., & Van Staden, J. (2009). Micropropagation of Iridaceae—a review. PCTOC, 97, 1–19. https://doi.org/10.1007/s11240-009-9499-9

    Article  Google Scholar 

  26. Kumar, A., Sood, A., Palni, L. M. S., & Gupta, A. K. (1999). In vitro propagation of Gladiolus hybridus Hort.: Synergistic effect of heat shock and sucrose onmorphogenesis. PCTOC, 57, 105–112. https://doi.org/10.1023/A:1006373314814

    Article  CAS  Google Scholar 

  27. Memon, N., Qasim, M., Jaskani, M. J., Awan, F. S., Khan, A. I., Sadia, B., & Hussain, Z. (2012). Assessment of somaclonal variation in in-vitro propagated cormels of gladiolus. Pakistan Journal of Botany, 44, 769–776.

    CAS  Google Scholar 

  28. Kundang, N., Kumar, V., & Kumar, S. (2017). Effect of macronutrients and plant growth hormones for the in vitro formation of cormlets of Gladiolus Pacifica. CJB, 6, 10–16.

    CAS  Google Scholar 

  29. Kumar, A., Kumar, A., Sharma, V., Mishra, A., Singh, S., & Kumar, P. (2018). In vitro regeneration of gladiolus (Gladiolus hybrida L.): Optimization of growth media and assessment of genetic fidelity. International Journal of Current Microbiology and Applied Sciences, 7, 2900–2909. https://doi.org/10.20546/ijcmas.2018.710.337

    Article  CAS  Google Scholar 

  30. Bajaj, Y. P. S., Sidhu, M. M. S., & Gill, A. P. S. (1983). Some factors affecting the in vitro propagation of Gladiolus. Scientia Horticulturae, 18, 269–275. https://doi.org/10.1016/0304-4238(83)90031-6

    Article  Google Scholar 

  31. Singh, S. K., Misra, R. L., & Ranjan, J. K. (2012). In vitro shoot regeneration from cormel derived callus of gladiolus and bio-hardening of plantlets. Indian Journal of Biotechnology, 11, 99–104.

    Google Scholar 

  32. Saha, B., Datta, A. K., Datta, S., & da Silva, J. A. T. (2013). In vitro corm development, field evaluation and determination of genetic stability of corm-derived elite gladiolus germplasm. Floriculture and Ornamental Biotech, 7, 82–85.

    Google Scholar 

  33. Kabir, M. H., Mamun, A. N. K., Yesmin, F., & Subramaniam, S. (2014). In vitro propagation of Gladiolus dalenii from the callus through the culture of corm slices. Journal of Phytology, 6, 40–45.

    Google Scholar 

  34. Simonsen, J., & Hildebrandt, A. C. (1971). In vitro growth and differentiation of Gladiolus plants from callus cultures. Canadian Journal of Botany, 49, 1817–1819. https://doi.org/10.1139/b71-256

    Article  Google Scholar 

  35. Kamo, K. (1995). A cultivar comperision of plant regeneration from suspension cells, callus, and cormel slices of gladiolus. In Vitro Cellular & Developmental Biology - Plant, 31, 113–115. https://doi.org/10.1007/BF02632247

    Article  Google Scholar 

  36. Rernotti, P. C. (1995). Primary and secondary embryogenesis from cell suspension cultures of Gladiolus. Plant Science, 107, 205–214. https://doi.org/10.1016/0168-9452(95)04106-5

    Article  Google Scholar 

  37. Kamo, K., Rajasekaran, K., & Cary, J. (2014). Growth characteristics of micropropagated, regenerated and transgenic gladiolus plants. Journal of Applied Horticulture, 16, 193–198.

    Article  Google Scholar 

  38. Isah, T., Qurratul, & Umar, S. (2022). Influence of silver nitrate and copper sulphate on somatic embryogenesis, shoot morphogenesis, multiplication and associated physiological biochemical changes in Gladiolus hybridus L. PCTOC, 149, 563–587. https://doi.org/10.1007/s11240-022-02309-1

    Article  CAS  Google Scholar 

  39. Hussain, I., Muhammad, A., Rashid, H., & Quraishi, A. (2001). In vitro multiplication of Gladiolus (Gladiolus crassifolius). Plant tissue culture, 11, 121–126.

    Google Scholar 

  40. Pathania, N. S., Misra, R. L., & Raghava, S. P. S. (2001). Precocious shoot proliferation and microcorm production in gladiolus through tissue culture. Journal of Ornamental Horticulture, 4, 69–73.

    Google Scholar 

  41. Roy, S. K., Gangopadhyay, G., Bandyopadhyay, T., Modak, B. K., Datta, S., & Mukherjee, K. K. (2006). Enhancement of in vitro micro corm production in gladiolus using alternative matrix. African Journal of Biotechnology, 5, 1204–1209.

    CAS  Google Scholar 

  42. Memon, N., Qasim, M., Jaskani, M. J., & Ahmad, R. (2010). In vitrocormel production of gladiolus. Pakistan Journal of Agricultural Sciences, 47, 115–123.

    Google Scholar 

  43. Priyakumari, I., & Sheela, V. L. (2005). Micropropagation of gladiolus cv. ‘PeachBlossom’through enhanced release axillary buds. Journal of Tropical Agriculture., 43, 47–50.

    Google Scholar 

  44. Prasad, V. S. S., & Gupta, S. D. (2006). In vitro shoot regeneration of gladiolus in semi-solid agar versus liquid cultures with support systems. PCTOC, 87, 263–271. https://doi.org/10.1007/s11240-006-9160-9

    Article  Google Scholar 

  45. Aftab, F., Alam, M., Afrasiab, H., & Afrasiab, H. (2008). In vitro shoot multiplication and callus induction in Gladiolus hybridus Hort. Pakistan Journal of Botany, 40, 517–522.

    CAS  Google Scholar 

  46. Sheena, A., & Sheela, V. L. (2010). Effects of the growth retardant triadimefon on the ex-vitro establishment of gladiolus (Gladiolus grandifloras L.) cv. Vinks Glory. Plant Tissue Culture and Biotechnology, 20, 171–178. https://doi.org/10.3329/ptcb.v20i2.6896

    Article  Google Scholar 

  47. Deshmukh, V. D., Kharde, A. V., & Talekar, B. K. (2021). Interactive effects of BA and IAA on shoot proliferation of gladiolus (gladiolus grandiflorus) var. white prosperity. THE Journal of Oriental Research Madras., 92, 12–19.

    Google Scholar 

  48. Sirohi, U., Kumar, M., Sharma, V. R., Teotia, S., Singh, D., Chaudhary, V., Sirohi, U., Priya, & Singh, M. K. (2022). CRISPR/Cas9 System: A potential tool for genetic improvement in floricultural crops. Molecular Biotechnology. https://doi.org/10.1007/s12033-022-00523-y

  49. Emek, Y., & Erdag, B. (2007). In vitro propagation of Gladiolus anatolicus (Boiss.) Stapf. Pakistan Journal of Botany, 39, 23–30.

    Google Scholar 

  50. Sinha, P., & Roy, S. K. (2002). Plant regeneration through in vitro cormel formation from callus culture of Gladiolus primulinus Baker. Plant Cell, Tissue and Organ Culture, 12, 139–145.

