Log in

Challenges and strategies in relation to effective CAR-T cell immunotherapy for solid tumors

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Chimeric Antigen Receptor T cell (CAR-T) therapy has revolutionized cancer treatment, but its application to solid tumors is limited. CAR-T cells have poor incapability of entering, surviving, proliferating, and finally exerting function in the tumor microenvironment. This review summarizes the main strategies related to enhancing the infiltration, efficacy, antigen recognition, and production of CAR-T in solid tumors. Additional applications of CAR-γδ T and macrophages are also discussed. We believe CAR-T will be a milestone in treating solid tumors once these problems are solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The articles analyzed during the current study are available in the literature and listed in the references.

Abbreviations

CAR:

Chimeric antigen receptor

scFv:

Single-chain fragment variable

TAA:

Tumor-associated antigen

TME:

Tumor microenvironment

MDSC:

Myeloid-derived suppressor cell

HRE:

Hypoxia response element

PSMA:

Prostate-specific membrane antigen

CCL2:

C–C motif chemokine ligand 2

DC:

Dendritic cells

CXCL12:

C-X-C motif chemokine ligand 12

CSF1:

Colony-stimulating factor 1

VEGF:

Vascular endothelial growth factor

CAR-M:

CAR-engineered macrophages

CSR:

Chimeric switch receptor

PD1:

Programmed death-1

CEA:

Carcinoembryonic antigen

TAM:

Tumor-associated macrophages

PDAC:

Pancreatic ductal adenocarcinoma

iCAR:

Inhibitory CAR

PSCA:

Prostate stem cell antigen

TRUCK:

T cells redirected for universal cytokine-mediated killing

ZOL:

Zoledronate

CAIX:

Carbonic anhydrase IX

iPSC:

Induced pluripotent stem cell

HPSE:

Expression of heparinase

ECM:

Extracellular matrix

CAF:

Cancer-associated fibroblasts

FAP:

Fibroblast activation protein

DNR:

Dominant-negative receptors

synNotch:

Synthetic Notch receptor

SDF-1α:

Secrete stromal cell-derived factor 1α

CRS:

Cytokine Release Syndrome

CCR:

Chimeric costimulatory receptor

TSAs:

Tumor-specific antigens

References

  1. Albelda SM. CAR T cell therapy for patients with solid tumors: key lessons to learn and unlearn. Nat Rev Clin Oncol. 2023;21:47–66.

    Article  PubMed  Google Scholar 

  2. Li G, et al. IL-7 and CCR2b co-expression-mediated enhanced CAR-T survival and infiltration in solid tumors. Front Oncol. 2021;11: 734593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang Y, et al. Chemokine receptor CCR2b enhanced anti-tumor function of chimeric antigen receptor T cells targeting mesothelin in a non-small-cell lung carcinoma model. Front Immunol. 2021;12: 628906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moon EK, et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(14):4719–30.

    Article  CAS  Google Scholar 

  5. Whilding LM, et al. CAR T-cells targeting the integrin αvβ6 and co-expressing the chemokine receptor CXCR2 demonstrate enhanced homing and efficacy against several solid malignancies. Cancers. 2019;11(5):674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li G, et al. CXCR5 guides migration and tumor eradication of anti-EGFR chimeric antigen receptor T cells. Mol Ther Oncolytics. 2021;22:507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luo H, et al. Coexpression of IL7 and CCL21 increases efficacy of CAR-T cells in solid tumors without requiring preconditioned lymphodepletion. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26(20):5494–505.

    Article  CAS  Google Scholar 

  8. Hu J-F, et al. Induced expression of CCL19 promotes the anti-tumor ability of CAR-T cells by increasing their infiltration ability. Front Immunol. 2022;13: 958960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Adachi K, et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Biotechnol. 2018;36(4):346–51.

    Article  CAS  PubMed  Google Scholar 

  10. Lu L-L, et al. GPC3-IL7-CCL19-CAR-T primes immune microenvironment reconstitution for hepatocellular carcinoma therapy. Cell Biol Toxicol. 2023;39(6):3101–19.

