Log in

Identification of Key lncRNAs, circRNAs, and mRNAs in Osteoarthritis via Bioinformatics Analysis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is a common degenerative joint disorder that adversely affects the quality of life of patients. Identification of novel diagnostic biomarkers is pivotal for the early detection and prevention of OA. Dataset GSE185059 was selected from Gene Expression Omnibus database to obtain differentially expressed lncRNAs (DE-lncRNAs), mRNAs (DE-mRNAs), and circRNAs (DE-circRNAs) between OA and normal samples. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses as well as protein–protein interaction (PPI) network construction of DE-mRNAs were conducted. Hub genes were identified from PPI networks and validated by RT-qPCR. starBase database was utilized for predicting miRNAs binding with hub genes, selected DE-lncRNAs and DE-circRNAs, respectively. The competing endogenous RNA (ceRNA) networks were constructed. A total of 818 DE-mRNAs, 191 DE-lncRNAs, and 2053 DE-circRNAs were identified. The DE-mRNAs were significantly enriched in several inflammation-related GO terms and KEGG pathways such as positive regulation of cell–cell adhesion, TNF-alpha signaling pathway and NF-kappa B signaling pathway. Thirteen hub genes were identified, which were CFTR, GART, SMAD2, NCK1, TJP1, UBE2D1, EFTUD2, PRKACB, IL10, SNRPG, CHD4, RPS24, and SRSF6. OA-related DE-lncRNA/circRNA-miRNA-hub gene networks were constructed. We identified 13 hub genes and constructed the ceRNA networks related to OA, providing a theoretical basis for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He, K., Huang, X., Shan, R., Yang, X., Song, R., **e, F., & Huang, G. (2021). Intra-articular injection of Lornoxicam and MicroRNA-140 co-loaded cationic liposomes enhanced the therapeutic treatment of experimental osteoarthritis. An Official Journal of the American Association of Pharmaceutical Scientists, 23(1), 9.

    Google Scholar 

  2. Tramś, E., Malesa, K., Pomianowski, S., & Kamiński, R. (2022). Role of platelets in osteoarthritis-updated systematic review and meta-analysis on the role of platelet-rich plasma in osteoarthritis. Cells, 11(7), 1080.

    PubMed  PubMed Central  Google Scholar 

  3. Wang, Y., Hussain, S. M., Gan, D., Lim, Y. Z., Estee, M. M., Heritier, S., Wluka, A. E., & Cicuttini, F. M. (2021). Topical corticosteroid for treatment of hand osteoarthritis: Study protocol for a randomised controlled trial. BMC Musculoskeletal Disorders, 22(1), 1036.

    PubMed  PubMed Central  Google Scholar 

  4. Franco-Trepat, E., Alonso-Pérez, A., Guillán-Fresco, M., Jorge-Mora, A., Crespo-Golmar, A., López-Fagúndez, M., Pazos-Pérez, A., Gualillo, O., Belén Bravo, S., & Gómez Bahamonde, R. (2022). Amitriptyline blocks innate immune responses mediated by toll-like receptor 4 and IL-1 receptor: Preclinical and clinical evidence in osteoarthritis and gout. British Journal of Pharmacology, 179(2), 270–286.

    CAS  PubMed  Google Scholar 

  5. Kreitmaier, P., Suderman, M., Southam, L., Coutinho de Almeida, R., Hatzikotoulas, K., Meulenbelt, I., Steinberg, J., Relton, C. L., Wilkinson, J. M., & Zeggini, E. (2022). An epigenome-wide view of osteoarthritis in primary tissues. The American Journal of Human Genetics, 109(7), 1255–1271.

    CAS  PubMed  Google Scholar 

  6. Qu, Z., Yang, F., Yan, Y., Huang, J., Zhao, J., Hong, J., Li, S., Jiang, G., Wang, W., & Yan, S. (2021). A Mendelian randomization study on the role of serum parathyroid hormone and 25-hydroxyvitamin D in osteoarthritis. Osteoarthritis Cartilage, 29(9), 1282–1290.

    CAS  PubMed  Google Scholar 

  7. Udhaya, K. S., Rajan, B., Thirumal, K. D., Anu, P. V., Abunada, T., Younes, S., Okashah, S., Ethiraj, S., George Priya Doss, C., & Zayed, H. (2020). Involvement of essential signaling cascades and analysis of gene networks in diabesity. Genes (Basel), 11(11), 1256.

    CAS  Google Scholar 

  8. Zhou, J., Zou, D., Wan, R., Liu, J., Zhou, Q., Zhou, Z., Wang, W., Tao, C., & Liu, T. (2022). Gene expression microarray data identify hub genes involved in osteoarthritis. Frontiers in Genetics, 13, 870590.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, W., Chen, Z., & Hua, Y. (2023). Bioinformatics prediction and experimental validation identify a novel cuproptosis-related gene signature in human synovial inflammation during osteoarthritis progression. Biomolecules, 13(1), 127.