    Google Scholar 

  51. Nezamabad, P. S., Habibi, M. K., Dizadji, A., & Kalantari, S. (2015). Elimination of bean yellow mosaic virus through thermotherapy combined with meristem-tip culture in gladiolus corms. Journal of Crop Protection, 4, 533–543. https://doi.org/10.1007/s13205-019-1684-x

    Article  Google Scholar 

  52. Wu, J., Liu, C., Seng, S., Khan, M. A., Sui, J., Gong, B., Liu, C., Wu, C., Zhong, X., He, J., & Yi, M. (2015). Somatic embryogenesis and Agrobacterium-mediated transformation of Gladiolus hybridus cv. ‘Advance Red.’ PCTOC, 120, 717–728. https://doi.org/10.1007/s11240-014-0639-5

    Article  CAS  Google Scholar 

  53. Mujib, A., Ali, M., Tonk, D., & Zafar, N. (2017). Nuclear 2C DNA and genome size analysis in somatic embryo regenerated gladiolus plants using flow cytometry. Advances in Horticultural Science, 31, 165–174.

    Google Scholar 

  54. Nishihara, M., Higuchi, A., Watanabe, A., & Tasaki, K. (2018). Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. BMC Plant Biology, 18, 1–9. https://doi.org/10.1186/s12870-018-1539-3

    Article  CAS  Google Scholar 

  55. Choudhary, D., Agarwal, G., Singh, V. P., & Arora, A. (2010). In vitro micropropagation of Gladiolus grandiflora (var. Snow Princess) flower from cormel explant. Indian Journal of Plant Physiology, 15, 90–93.

    CAS  Google Scholar 

  56. Cai-hua, L., **-**, F., Shu-fang, G., & Dai-di, C. (2012). Study on mutant induction of gladiolusbyin vitro culture of petals. Journal of Northeast Agricultural University, 19, 38–42. https://doi.org/10.1016/S1006-8104(13)60020-3

    Article  Google Scholar 

  57. Memon, N., Jasakni, M. J., Qasim, M., & Sharif, N. (2014). Cormel formation in gladiolus through tissue culture. Pakistan Journal of Agricultural Sciences, 51, 475–482.

    Google Scholar 

  58. El-Kazzaz, A. A., El-Bagoury, H., Mahmoud, I., El Tantawy, A. A., & Al-Ansary, A. A. (2012). Production of gladiolus germplasm via in vitro tissue cultures. JDU, 15, 440–447.

    Google Scholar 

  59. Haouala, F., & Chaieb, E. (2012). Effects of explant position and polarity on callus induction and shoot regeneration of gladiolus (Gladiolus hybridus Hort.). Floriculture Ornamental Biotech., 6, 133–139.

    Google Scholar 

  60. Zaidi, N., Khan, N. H., Zafar, F., & Zafar, S. I. (2000). Bulbous and cormous monocotyledonous ornamental plants in vitro. Science Vision, 6, 58–73.

    Google Scholar 

  61. Ziv, M., & Lilien-Kipnis, H. (2000). Bud regeneration from inflorescence explants for rapid propagation of geophytes in vitro. Plant Cell Reports, 19, 845–885. https://doi.org/10.1007/s002990000204

    Article  CAS  PubMed  Google Scholar 

  62. Cardoso, J. C., & Teixeira Silva, J. A. (2012). Micropropagation of gerbera using chlorine dioxide (ClO2) to sterilize the culture medium. In Vitro Cellular & Developmental Biology - Plant., 48, 362–368. https://doi.org/10.1007/s11627-011-9418-8

    Article  CAS  Google Scholar 

  63. Belanekar, S. B., Nadkarni, H. R., Sawant, S. S., & Gokhale, N. B. (2010). Micropropagation in Gladiolus (Gladiolus grandiflorus L.) var. White Friendship. Journal of Maharashtra Agricultural University, 35, 66–68.

    CAS  Google Scholar 

  64. Cerasela, P., Giancarla, V., Camen, D., Andreea, P., Eleonora, N., Alina, S., & Gorinoiu, G. (2018). Evaluation of somaclonal variation in Gladiolus grandifloras through molecular markers ISSR. Journal of Horticulture, Forestry and Biotechnology, 22, 100–104.

    Google Scholar 

  65. George, E. F., Hall, M. A., & De Klerk, G. J. (2008). Plant tissue culture procedure-background. Plant Propagation by Tissue Culture (pp. 1–28). Springer.

    Google Scholar 

  66. George, E. F., & Debergh, P. C. (2008). Micropropagation: uses and methods Plant. Propagation by Tissue Culture (pp. 29–64). Springer.

    Google Scholar 

  67. Mateen, R. M. (2019). Development and optimization of micro-propagation, in vitro methodology for gladiolus. BSR, 1, 21–36.

    Article  Google Scholar 

  68. Kumar, A., & Palni, L. M. S. (2013). Changes in endogenous polyamines during in vitro cormlet formation in Gladiolus hybridus Hort. Scientia Horticulturae, 162, 260–264. https://doi.org/10.1016/j.scienta.2013.08.003

    Article  CAS  Google Scholar 

  69. Bera, A. K., Maity, T. R., Samanta, A., Dolai, A., Saha, B., & Datta, S. (2015). Enhancement of in vitro corm production in gladiolus by periodically replacement of liquid media using coir matrix. Journal of Applied Horticulture, 17, 222–224.

    Article  Google Scholar 

  70. González-Pérez, E., Juárez-Muñoz, J., Ayala-Garay, O. J., Yáñez-Morales, M., & De, J. (2014). Ex vitro acclimatization of gladiolusplantlets. Propagation of Ornamental Plants, 14, 125–132.

    Google Scholar 

  71. Dharmasena, P. A. I. U., Karunananda, D. P., & Eeswara, J. P. (2011). Effect of gibberellic acid (GA3) and sugar on in vitrocormlet formation, multiplication and ex vitro sprouting of Gladiolus hybrida variety Princess Lee. Journal of Sustainable Tropical Agricultural Research, 23, 1–10. https://doi.org/10.4038/tar.v23i1.4626

    Article  Google Scholar 

  72. Jala, A. (2013). Potential of benzyl adenine, naphthalene acetic acid and sucrose concentration on growth, development, and regeneration of new shoot and cormelon gladiolus. ATEAS, 2, 277–285.

    Google Scholar 

  73. Malviya, R. K., Tripathi, M., Vidhyashankar, M., Patel, R., & Ahuja, A. (2018). Effect of different phytohormones on plant regeneration of gladiolus (Gladiolus hybridus Hort.) from cultured cormel. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 19, 155–165.

    Google Scholar 

  74. Tripathi, M. K., Malviya, R. K., Vidhyashankar, M., & Patel, R. P. (2017). Effect of plant growth regulators on in vitro morphogenesis in gladiolus (Gladiolus hybridus Hort.) from cultured corm slice. International Journal of Agricultural Technology, 13, 583–599.

    CAS  Google Scholar 

  75. Altan, F., Bürün, B., & Sahin, N. (2010). Fungal contaminants observed during micropropagation of Lilium candidum L. and the effect of chemotherapeutic substances applied after sterilization. AJB, 9(7), 991–995.

    CAS  Google Scholar 

  76. Da Silva, J. A. T., Winarto, B., Dobránszki, J., Cardoso, J. C., & Zeng, S. (2016). Tissue disinfection for preparation of culture. Folia Horticulturae, 28(1), 57–75.