    Article  CAS  PubMed  Google Scholar 

  11. Caruana I, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med. 2015;21(5):524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao Y, et al. Bioorthogonal equip** CAR-T cells with hyaluronidase and checkpoint blocking antibody for enhanced solid tumor immunotherapy. ACS Cent Sci. 2022;8(5):603–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Whittle MC, Hingorani SR. Fibroblasts in pancreatic ductal adenocarcinoma: biological mechanisms and therapeutic targets. Gastroenterology. 2019;156(7):2085–96.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 2021;18(12):792–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. **ao Z, et al. Desmoplastic stroma restricts T cell extravasation and mediates immune exclusion and immunosuppression in solid tumors. Nat Commun. 2023;14(1):5110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, et al. FAP-targeted CAR-T suppresses MDSCs recruitment to improve the antitumor efficacy of claudin18.2-targeted CAR-T against pancreatic cancer. J Transl Med. 2023;21(1):255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tran E, et al. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med. 2013;210(6):1125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Y, et al. Therapeutic potential of TNFα and IL1β blockade for CRS/ICANS in CAR-T therapy via ameliorating endothelial activation. Front Immunol. 2021;12: 623610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Y, et al. Eradication of neuroblastoma by T cells redirected with an optimized GD2-specific chimeric antigen receptor and interleukin-15. Clin Cancer Res Off J Am Assoc Cancer Res. 2019;25(9):2915–24.

    Article  CAS  Google Scholar 

  20. Lanitis E, et al. Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of IL-15 coexpression. J Exp Med. 2021;218(2): e20192203.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Z, et al. Gene-edited interleukin CAR-T cells therapy in the treatment of malignancies: present and future. Front Immunol. 2021;12: 718686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim MY, et al. A long-acting interleukin-7, rhIL-7-hyFc, enhances CAR T cell expansion, persistence, and anti-tumor activity. Nat Commun. 2022;13(1):3296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aspuria P-J, et al. An orthogonal IL-2 and IL-2Rβ system drives persistence and activation of CAR T cells and clearance of bulky lymphoma. Sci Transl Med. 2021;13(625):eabg7565.

    Article  CAS  PubMed  Google Scholar 

  24. Ramos TL, et al. Prevention of acute GVHD using an orthogonal IL-2/IL-2Rβ system to selectively expand regulatory T cells in vivo. Blood. 2023;141(11):1337–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Q, et al. A human orthogonal IL-2 and IL-2Rβ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci Transl Med. 2021;13(625):eabg6986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kalbasi A, et al. Potentiating adoptive cell therapy using synthetic IL-9 receptors. Nature. 2022;607(7918):360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kagoya Y, et al. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat Med. 2018;24(3):352–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ebner R, et al. Cloning of a type I TGF-β receptor and its effect on TGF-β binding to the type II receptor. Science. 1993;260(5112):1344–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kloss CC, et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther. 2018;26(7):1855–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li K, et al. Dominant-negative transforming growth factor-β receptor-armoured mesothelin-targeted chimeric antigen receptor T cells slow tumour growth in a mouse model of ovarian cancer. Cancer Immunol Immunother. 2023;72(4):917–28.

    Article  CAS  PubMed  Google Scholar 

  31. Stüber T, et al. Inhibition of TGF-β-receptor signaling augments the antitumor function of ROR1-specific CAR T-cells against triple-negative breast cancer. J Immunother Cancer. 2020;8(1): e000676.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Narayan V, et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat Med. 2022;28(4):724–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sukumaran S, et al. Enhancing the potency and specificity of engineered T cells for cancer treatment. Cancer Discov. 2018;8(8):972–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mohammed S, et al. Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol Ther. 2017;25(1):249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilkie S, et al. Selective expansion of chimeric antigen receptor-targeted T-cells with potent effector function using interleukin-4. J Biol Chem. 2010;285(33):25538–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qiao Y, et al. Enhancement of CAR-T cell activity against cholangiocarcinoma by simultaneous knockdown of six inhibitory membrane proteins. Cancer Commun (Lond Engl). 2023;43(7):788–807.

    Article  Google Scholar 

  37. He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30(8):660–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim W, et al. PD-1 signaling promotes tumor-infiltrating myeloid-derived suppressor cells and gastric tumorigenesis in mice. Gastroenterology. 2021;160(3):781–96.