    PubMed  PubMed Central  Google Scholar 

  10. Wu, Z. Y., Du, G., & Lin, Y. C. (2021). Identifying hub genes and immune infiltration of osteoarthritis using comprehensive bioinformatics analysis. Journal of Orthopaedic Surgery and Research, 16(1), 630.

    PubMed  PubMed Central  Google Scholar 

  11. Feng, Z., & Lian, K. J. (2015). Identification of genes and pathways associated with osteoarthritis by bioinformatics analyses. European Review for Medical and Pharmacological Sciences, 19(5), 736–744.

    CAS  PubMed  Google Scholar 

  12. Wu, Y., Lu, X., Shen, B., & Zeng, Y. (2019). The therapeutic potential and role of miRNA, lncRNA, and circRNA in osteoarthritis. Current Gene Therapy, 19(4), 255–263.

    CAS  PubMed  Google Scholar 

  13. Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. P. (2011). A ceRNA hypothesis: The Rosetta stone of a hidden RNA language? Cell, 146(3), 353–358.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, T., & Du, Y. (2017). LncRNAs: From basic research to medical application. International Journal of Biological Sciences, 13(3), 295–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, X. J., Gao, J., Yu, Q., Zhang, M., & Hu, W. D. (2022). Multi-Omics integration-based prioritisation of competing endogenous RNA regulation networks in small cell lung cancer: Molecular characteristics and drug candidates. Frontiers in Oncology, 12, 904865.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C. L., Serova, N., Davis, S., & Soboleva, A. (2013). NCBI GEO: Archive for functional genomics data sets–update. Nucleic Acids Research, 41(D1), D991–D995.

    CAS  PubMed  Google Scholar 

  17. Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T., & Chang, W. (2022). DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Research. https://doi.org/10.1093/nar/gkac194

    Article  PubMed  PubMed Central  Google Scholar 

  18. da Huang, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.

    CAS  PubMed  Google Scholar 

  19. Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607-d613.

    CAS  PubMed  Google Scholar 

  20. Li, J. H., Liu, S., Zhou, H., Qu, L. H., & Yang, J. H. (2014). starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 42(D1), D92–D97.

    CAS  PubMed  Google Scholar 

  21. Bijlsma, J. W., Berenbaum, F., & Lafeber, F. P. (2011). Osteoarthritis: An update with relevance for clinical practice. Lancet, 377(9783), 2115–2126.

    PubMed  Google Scholar 

  22. You, R., Liu, S., & Tan, J. (2022). Screening and identification of osteoarthritis related differential genes and construction of a risk prognosis model based on bioinformatics analysis. Annals of Translational Medicine, 10(8), 444.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. de Rezende, M. U., & de Campos, G. C. (2013). Is osteoarthritis a mechanical or inflammatory disease? Revista Brasileira de Ortopedia, 48(6), 471–474.

    PubMed  PubMed Central  Google Scholar 

  24. Goldring, M. B., & Otero, M. (2011). Inflammation in osteoarthritis. Current Opinion in Rheumatology, 23(5), 471–478.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ragni, E., De Luca, P., Valli, F., Zagra, L., & de Girolamo, L. (2023). Inflammatory treatment used to mimic osteoarthritis and patients’ synovial fluid have divergent molecular impact on chondrocytes in vitro. International Journal of Molecular Sciences, 24(3), 2625.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sanchez-Lopez, E., Coras, R., Torres, A., Lane, N. E., & Guma, M. (2022). Synovial inflammation in osteoarthritis progression. Nature Reviews Rheumatology, 18(5), 258–275.

    PubMed  PubMed Central  Google Scholar 

  27. Choi, M. C., Jo, J., Park, J., Kang, H. K., & Park, Y. (2019). NF-κB signaling pathways in osteoarthritic cartilage destruction. Cells, 8(7), 734.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, J., & Jiang, W. (2020). The role of SMAD2/3 in human embryonic stem cells. Front Cell Dev Biol, 8, 653.

    PubMed  PubMed Central  Google Scholar 

  29. He, Y., Fan, L., Aaron, N., Feng, Y., Fang, Q., Zhang, Y., Zhang, D., Wang, H., Ma, T., Sun, J., & Chen, J. (2021). Reduction of Smad2 caused by oxidative stress leads to necrotic death of hypertrophic chondrocytes associated with an endemic osteoarthritis. Rheumatology (Oxford), 61(1), 440–451.

    PubMed  Google Scholar 

  30. Ge, Q., Shi, Z., Zou, K. A., Ying, J., Chen, J., Yuan, W., Wang, W., **ao, L., Lin, X., Chen, D., Feng, X. H., Wang, P. E., Tong, P., & **, H. (2023). Protein phosphatase PPM1A inhibition attenuates osteoarthritis via regulating TGF-β/Smad2 signaling in chondrocytes. JCI Insight. https://doi.org/10.1172/jci.insight.166688

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li, G., **u, L., Li, X., Ma, L., & Zhou, J. (2022). miR-155 inhibits chondrocyte pyroptosis in knee osteoarthritis by targeting SMAD2 and inhibiting the NLRP3/Caspase-1 pathway. Journal of Orthopaedic Surgery and Research, 17(1), 48.