    Article  Google Scholar 

  77. Bhojwani, S. S., & Dantu, P. K. (2013). Micropropagation. In S. S. Bhojwani & P. K. Dantu (Eds.), Plant tissue culture: an introductory text (pp. 245–274). Springer.

    Chapter  Google Scholar 

  78. Mihaljevic, I., Dugalic, K., Tomas, V., Viljevac, M., Pranjic, A., Cmelik, Z., Puskar, B., & Jurkovic, Z. (2013). In vitro sterilization procedures for micropropagation of ‘Oblacinska’ sour cherry. Journal of Agricultural Science, 58(2), 117–126.

    Google Scholar 

  79. Mngomba, S. A., Sileshi, G., Du Toit, E. S., & Akinnifesi, F. K. (2012). Efficacy and utilization of fungicides and other antibiotics for aseptic plant cultures, fungicides for plant and animal diseases. In D. Dhanasekaran (Ed.), fungicides for plant and animal diseases (pp. 245–254). InTech.

    Google Scholar 

  80. Onwubiko, N. C., Nkogho, C. S., Anyanwu, C. P., & Onyeishi, G. C. (2013). Effect of different concentration of sterilant and exposure time on sweet potato (Ipomoea batatas Lam) explants. International Journal of Current Microbiology and Applied Sciences, 2(8), 14–20.

    Google Scholar 

  81. Sugii, N. C. (2011). The establishment of axenic seed and embryo cultures of endangered Hawaiian plant species: special review of disinfection protocols. In Vitro Cellular & Developmental Biology - Plant, 47, 157–169.

    Article  Google Scholar 

  82. Budiarto, K. (2009). In vitro regeneration of three gladiolus cultivars using cormel explants. JID, 10, 109–113. https://doi.org/10.19184/JID.V10I2.82

    Article  Google Scholar 

  83. Sutter, E. G. (1986). Micropropagation of Ixia viridifoliaand a Gladiolus × Homoglossumhybrid. Scientia Horticulturae, 29, 181–189. https://doi.org/10.1016/0304-4238(86)90045-2

    Article  Google Scholar 

  84. Nasir, I. A., & Riazuddin, S. (2008). In vitro selection for Fusarium wilt resistance in gladiolus. Journal of Integrative Plant Biology, 50, 601–612. https://doi.org/10.1111/j.1744-7909.2008.00656.x

    Article  PubMed  Google Scholar 

  85. Dutta Gupta, S., & Prasad, V. S. S. (2010). Shoot multiplication kinetics and hyperhydric status of regenerated shoots of gladiolus in agar-solidified and matrix-supported liquid cultures. Plant Biotechnology Reports, 4, 85–94. https://doi.org/10.1007/s11816-009-0124-5

    Article  Google Scholar 

  86. **ao, Y., Niu, G., & Kozai, T. (2011). Development and application of photoautotrophic micropropagation plant system. PCTOC. https://doi.org/10.1007/s11240-010-9863-9

    Article  Google Scholar 

  87. Ojha, A., Sharma, V., Sharma, V. N., & Rawat, A. (2010). Effect of different carbohydrates sources on the formation of cormlets of economic important plant: Gladiolus Pacifica. IJBB., 6, 485–491.

    Google Scholar 

  88. Rakosy-Tican, E., Bors, B., & Szatmari, A. (2012). In vitro culture and medium-term conservation of the rare wild species Gladiolus imbricatus. African Journal of Biotechnology, 11, 14703–14712. https://doi.org/10.5897/AJB12.784

    Article  CAS  Google Scholar 

  89. Dogra, N., & Dhatt, K. K. (2017). In vitro production of cormels in Gladiolus hybridus through gamma rays. International Journal of Current Microbiology and Applied Sciences, 6, 1308–1318. https://doi.org/10.20546/ijcmas.2017.610.154

    Article  CAS  Google Scholar 

  90. Mokshin, E. V., Lukatkin, A. S., & Teixeira da Silva, J. A. (2006). Micropropagation of selected cultivars of lilium and gladiolus. Floriculture Ornamental Biotechnology, 2, 533–539.

    Google Scholar 

  91. Ruffoni, B., Savona, M., & Barberini, S. (2012). Biotechnological support for the development of new Gladiolus Hybrids. Floriculture Ornamental Biotechnology, 6, 45–52.

    Google Scholar 

  92. Ibrahim, A. I. (1994). Effect of gelling agent and activated charcoal on the growth and development of Cordyline terminalis cultured in vitro. First Conference Ornamental Horticulture, 1, 55–67.

    Google Scholar 

  93. Pierik, R. L. M. (1987). In vitro propagation of higher plants Handbook Martinus. Nijhoff Publishers. https://doi.org/10.1007/978-94-011-5750-6

    Book  Google Scholar 

  94. Aslam, F., Habib, S., & Naz, S. (2012). Effect of different phytohormones on plant regeneration of Amaryllis hippeastrum. Pakistan Journal of Science, 64, 54–58.

    Google Scholar 

  95. Torabi-Giglou, M., & Hajieghrari, B. (2008). In vitro study on regeneration of Gladiolus grandiflorus corm calli as affected by plant growth regulators. Pakistan Journal of Biological Sciences, 11, 1147–1154. https://doi.org/10.3923/pjbs.2008.1147.1151

    Article  PubMed  Google Scholar 

  96. Goo, D. H., Joung, H. Y., & Kim, K. W. (2003). Differentiation of gladiolus plantlets from callus and subsequent flowering. Acta Horticulturae, 620, 339–342. https://doi.org/10.17660/ActaHortic.2003.620.42

    Article  CAS  Google Scholar 

  97. Memon, N., Wahocho, N. A., Miano, T. F., & Leghari, M. H. (2016). Propagation of Gladiolus corms and cormels: A review. AJB, 15(32), 1699–1710.

    CAS  Google Scholar 

  98. Ginzburg, C., & Ziv, M. (1973). Hormonal regulation of corm formation in gladiolus stolons grown in vitro. Annals of Botany, 37, 219–224.

    Article  CAS  Google Scholar 

  99. Steinitz, B., & Lilien-Kipnis, H. (1989). Control of precocious gladiolus corm and cormel formation in liquid shake cultures. Journal of Plant Physiology, 135, 495–500.

    Article  CAS  Google Scholar 

  100. Kumar, A., Palni, L. M. S., Sood, A., Sharma, M., Palni, U. T., & Gupta, A. K. (2002). Heat-shock induced somatic embryogenesis in callus cultures of gladiolus in the presence of high sucrose. The Journal of Horticultural Science & Biotechnology, 77, 73–78. https://doi.org/10.1080/14620316.2002.11511460

    Article  CAS  Google Scholar 

  101. Akhare, A. A., Dhumale, D. B., Sakhare, S. B., & Ekta, S. (2008). In vitro establishment of gladiolus cv. White Friendship and Fidelio using axillary buds as explant. Asian Journal of Horticulture, 3, 149–152.