    Article  CAS  PubMed  Google Scholar 

  39. Cherkassky L, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Investig. 2016;126(8):3130–44.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Prosser ME, et al. Tumor PD-L1 co-stimulates primary human CD8(+) cytotoxic T cells modified to express a PD1:CD28 chimeric receptor. Mol Immunol. 2012;51(3–4):263–72.

    Article  CAS  PubMed  Google Scholar 

  41. Liu X, et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 2016;76(6):1578–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Agarwal S, et al. Deletion of the inhibitory co-receptor CTLA4 enhances and invigorates chimeric antigen receptor T cells. Immunity. 2023;56(10):2388-2407.e9.

    Article  CAS  PubMed  Google Scholar 

  43. Dötsch S, et al. Long-term persistence and functionality of adoptively transferred antigen-specific T cells with genetically ablated PD-1 expression. Proc Natl Acad Sci USA. 2023;120(10): e2200626120.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yamamoto TN, et al. T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. J Clin Investig. 2019;129(4):1551–65.

    Article  PubMed  PubMed Central  Google Scholar 

  45. McKenzie C, et al. Novel Fas-TNFR chimeras that prevent Fas ligand-mediated kill and signal synergistically to enhance CAR T cell efficacy. Mol Ther Nucleic Acids. 2023;32:603–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Q, et al. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med. 2023;12(10):11149–65.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen J, et al. Target delivery of a PD-1-TREM2 scFv by CAR-T cells enhances anti-tumor efficacy in colorectal cancer. Mol Cancer. 2023;22(1):131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tian X, et al. Editorial: the role of epigenetic modification in MDSC differentiation and function. Front Immunol. 2023;14:1177138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lanitis E, et al. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann Oncol. 2017;28:xii18–32.

    Article  CAS  PubMed  Google Scholar 

  50. Hegde S, Leader AM, Merad M. MDSC: markers, development, states, and unaddressed complexity. Immunity. 2021;54(5):875–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tumino N, et al. Polymorphonuclear myeloid-derived suppressor cells impair the anti-tumor efficacy of GD2.CAR T-cells in patients with neuroblastoma. J Hematol Oncol. 2021;14(1):191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Charbonneau M-E, O’Riordan MXD. Reducing stress PERKs up anti-tumor immunity. Immunity. 2020;52(4):575–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun R, et al. Olaparib suppresses MDSC recruitment via SDF1α/CXCR4 axis to improve the anti-tumor efficacy of CAR-T cells on breast cancer in mice. Mol Ther J Am Soc Gene Ther. 2021;29(1):60–74.

    Article  CAS  Google Scholar 

  54. Sun R, et al. CXCR4-modified CAR-T cells suppresses MDSCs recruitment via STAT3/NF-κB/SDF-1α axis to enhance efficacy against pancreatic cancer. Mol Ther J Am Soc Gene Ther. 2023;13(11):3193–209.

    Article  Google Scholar 

  55. Ghonim MA, et al. Targeting PARP-1 with metronomic therapy modulates MDSC suppressive function and enhances anti-PD-1 immunotherapy in colon cancer. J Immunother Cancer. 2021;9(1): e001643.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nalawade SA, et al. Selectively targeting myeloid-derived suppressor cells through TRAIL receptor 2 to enhance the efficacy of CAR T cell therapy for treatment of breast cancer. J Immunother Cancer. 2021;9(11): e003237.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sun R, Sun Y, Wu C, et al. CXCR4-modified CAR-T cells suppresses MDSCs recruitment via STAT3/NF-κB/SDF-1α axis to enhance efficacy against pancreatic cancer. Mol Ther. 2023;31(11):3193–209.

    Article  CAS  PubMed  Google Scholar 

  58. Ray-Coquard I, et al. Olaparib plus bevacizumab first-line maintenance in ovarian cancer: final overall survival results from the PAOLA-1/ENGOT-ov25 trial. Ann Oncol Off J Eur Soc Med Oncol. 2023;34(8):681–92.

    Article  CAS  Google Scholar 

  59. Yu EY, et al. Pembrolizumab plus olaparib in patients with metastatic castration-resistant prostate cancer: long-term results from the Phase 1b/2 KEYNOTE-365 Cohort A Study. Eur Urol. 2023;83(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  60. Golan T, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chiu DK-C, et al. Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat Commun. 2017;8(1):517.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Godet I, et al. Fate-map** post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis. Nat Commun. 2019;10(1):4862.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Li H, et al. Antagonistic effects of p53 and HIF1A on microRNA-34a regulation of PPP1R11 and STAT3 and hypoxia-induced epithelial to mesenchymal transition in colorectal cancer cells. Gastroenterology. 2017;153(2):505–20.