    PubMed  PubMed Central  Google Scholar 

  32. Shen, P., Yang, Y., Liu, G., Chen, W., Chen, J., Wang, Q., Gao, H., Fan, S., Shen, S., & Zhao, X. (2020). CircCDK14 protects against Osteoarthritis by sponging miR-125a-5p and promoting the expression of Smad2. Theranostics, 10(20), 9113–9131.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, J., Liu, M., Li, X., Shi, H., & Sun, S. (2021). Long noncoding RNA ZFAS1 suppresses chondrocytes apoptosis via miR-302d-3p/SMAD2 in osteoarthritis. Bioscience, Biotechnology, and Biochemistry, 85(4), 842–850.

    PubMed  Google Scholar 

  34. Wang, X., Wang, L. T., & Yu, B. (2022). UBE2D1 and COX7C as potential biomarkers of diabetes-related sepsis. BioMed Research International, 2022, 9463717.

    PubMed  PubMed Central  Google Scholar 

  35. Mao, D., Wu, M., Wei, J., Zhou, X., Yang, L., & Chen, F. (2021). MicroRNA-101a-3p could be involved in the pathogenesis of temporomandibular joint osteoarthritis by mediating UBE2D1 and FZD4. Journal of Oral Pathology and Medicine, 50(2), 236–243.

    CAS  PubMed  Google Scholar 

  36. Wang, Y., Guo, T., Liu, Q., & **e, X. (2020). CircRAD18 accelerates the progression of acute myeloid Leukemia by modulation of miR-206/PRKACB axis. Cancer Management and Research, 12, 10887–10896.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ham, O., Lee, C. Y., Song, B. W., Lee, S. Y., Kim, R., Park, J. H., Lee, J., Seo, H. H., Lee, C. Y., Chung, Y. A., Maeng, L. S., Lee, M. Y., Kim, J., Hwang, J., Woo, D. K., & Chang, W. (2014). Upregulation of miR-23b enhances the autologous therapeutic potential for degenerative arthritis by targeting PRKACB in synovial fluid-derived mesenchymal stem cells from patients. Molecules and Cells, 37(6), 449–456.

    PubMed  PubMed Central  Google Scholar 

  38. Zhao, C. (2021). Identifying the hub gene and immune infiltration of osteoarthritis by bioinformatical methods. Clinical Rheumatology, 40(3), 1027–1037.

    PubMed  Google Scholar 

  39. Yu, L. K., Zhang, J., Sun, Z. Y., Ruan, C. L., Li, H., & Ruan, X. J. (2021). Coculture with interleukin-10 overexpressed chondrocytes: A cell therapy model to ameliorate the post-traumatic osteoarthritis development. Journal of Biological Regulators and Homeostatic Agents, 35(2), 593–603.

    CAS  PubMed  Google Scholar 

  40. Li, H., Gao, L., Kang, X., Wang, X., Yu, Y., Zhang, Y., & Chen, H. (2023). RPS24 is associated with a poor prognosis and immune infiltration in hepatocellular carcinoma. International Journal of Molecular Sciences, 24(1), 806.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mi, B., Liu, G., Zhou, W., Lv, H., Liu, Y., & Liu, J. (2018). Identification of genes and pathways in the synovia of women with osteoarthritis by bioinformatics analysis. Molecular Medicine Reports, 17(3), 4467–4473.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kong, H., Sun, M. L., Zhang, X. A., & Wang, X. Q. (2021). Crosstalk among circRNA/lncRNA, miRNA, and mRNA in osteoarthritis. Frontiers in Cell and Development Biology, 9, 774370.

    Google Scholar 

  43. Zhang, P., Sun, J., Liang, C., Gu, B., Xu, Y., Lu, H., Cao, B., & Xu, H. (2020). lncRNA IGHCγ1 acts as a ceRNA to regulate macrophage inflammation via the miR-6891-3p/TLR4 axis in osteoarthritis. Mediators of Inflammation, 2020, 9743037.

    PubMed  PubMed Central  Google Scholar 

  44. Liu, C., Cheng, P., Liang, J., Zhao, X., & Du, W. (2021). Circular RNA circ_0128846 promotes the progression of osteoarthritis by regulating miR-127-5p/NAMPT axis. Journal of Orthopaedic Surgery and Research, 16(1), 307.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Wang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical Approval

This study was approved by the medical Ethics Committee of Changzhi People’s Hospital (approval number: IEC202302003). Written informed consent was obtained from each participant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wei, C. & Wang, L. Identification of Key lncRNAs, circRNAs, and mRNAs in Osteoarthritis via Bioinformatics Analysis. Mol Biotechnol 66, 1660–1672 (2024). https://doi.org/10.1007/s12033-023-00790-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00790-3

Keywords

Navigation