    Google Scholar 

  102. Dantu, P. K., & Bhojwan, S. S. (1992). In vitro propagation of gladiolus: Optimisation of conditions for shoot multiplication. Journal of Plant Biochemistry and Biotechnology, 1, 115–118. https://doi.org/10.1007/BF03262908

    Article  CAS  Google Scholar 

  103. Dantu, P. K., & Bhojwani, S. S. (1995). In vitro corm formation and field evaluation of corm-derived plants of gladiolus. Scientia Horticulturae, 61, 115–129. https://doi.org/10.1016/0304-4238(94)00722-R

    Article  Google Scholar 

  104. Ziv, M., Halevy, A. H., & Shilo, R. (1970). Organs and plantlets regeneration of gladiolus through tissue culture. Annals of Botany, 34, 671–676. https://doi.org/10.1093/oxfordjournals.aob.a084400

    Article  CAS  Google Scholar 

  105. Logan, A. E., & Zettler, F. W. (1985). Rapid in vitro propagation of virus-indexed gladioli. Acta Horticulturae, 164, 169–180. https://doi.org/10.17660/ActaHortic.1985.164.18

    Article  Google Scholar 

  106. Singh, S. K., Misra, R. L., & Ranjan, J. K. (2010). In vitro rooting of gladiolus microshoots. Progressive Horticulture, 42(2), 243–245.

    Google Scholar 

  107. Nhut, D. T., da Silva, J. A. T., Huyen, P. X., & Paek, K. Y. (2004). The importance of explant source on regeneration and micropropagation of Gladiolus by liquid shake culture. Scientia Horticulturae, 102(4), 407–414. https://doi.org/10.1016/j.scienta.2004.04.004

    Article  Google Scholar 

  108. Kumar, A., Palni, L. M. S., & Sood, A. (2011). Factors affecting in vitro formation of cormlets in Gladiolus hybridus Hort. and their field performance. Acta physiologiae plantarum, 33, 509–515. https://doi.org/10.1007/s11738-010-0574-y

    Article  Google Scholar 

  109. Thun, V., Byun, M. S., Goo, D. H., & Kim, K. W. (2008). Large-sized cormlet induction and BYMV removal through tissue culture in gladiolus. Horticulture, Environment, and Biotechnology, 49, 332–335.

    Google Scholar 

  110. Memon, N., Qasim, M., Jaskani, M. J., Ahmad, R., & Anwar, R. (2009). Effect of various corm sizes on the vegetative, floral and corm yield attributes of gladiolus. Pakistan Journal of Agricultural Sciences, 46, 13–19.

    Google Scholar 

  111. Rakesh, B., Sudheer, W. N., & Nagella, P. (2021). Role of polyamines in plant tissue culture: An overview. PCTOC, 145, 487–506. https://doi.org/10.1007/s11240-021-02029-y

    Article  CAS  Google Scholar 

  112. Sherif, N. A., Franklin Benjamin, J. H., Senthil Kumar, T., & Rao, M. V. (2018). Somatic embryogenesis, acclimatization and genetic homogeneity assessment of regenerated plantlets of Anoectochilus elatus Lindl., an endangered terrestrial jewel orchid. PCTOC, 132, 303–316. https://doi.org/10.1007/s11240-017-1330-4

    Article  CAS  Google Scholar 

  113. Preece, J. E., & Sutter, E. G. (1991). Acclimatization of micropropagated plants to the greenhouse and field. In P. C. Debergh & R. H. Zimmerman (Eds.), Micropropagation (pp. 71–93). Kluwer Academic Publishers.

    Chapter  Google Scholar 

  114. Chandra, S., Bandopadhyay, R., Kumar, V., & Chandra, R. (2010). Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnology Letters, 32, 1199–1205. https://doi.org/10.1007/s10529-010-0290-0

    Article  CAS  PubMed  Google Scholar 

  115. Memon, N. (2012). In vitro propagation of gladiolus plantlets and cormels. JHSOP, 4, 280–291.

    CAS  Google Scholar 

  116. Hannweg, K., Watt, M. P., & Berjak, P. (1996). A simple method for the micropropagation of Bowiea volubilis from inflorescence explants. Botanical Bulletin of Academia Sinica, 37, 213–218.

  117. Paek, K. Y., & Murthy, H. N. (2002). High frequency of bulblet regeneration from bulb scale sections of Fritillaria thunbergi. PCTOC, 68, 247–252.

    Article  CAS  Google Scholar 

  118. Naik, P. K., & Nayak, S. (2005). Different modes of plant regeneration and factors affecting in vitro bulblet production in Ornithogalum virens. ScienceAsia, 31, 409–414.

    Article  Google Scholar 

  119. Ziv, M., & Lilien-Kipnis, H. (1990). Gladiolus. In P. A. Ammirato, D. A. Evans, W. R. Shark, & Y. P. S. Bajaj (Eds.), Handbook of Plant Cell Culture (pp. 461–478). Mcgraw Hill Publishing Co.

    Google Scholar 

  120. Nagaraju, V., Bhowmik, G., & Parthasarathy, V. A. (2002). Effect of paclobutrazol and sucrose on in vitro cormel formation in gladiolus. Acta Botanica Croatica, 61(1), 27–33.

    CAS  Google Scholar 

  121. Shah, A. H., Thakur, P., Dhiman, S. R., & Sharma, P. (2022). Role of plant growth regulators in flower crops Chapter. Advances in Agricultural, Animal and Fisheries Sciences, 129.

  122. Rai, C. K., Rana, M., & Sharma, L. (2023). Response of Plant Growth Substances and Bio-enhancer on the Enhancement of Bulblet Growth under the In-vivo Condition of Lilium. International Journal of Plant & Soil Science., 35(14), 57–68.

    Article  Google Scholar 

  123. Bandeira, S. O., Gaspar, F., & Pagula, F. P. (2001). African ethnobotany and healthcare: Emphasis on Mozambique. Pharmaceutical Biology, 39(1), 70–73.

    Article  PubMed  Google Scholar 

  124. Ngoupaye, G. T., Ngo Bum, E., & Daniels, W. M. U. (2013). Antidepressant-like effects of the aqueous macerate of the bulb of Gladiolus dalenii Van Geel (Iridaceae) in a rat model of epilepsy-associated depression. BMC Complementary and Alternative Medicine. https://doi.org/10.1186/1472-6882-13-272

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ngoupaye, G. T., Bum, E. N., Taiwe, G. S., Moto, F. C. O., & Talla, E. (2014). Antidepressant properties of aqueous acerate from Gladiolus Dalenii corms. African Journal of Traditional, Complementary and Alternative Medicines, 11(1), 53–61.

    Google Scholar 

  126. Ngoupaye, G. T., Pahaye, D. B., Ngondi, J., Moto, F. C. O., & Bum, E. N. (2017). Gladiolus dalenii lyophilisate reverses scopolamine-induced amnesia and reduces oxidative stress in rat brain. Biomedicine & Pharmacotherapy, 91, 350–357.

    Article  Google Scholar 

  127. Fotsing, D., Ngoupaye, G. T., Ouafo, A. C., Njapdounke, S. K. J., Kenneth, Y. A., & Ngo Bum, E. (2017). Effects of Gladiolus dalenii on the stress-induced behavioral, neurochemical, and reproductive changes in rats. Frontiers in Pharmacology, 8, 685.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Matraszek-Gawron, R., Chwil, M., Terlecka, P., & Skoczylas, M. M. (2019). Recent studies on anti-depressant bioactive substances in selected species from the genera Hemerocallis and Gladiolus: A systematic review. Pharmaceuticals., 12(4), 172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. El-Shanawany, M. A., Hassanean, H. A., Mohamed, M. H., & Nafady, A. M. (2009). A new oleanene triterpene from Gladiolus segetum Ker-Gawl. Natural Product Research, 23(7), 613–616.