    Article  CAS  PubMed  Google Scholar 

  64. Godet I, et al. Post-hypoxic cells promote metastatic recurrence after chemotherapy treatment in TNBC. Cancers. 2021;13(21):5509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liao Q, et al. Engineering T cells with hypoxia-inducible chimeric antigen receptor (HiCAR) for selective tumor killing. Biomarker Res. 2020;8(1):56.

    Article  Google Scholar 

  66. He H, et al. Conditioned CAR-T cells by hypoxia-inducible transcription amplification (HiTA) system significantly enhances systemic safety and retains antitumor efficacy. J Immunother Cancer. 2021;9(10): e002755.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kosti P, et al. Hypoxia-sensing CAR T cells provide safety and efficacy in treating solid tumors. Cell Rep Med. 2021;2(4): 100227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Drenckhan A, et al. CAIX furthers tumour progression in the hypoxic tumour microenvironment of esophageal carcinoma and is a possible therapeutic target. J Enzyme Inhib Med Chem. 2018;33(1):1024–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lock FE, et al. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene. 2013;32(44):5210–9.

    Article  CAS  PubMed  Google Scholar 

  70. Li H, et al. CAIX-specific CAR-T cells and sunitinib show synergistic effects against metastatic renal cancer models. J Immunother (Hagerstown Md 1997). 2020;43(1):16–28.

    CAS  Google Scholar 

  71. Cui J, et al. Targeting hypoxia downstream signaling protein, CAIX, for CAR T-cell therapy against glioblastoma. Neuro Oncology. 2019;21(11):1436–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lamers CH, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther J Am Soc Gene Ther. 2013;21(4):904–12.

    Article  CAS  Google Scholar 

  73. Sebestyen Z, et al. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat Rev Drug Discov. 2020;19(3):169–84.

    Article  CAS  PubMed  Google Scholar 

  74. Chabab G, et al. Diversity of tumor-infiltrating, γδ T-cell abundance in solid cancers. Cells. 2020;9(6):1537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gentles AJ, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21(8):938–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Capsomidis A, et al. Chimeric antigen receptor-engineered human gamma delta T cells: enhanced cytotoxicity with retention of cross presentation. Mol Ther J Am Soc Gene Ther. 2018;26(2):354–65.

    Article  CAS  Google Scholar 

  77. Frieling JS, et al. γδ-Enriched CAR-T cell therapy for bone metastatic castrate-resistant prostate cancer. Sci Adv. 2023;9(18):eadf0108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fisher J, et al. Engineering γδT cells limits tonic signaling associated with chimeric antigen receptors. Sci Signal. 2019;12(598):eaax1872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Morandi F, et al. Engineering the bridge between innate and adaptive immunity for cancer immunotherapy: focus on γδ T and NK cells. Cells. 2020;9(8):1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ganapathy T, et al. CAR γδ T cells for cancer immunotherapy. Is the field more yellow than green? Cancer Immunol Immunother. 2023;72(2):277–86.

    Article  CAS  PubMed  Google Scholar 

  81. Klichinsky M, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020;38(8):947–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Young RM, et al. Next-generation CAR T-cell therapies. Cancer Discov. 2022;12(7):1625–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Qian H, et al. Dual-aptamer-engineered M1 macrophage with enhanced specific targeting and checkpoint blocking for solid-tumor immunotherapy. Mol Ther J Am Soc Gene Ther. 2022;30(8):2817–27.

    Article  CAS  Google Scholar 

  84. Kang M, et al. Nanocomplex-mediated in vivo programming to chimeric antigen receptor-M1 macrophages for cancer therapy. Adv Mater (Deerfield Beach Fla). 2021;33(43): e2103258.

    Article  Google Scholar 

  85. Chen Y, et al. The application of HER2 and CD47 CAR-macrophage in ovarian cancer. J Transl Med. 2023;21(1):654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dong X, et al. Efficacy evaluation of chimeric antigen receptor-modified human peritoneal macrophages in the treatment of gastric cancer. Br J Cancer. 2023;129(3):551–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dooling LJ, et al. Cooperative phagocytosis of solid tumours by macrophages triggers durable anti-tumour responses. Nat Biomed Eng. 2023;7(9):1081–96.