    Article  CAS  PubMed  Google Scholar 

  130. Abdessemed, D., & Dibi, A. (2013). Secondary metabolite from Gladiolus segetum. Journal of Chemical and Pharmaceutical Research, 5(12), 939–941.

    Google Scholar 

  131. Kim, Y. B., Park, S. Y., & Park, C. H. (2016). Metabolomics of differently colored Gladiolus cultivars. Applied Biological Chemistry, 59, 597–607. https://doi.org/10.1007/s13765-016-0197-0

    Article  CAS  Google Scholar 

  132. Wang, D. Y., Ye, Q., Zhang, G. L., & Li, B. G. (2003). Note: New anthraquinones from Gladiolus gandavensis. Journal of Asian Natural Products Research, 5(4), 297–301.

    Article  CAS  PubMed  Google Scholar 

  133. Al-Jabera, H. I., Al-Qudahb, M. A., Odehc, F. M., & Zargac, M. H. A. (2019). Two new 28-noroleanane type triterpenoids and other constituents from Gladiolus atroviolaceus growing wild in Jordan. JJC, 14(1), 11–16.

    Google Scholar 

  134. Raknim, T. (1990). Effect of colchicine on mutation of gladiolus in vitro. Thesis (M.Sc. in Agriculture) Kasetsart University, Kasetsart, Bangkok, Thailand.

  135. Saha, B., Datta, S., Datta, A. K., & Da Silva, J. A. T. (2011). Assessment of biochemical and molecular diversity of five elite gladiolus varieties. Floriculture and Ornamental Biotech., 5, 64–67.

    Google Scholar 

  136. Kutlunina, N., Permyakova, M., & Belyaev, A. (2017). Genetic diversity and reproductive traits in triploid and tetraploid populations of Gladiolus tenuis (Iridaceae). Plant Systematics and Evolution, 303, 1–10. https://doi.org/10.1007/s00606-016-1347-x

    Article  Google Scholar 

  137. Raycheva, T., Stoyanov, K., & Denev, I. (2011). Genetic diversity and molecular taxonomy study of three genera from Iridaceae family in the Bulgarian flora based on ISSR markers. Biotechnology and Biotechnological Equipment, 25, 2484–2488. https://doi.org/10.5504/BBEQ.2011.0075

    Article  CAS  Google Scholar 

  138. Kumar, P., Kumar, M., Naresh, R. K., Kumar, N., Chaudhary, P., & Sharma, S. (2016). Evaluation of genetic diversity among gladiolus (Gladiolus hybridus Hort.) germplasm using ISSR markers. International Journal of Agricultural and Statistical Sciences, 12, 277–283.

    Google Scholar 

  139. Zahoor, A., Dhatt, K. K., & Nageena, N. (2017). Genetic diversity analysis and DNA fingerprinting of elite stock of gladiolus (Gladiolus hybridus Hort.) using ISSR markers. Applied Biological Research, 19, 290–298. https://doi.org/10.5958/0974-4517.2017.00042.8

    Article  Google Scholar 

  140. Geeta, S. V., Shirol, A. M., Nishani, S., Shiragur, M., & Varuna, K. J. (2014). Assessing genetic diversity of gladiolus varieties using SRAPs markers. Research Journal of Agricultural Science, 5, 658–661.

    Google Scholar 

  141. Rashmi, R., Lakshmana Reddy, D. C., Chandrashekar, S. Y., & Sukanya, T. S. (2016). Evaluation of genetic diversity and relation-ships among gladiolus genotypes by using morphological traits and SRAP markers. Green Farming, 7, 1346–1351.

    Google Scholar 

  142. Rashmi, R., Lakshmanareddy, D. C., & Chandrashekar, S. Y. (2016). Assessing genetic diversity of gladiolus (Gladiolus hybridus L) genotypes using sequence related amplified polymorphism (SRAP) markers. Ecology, Environment and Conservation, 22, 151–156.

    Google Scholar 

  143. Singh, N., Meena, B., Pal, A. K., Roy, R. K., Tewari, S. K., Tamta, S., & Rana, T. S. (2017). Nucleotide diversity and phylogenetic relationship among gladiolus cultivars and related taxa of family Iridaceae. Journal of Genetics, 96, 135–145. https://doi.org/10.1007/s12041-017-0755-1

    Article  CAS  PubMed  Google Scholar 

  144. Rymer, P. D., Manning, J. C., Goldblatt, P., Powell, M. P., & Savolainen, V. (2010). Evidence of recent and continuous speciation in a biodiversity hotspot: A population genetic approach in southern African gladioli (Gladiolus; Iridaceae). Molecular Ecology, 19, 4765–4782. https://doi.org/10.1111/j.1365-294X.2010.04794.x

    Article  PubMed  Google Scholar 

  145. Krishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M., & Sadh, R. K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6, 54. https://doi.org/10.1007/s13205-016-0389-7

    Article  PubMed  PubMed Central  Google Scholar 

  146. Singh, B. R., Dubey, V., & Aminuddin,. (2007). Inhibition of mosaic disease of gladiolus caused by bean yellow mosaic and cucumber mosaic viruses by virazole. Scientia Horticulturae, 114, 54–58. https://doi.org/10.1016/j.scienta.2007.05.003

    Article  CAS  Google Scholar 

  147. Kaur, C., Raj, R., Kumar, S., Purshottam, D. K., Agrawal, L., Chauhan, P. S., & Raj, S. K. (2019). Elimination of bean yellow mosaic virus from infected cormels of three cultivars of gladiolus using thermo, electro and chemotherapy. 3 Biotech., 9, 154. https://doi.org/10.1007/s13205-019-1684-x

    Article  PubMed  PubMed Central  Google Scholar 

  148. Bhattarai, A., Sajeed, A., & Bhardwaj, S. V. (2014). Production of Cucumber Mosaic Virus (CMV) free gladiolus shoots by meristem tip culture. J. Mycopathol. Res., 52, 107–111.

    Google Scholar 

  149. Raj, S. K., Kumar, S., & Verma, D. K. (2011). First report on molecular detection and identification of tomato aspermy virus naturally occurring on gladiolus in India. Phytoparasitica, 39, 303–307. https://doi.org/10.1007/s12600-011-0145-9

    Article  CAS  Google Scholar 

  150. Selvaraj, D. G., Pokorný, R., & Holkova, L. (2009). Comparative analysis of ELISA, one step RT-PCR and IC-RT-PCR for the detection of bean yellow mosaic virus in gladiolus. Communications in Agricultural and Applied Biological Sciences, 74, 853–859.

    Google Scholar 

  151. Kaur, C., Kumar, S., Raj, S. K., Chauhan, P. S., & Sharma, N. (2015). Characterization of a new isolate of bean yellow mosaic virus group-IV associated with mosaic disease of gladiolus in India. Journal of Plant Pathology & Microbiology, 6, 10. https://doi.org/10.4172/2157-7471.1000309

    Article  CAS  Google Scholar 

  152. Kaur, C., Raj, R., Srivastava, A., Kumar, S., & Raj, S. K. (2018). Sequence analysis of six full-length bean yellow mosaic virus genomes reveals phylogenetic diversity in India strains, suggesting subdivision of phylogenetic group-IV. Archives of Virology, 163, 235–242. https://doi.org/10.1007/s00705-017-3609-5

    Article  CAS  PubMed  Google Scholar 

  153. Kamo, K., Jordan, R., Guaragna, M. A., Hsu, H. T., & Ueng, P. (2010). Resistance to cucumber mosaic virus in gladiolus plants transformed with either a defective replicase or coat protein subgroup II gene from cucumber mosaic virus. Plant Cell Reports, 29, 695–704. https://doi.org/10.1007/s00299-010-0855-3

    Article  CAS  PubMed  Google Scholar 

  154. Pathania, N. S., & Misra, R. L. (2003). In vitro mutagenesis studies in gladiolus for induction of resistance to Fusarium oxysporumfsp gladioli. Acta Horticulturae, 624, 487–494. https://doi.org/10.17660/ActaHortic.2003.624.67

    Article  Google Scholar 

  155. Kanwar, R., Nath, A. K., & Sharma, D. R. (2003). Cellular selection and partial characterization of gladiolus cell lines resistant to culture filtrate of Fusarium wilt. Indian Journal of Plant Physiology, 8, 1–5.

    Google Scholar 

  156. Rao, T. M., Negi, S. S., & Swamy, R. D. (1991). Isolation of leaf mesophyll protoplasts in gladiolus. Indian Journal of Horticulture, 48, 79–82.

    Google Scholar 

  157. Taylor, W., Bhatti, S., Long, D., & Sauve, R. (2000). In vitro culture of gladiolus. SNA Research Conference., 45, 328–330.

    Google Scholar 

  158. Ara, H., Jaiswal, U., & Jaiswal, V. S. (2000). Synthetic seed: Prospects and limitations. Current Science, 78, 1438–1444.

    Google Scholar 

  159. Sharma, S., Shahzad, A., & Da Silva, J. A. T. (2013). Synseed technology- a complete synthesis. Biotechnology Advances, 31, 186–207. https://doi.org/10.1016/j.biotechadv.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  160. Ratilal, P.H. (2009). Tissue culture plant and synthetic seed production of gladiolus variety Amarican Beauty. M.Sc. Thesis Department of Floriculture and Landsca** Department, Aspee College of Horticulture and Forestry Gujarat Agriculture University, Navsari.

  161. Tsai, S., & Lin, C. (2012). Advantages and applications of cryopreservation in Fisheries Science. Brazilian Archives of Biology and Technology, 55, 425–433. https://doi.org/10.1590/S1516-89132012000300014

    Article  Google Scholar 

  162. Yi, J. Y., Lee, G. A., Chung, J. W., Lee, S. Y., & Lim, K. B. (2013). Efficient cryopreservation of Lilium spp. shoot tips using droplet-vitrification. Plant Breeding and Biotechnology, 1, 131–136. https://doi.org/10.9787/PBB.2013.1.2.131

    Article  Google Scholar 

  163. Pegg, D. E. (2007). Principles of Cryopreservation. In J. G. Day & G. N. Stacey (Eds.), Cryopreservation and Freeze-Drying Protocols Methods in molecular biology. (Vol. 368). Humana Press.

    Google Scholar 

  164. Bojic, S., Murray, A., Bentley, B. L., Spindler, R., Pawlik, P., Cordeiro, J. L., & De Magalhães, J. P. (2021). Winter is coming: The future of cryopreservation. BMC boil., 19(1), 1–20.

    Google Scholar 

  165. Geng, X., Qiu, J., & Okubo, H. (2013). Changes of carbohydrate content during Lilium and Gladiolus pollen cryopreservation. Grana, 52, 202–206.

    Article  Google Scholar 

  166. Lakshman, D. K., Pandey, R., Kamo, K., Bauchan, G., & Mitra, A. (2012). Genetic transformation of Fusarium oxysporum f spgladioli with Agrobacterium to study pathogenesis in gladiolus. European Journal of Plant Pathology, 133, 729–738. https://doi.org/10.1007/s10658-012-9953-0

    Article  Google Scholar 

  167. Babu, P., & Chawla, H. S. (2000). In vitro regeneration and Agrobacterium mediated transformation in gladiolus. The Journal of Horticultural Science & Biotechnology, 75, 400–404. https://doi.org/10.1080/14620316.2000.11511258

    Article  Google Scholar 

  168. Zhong, X., Yuan, X., Wu, Z., Khan, M. A., Chen, J., Li, X., Gong, B., Zhao, Y., Wu, J., Wu, C., & Yi, M. (2014). Virus-induced gene silencing for comparative functional studies in Gladiolus hybridus. Plant Cell Reports, 33, 301–312. https://doi.org/10.1007/s00299-013-1530-2

    Article  CAS  PubMed  Google Scholar 

  169. Zhong, X., **, L., Lian, Q., Luo, X., Wu, Z., Seng, S., Yuan, X., & Yi, M. (2015). The NPR1 homolog GhNPR1 plays an important role in the defense response of Gladiolus hybridus. Plant Cell Reports, 34, 1063–1074. https://doi.org/10.1007/s00299-015-1765-1

    Article  CAS  PubMed  Google Scholar 

  170. Imanishi, H. (1989). Collected data of plant genetic resources. Gladiolus 1077–1080.

  171. Ohri, D., & Khoshoo, T. N. (1985). Cytogenetics of garden gladiolus II. Variation in chromosome complement and meiotic system. Cytologia, 50, 213–31. https://doi.org/10.1508/cytologia.50.213

    Article  Google Scholar 

  172. Suzuki, K., Takatsu, Y., Gonai, T., & Kasumi, M. (2005). Plant regeneration and chromosome doubling of wild Gladiolus species. Acta Horticulture, 673, 175–181.

    Article  CAS  Google Scholar 

  173. Duraisamy, G. S., Pokorny, R., & Holkova, L. (2011). Possibility of bean yellow mosaic virus detection in gladiolus plants by different methods. Journal of Plant Diseases and Protection., 118, 2–6. https://doi.org/10.1007/BF03356374

    Article  CAS  Google Scholar 

  174. Budiarto, K., & Rosario, T. L. (2020). Evaluation of culture media for in vitro conservation of gladiolus cultivars. AGRIVITA Journal of Agricultural Science, 42, 205–213. https://doi.org/10.17503/agrivita.v0i0.2314

    Article  Google Scholar 

  175. Nasir, I. A., Jamal, A., Rahman, Z., & Husnain, T. (2012). Molecular analysis of gladiolus lines with improved resistance against fusarium wilt. Pakistan Journal of Botany, 44, 73–79.

    CAS  Google Scholar 

  176. Ranjan, P., Bhat, K. V., Misra, R. L., Singh, S. K., & Ranjan, J. K. (2010). Genetic relationships of gladiolus cultivars inferred from fluorescence based AFLP markers. Scientia Horticulturae, 123, 562–567. https://doi.org/10.1016/j.scienta.2009.11.013

    Article  CAS  Google Scholar 

  177. Rymer, P. D., Johnson, S. D., & Savolainen, V. (2010). Pollinator behaviour and plant speciation: Can assortative mating and disruptive selection maintain distinct floral morphs in sympatry. New Phytologist, 188, 426–436. https://doi.org/10.1111/j.1469-8137.2010.03438.x

    Article  CAS  PubMed  Google Scholar 

  178. Shufang, G., Huijuan, F. U., & **gang, W. (2010). ISSR Analysis of M1 generation of Gladiolus hybridusHort treated by EMS. Journal of Northeast Agricultural University, 17, 22–26.

    Google Scholar 

  179. Valente, L. M., Manning, J. C., Goldblatt, P., & Vargas, P. (2012). Did pollination shifts drive diversification in Southern African Gladiolus? Evaluating the model of pollinator-driven speciation. The American Naturalist, 180, 83–98. https://doi.org/10.1086/666003

    Article  PubMed  Google Scholar 

  180. Malik, K., & Pal, K. (2014). Genetic divergence and relationship analysis among twenty-two populations of gladiolus cultivars by morphological and RAPD-PCR tool. International Journal of Educational Research, 1, 1–8.

    Google Scholar 

  181. Kumari, P., Manjunatha, T., Sane, R. A., Kumar, R., & Dhananjaya, M. V. (2016). Characterization of Fusarium wilt in resistant and susceptible gladiolus (Gladiolus spp) genotypes using DNA markers. Indian Journal of Agricultural Sciences, 86, 849–853.

    Article  CAS  Google Scholar 

  182. Szczepaniak, M., Kamiński, R., Kuta, E., Słomka, A., Heise, W., & Cieślak, E. (2016). Natural hybridization between Gladiolus palustris and G imbricatus inferred from morphological, molecular and reproductive evidence. Preslia, 88, 137–161.

    Google Scholar 

  183. Singh, N., Pal, A. K., Roy, R. K., Tamta, S., & Rana, T. S. (2016). Assessment of genetic variation and population structure in indigenous gladiolus cultivars inferred from molecular markers. The Nucleus, 59, 235–244. https://doi.org/10.1007/s13237-016-0181-4

    Article  Google Scholar 

  184. Singh, N., Pal, A. K., Meena, B., Roy, R. K., Tamta, S., & Rana, T. S. (2017). Development of ISSR-and RAPD-derived SCAR markers for identification of gladiolus germplasm. The Journal of Horticultural Science & Biotechnology, 92, 577–582. https://doi.org/10.1080/14620316.2017.1309995

    Article  CAS  Google Scholar 

  185. Singh, N., Pal, A. K., Roy, R. K., Tamta, S., & Rana, T. S. (2017). Development of cpSSR markers for analysis of genetic diversity in gladiolus cultivars. Plant Gene, 10, 31–36. https://doi.org/10.1016/j.plgene.2017.05.003

    Article  CAS  Google Scholar 

  186. Singh, N., Mahar, K. S., Verma, S., Meena, B., Roy, R. K., Tewari, S. K., Goel, A. K., & Rana, T. S. (2018). Molecular analysis of genetic variability and relation-ship among gladiolus cultivars. Indian Journal of Biotechnology, 17, 118–127.

    CAS  Google Scholar 

  187. Singh, N., Pal, A. K., Roy, R. K., Tamta, S., & Rana, T. S. (2018). Characterization of gladiolus germplasm using morphological, physiological, and molecular markers. Biochemical Genetics, 56, 128–148. https://doi.org/10.1007/s10528-017-9835-4

    Article  CAS  PubMed  Google Scholar 

  188. Daco, L., Maurice, T., Muller, S., Rossa, J., & Colling, G. (2019). Genetic status of the endangered plant species Gladiolus palustris in the Western part of its distribution area. Conservation Genetics, 20, 1339–1354. https://doi.org/10.1007/s10592-019-01213-0

    Article  CAS  Google Scholar 

  189. Malkócs, T., Almerekova, S., Bereczki, J., Cservenka, J., Meglécz, E., & Sramkó, G. (2019). Isolation and characterization of 15 SSR loci for the endangered European tetraploid species Gladiolus palustris (Iridaceae). Applications in Plant Sciences, 7, e01245. https://doi.org/10.1002/aps3.1245

    Article  PubMed  PubMed Central  Google Scholar 

  190. Li, G., & Quiros, C. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to map** and gene tagging in Brassica. TAG. Theoretical and Applied Genetics., 103, 455–461. https://doi.org/10.1007/s001220100570

    Article  CAS  Google Scholar 

  191. Yang, L., Fu, S., Khan, M. A., Zeng, W., & Fu, J. (2013). Molecular cloning and development of RAPD-SCAR markers for Dimocarpus longan variety authentication. Springer Plus., 2, 501. https://doi.org/10.1186/2193-1801-2-501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kamo, K., Aebig, J., Guaragna, M. A., James, C., Hsu, H. T., & Jordan, R. (2012). Gladiolus plants transformed with single-chain variable fragment antibodies to cucumber mosaic virus. PCTOC, 110, 13–21. https://doi.org/10.1007/s11240-012-0124-y

    Article  CAS  Google Scholar 

  193. Kamo, K., Kim, A. Y., Park, S. H., & Joung, Y. H. (2012). The 5′ UTR-intron of the gladiolus polyubiquitin promoter GUBQ1 enhances translation efficiency in gladiolus and arabidopsis. BMC Plant Biology, 12, 79. https://doi.org/10.1186/1471-2229-12-79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kamo, K., Lakshman, D., Bauchan, G., Rajasekaran, K., Cary, J., & Jaynes, J. (2015). Expression of a synthetic antimicrobial peptide, D4E1, in gladiolus plants for resistance to Fusarium oxysporum f sp gladioli. PCTOC, 121, 459–467. https://doi.org/10.1007/s11240-015-0716-4

    Article  CAS  Google Scholar 

  195. Wu, J., Seng, S., Sui, J., Vonapartis, E., Luo, X., Gong, B., Liu, C., Wu, C., Liu, C., Zhang, F., & He, J. (2015). Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy. Frontiers in Plant Science, 6, 960. https://doi.org/10.3389/fpls.2015.00960

    Article  PubMed  PubMed Central  Google Scholar 

  196. Wu, J., Seng, S., Carianopol, C., Sui, J., Yang, Q., Zhang, F., Jiang, H., He, J., & Yi, M. (2016). Cloning and characterization of a novel Gladiolus hybridus AFP family gene (GhAFP-like) related to corm dormancy. Biochemical and Biophysical Research Communications, 471, 198–204. https://doi.org/10.1016/j.bbrc.2016.01.146

    Article  CAS  PubMed  Google Scholar 

  197. Seng, S., Wu, J., Liang, J., Zhang, F., Yang, Q., He, J., & Yi, M. (2017). Silencing GhAGPL1 reduces the quality and quantity of corms and cormels in Gladiolus. Journal of the American Society for Horticultural Science, 142, 119–125. https://doi.org/10.21273/JASHS03944-16

    Article  CAS  Google Scholar 

  198. Wu, J., Wu, W., Liang, J., **, Y., Gazzarrini, S., He, J., & Yi, M. (2019). GhTCP19 transcription factor regulates corm dormancy release by repressing GhNCED expression in gladiolus. Plant and Cell Physiology, 60, 52–62. https://doi.org/10.1093/pcp/pcy186

    Article  CAS  PubMed  Google Scholar 

  199. Seng, S., Wu, C., Wu, J., Zhong, X., He, J., & Yi, M. (2020). Silencing GhCOI1 in Gladiolus hybridus increases susceptibility to Alternaria brassicicola and impairs inducible defenses. PCTOC, 140, 69–81. https://doi.org/10.1007/s11240-019-01711-6

    Article  CAS  Google Scholar 

  200. Kamo, K., Lakshman, D., Pandey, R., Guaragna, M. A., Okubara, P., Rajasekaran, K., Cary, J., & Jordan, R. (2016). Resistance to Fusarium oxysporum f sp gladioli in transgenic gladiolus plants expressing either a bacterial chloroperoxidase or fungal chitinase genes. PCTOC, 124, 541–553. https://doi.org/10.1007/s11240-015-0913-1

    Article  CAS  Google Scholar 

  201. Kamo, K. (2008). Transgene expression for gladiolus plants grown outdoors and in greenhouse. Scientia Horticulturae, 117, 275–280. https://doi.org/10.1016/j.scienta.2008.04.008

    Article  CAS  Google Scholar 

  202. Kamo, K., & Joung, H. Y. (2009). Long-term gus expression from gladiolus callus lines containing either a bar-uidA fusion gene or bar and uidA delivered on separate plasmids. PCTOC, 98, 263–272. https://doi.org/10.1007/s11240-009-9558-2

    Article  CAS  Google Scholar 

  203. Kamo, K., Joung, Y. H., & Green, K. (2009). GUS expression in gladiolus plants controlled by two gladiolus ubiquitin promoters. Floriculture and Ornamental Biotechnolgy, 3, 10–14.

    Google Scholar 

  204. Sivaprakasam, G., Singh, V. P., & Arora, A. (2009). Physiological and molecular analysis of effect of spermine on senescing petals of gladiolus. Indian Journal of Plant Physiology, 14, 384–391.

    CAS  Google Scholar 

  205. Lian, Q. L., **n, H. B., Li, X. X., Zhong, X. H., Yin, Y. L., & Yi, M. F. (2011). Cloning, characterization and expression analysis of a 9-lipoxygenase gene in Gladiolus hybridus. Scientia Horticulturae, 130, 468–475. https://doi.org/10.1016/j.scienta.2011.07.016

    Article  CAS  Google Scholar 

  206. Lian, Q. L., **n, H. B., Li, X. X., Zhong, X. H., Yin, Y. L., & Yi, M. F. (2012). Analysis of GhAOS expression characteristics in Gladiolus hybridus and overexpression in Arabidopsis. Scientia Agricultura Sinica, 45, 2923–2930.

    CAS  Google Scholar 

  207. Lian, Q. L., **n, H. B., Li, X. X., Zhong, X. H., Yin, Y. L., & Yi, M. F. (2013). Isolation, characterization and expression analysis of the genes—GhAOS, GhAOC and GhOPR3: Encoding the key enzymes involved in jasmonic acid biosynthesis in Gladiolus hybridus. Scientia Horticulturae, 154, 88–95. https://doi.org/10.1016/j.scienta.2013.02.004

    Article  CAS  Google Scholar 

  208. Lian, Q. L., **n, H. B., Li, X. X., Zhong, X. H., Yin, Y. L., & Yi, M. F. (2014). Heterologous expression of gladiolus GhOPR3 enhances the abiotic stress resistance of Arabidopsis. Acta Horticulturae Sinica, 41, 498–508.

    CAS  Google Scholar 

  209. Luo, X., Yi, J., Zhong, X. H., Lian, Q. L., Khan, M. A., Cao, X., Li, X. X., Gao, M. W., Wu, J., Chen, J., & Yi, M. F. (2012). Cloning, characterization and expression analysis of key genes involved in ABA metabolism in gladiolus cormels during storage. Scientia Horticulturae, 143, 115–121. https://doi.org/10.1016/j.scienta.2012.06.016

    Article  CAS  Google Scholar 

  210. Seng, S., Wu, J., Sui, J., Wu, C., Zhong, X., Liu, C., Liu, C., Gong, B., Zhang, F., He, J., & Yi, M. (2016). ADP-glucose pyrophosphorylase gene plays a key role in the quality of corm and yield of cormels in gladiolus. Biochemical and Biophysical Research Communications, 474, 206–212. https://doi.org/10.1016/j.bbrc.2016.04.103

    Article  CAS  PubMed  Google Scholar 

  211. Dwivedi, S. K., Arora, A., Singh, V. P., Sairam, R., & Bhattacharya, R. C. (2016). Effect of sodium nitroprusside on differential activity of antioxidants and expression of SAGs in relation to vase life of gladiolus cut flowers. Scientia Horticulturae, 210, 158–165. https://doi.org/10.1016/j.scienta.2016.07.024

    Article  CAS  Google Scholar 

  212. Elansary, H. O. (2020). Tree bark phenols regulate the physiological and biochemical performance of Gladiolus flowers. Process, 8, 71. https://doi.org/10.3390/pr8010071

    Article  CAS  Google Scholar 

  213. Wu, J., **, Y., Liu, C., Vonapartis, E., Liang, J., Wu, W., Gazzarrini, S., He, J., & Yi, M. (2019). GhNAC83 inhibits corm dormancy release by regulating ABA signaling and cytokinin biosynthesis in Gladiolus hybridus. Journal of Experimental Botany, 70, 1221–1237. https://doi.org/10.1093/jxb/ery428

    Article  CAS  PubMed  Google Scholar 

  214. Gupta, S. D., & Datta, S. (2003). Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration. Biologia Plantarum, 2, 179–183. https://doi.org/10.1023/b:biop.0000022248.62869.c7

    Article  Google Scholar 

  215. Devi, P., Kumar, P., Sengar, R. S., Yadav, M. K., Kumar, M., Singh, S. K., & Singh, S. (2019). In-vitro multiple shoots production from cormel shoot buds in gladiolus (Gladiolus hybrida). International Journal of Current Microbiology and Applied Sciences, 8, 1345–1350. https://doi.org/10.20546/ijcmas.2019.807.160

    Article  CAS  Google Scholar 

  216. Ziv, M. (1991). Morphogenic pattern of plants in liquid medium in shaken flasks or large-scale bioreactor cultures. Israel Journal of Botany, 40, 145–153. https://doi.org/10.1080/0021213X.1991.10677187

    Article  Google Scholar 

  217. Ziv, M., & Ariel, T. (1991). Bud proliferation and plant regeneration in liquid-cultured philodendron treated with ancymidol and paclobutrazol. Journal of Plant Growth Regulation, 10, 1–4. https://doi.org/10.1007/BF02279311

    Article  Google Scholar 

  218. Ziv, M. (2005). Simple bioreactors for mass propagation of plants. PCTOC, 81, 277–285. https://doi.org/10.1007/s11240-004-6649-y

    Article  Google Scholar 

  219. Ziv, M., Ronen, G., & Raviv, M. (1998). Proliferation of meristematic clusters in disposable presterilized plastic bioreactors for large-scale micropropagation of plants. In Vitro Cell Development Biological Plant, 34, 152–158. https://doi.org/10.1007/BF02822781

    Article  Google Scholar 

  220. Watanabe, K., Oda-Yamamizo, C., Sage-Ono, K., Ohmiya, A., & Ono, M. (2018). Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Research, 27, 25–38. https://doi.org/10.1007/s11248-017-0051-0

    Article  CAS  PubMed  Google Scholar 

  221. Yu, J., Tu, L., Subburaj, S., Bae, S., & Lee, G. J. (2020). Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins. Plant Cell Reports, 40, 1037–1045. https://doi.org/10.1007/s00299-020-02593-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate Directorate of Research Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, UP, India, for providing the facilities and services required to complete the review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 126 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Sirohi, U., Yadav, M.K. et al. In Vitro Culture Technology and Advanced Biotechnology Tools Toward Improvement in Gladiolus (Gladiolus species): Present Scenario and Future Prospects. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00818-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00818-8

Keywords

Navigation