    Article  CAS  PubMed  Google Scholar 

  88. Wang S, et al. CAR-macrophage: an extensive immune enhancer to fight cancer. EBioMedicine. 2022;76: 103873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang L, et al. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J Hematol Oncol. 2020;13(1):153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang X, et al. Metabolic Reprogramming via ACOD1 depletion enhances function of human induced pluripotent stem cell-derived CAR-macrophages in solid tumors. Nat Commun. 2023;14(1):5778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yan T, Zhu L, Chen J. Current advances and challenges in CAR T-Cell therapy for solid tumors: tumor-associated antigens and the tumor microenvironment. Exp Hematol Oncol. 2023;12(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Li J, et al. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. J Hematol Oncol. 2018;11(1):22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Feng K-C, et al. Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J Hematol Oncol. 2017;10(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  94. León-Triana O, et al. Dual-target CAR-Ts with on- and off-tumour activity may override immune suppression in solid cancers: a mathematical proof of concept. Cancers. 2021;13(4):703.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Shah NN, et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat Med. 2020;26(10):1569–75.

    Article  CAS  PubMed  Google Scholar 

  96. Zurko JC, et al. Long-term outcomes and predictors of early response, late relapse, and survival for patients treated with bispecific LV20.19 CAR T-cells. Am J Hematol. 2022;97(12):1580–8.

    Article  CAS  PubMed  Google Scholar 

  97. Tong C, et al. Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B-cell lymphoma. Blood. 2020;136(14):1632–44.

    PubMed  PubMed Central  Google Scholar 

  98. ** X, et al. CAR-T cells dual-target CD123 and NKG2DLs to eradicate AML cells and selectively target immunosuppressive cells. Oncoimmunology. 2023;12(1):2248826.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kloss CC, et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31(1):71–5.

    Article  CAS  PubMed  Google Scholar 

  100. Lanitis E, et al. Chimeric antigen receptor T cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol Res. 2013;1(1):43–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Alvarez-Vallina L, Hawkins RE. Antigen-specific targeting of CD28-mediated T cell co-stimulation using chimeric single-chain antibody variable fragment-CD28 receptors. Eur J Immunol. 1996;26(10):2304–9.

    Article  CAS  PubMed  Google Scholar 

  102. Wilkie S, et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol. 2012;32(5):1059–70.

    Article  CAS  PubMed  Google Scholar 

  103. Roybal KT, et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell. 2016;164(4):770–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Morsut L, et al. Engineering customized cell sensing and response behaviors using synthetic Notch receptors. Cell. 2016;164(4):780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hyrenius-Wittsten A, et al. SynNotch CAR circuits enhance solid tumor recognition and promote persistent antitumor activity in mouse models. Sci Transl Med. 2021;13(591):eabd8836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ruffo E, et al. Post-translational covalent assembly of CAR and synNotch receptors for programmable antigen targeting. Nat Commun. 2023;14(1):2463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Allen ME, et al. An AND-gated drug and photoactivatable Cre-loxP system for spatiotemporal control in cell-based therapeutics. ACS Synth Biol. 2019;8(10):2359–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kobayashi A, et al. Light-controllable binary switch activation of CAR T cells. ChemMedChem. 2022;17(12): e202100722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nguyen NT, et al. Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety. Nat Nanotechnol. 2021;16(12):1424–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang B, et al. Photoswitchable CAR-T cell function in vitro and in vivo via a cleavable mediator. Cell Chem Biol. 2021;28(1):60-69.e7.

    Article  CAS  PubMed  Google Scholar 

  111. Huang Z, et al. Engineering light-controllable CAR T cells for cancer immunotherapy. Sci Adv. 2020;6(8):eaay9209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Duplus-Bottin H, et al. A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch. Elife. 2021;10: e61268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fedorov VD, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med. 2013;5(215):215ra172.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell. 2018;173(6):1426-1438.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cho JH, et al. Engineering advanced logic and distributed computing in human CAR immune cells. Nat Commun. 2021;12(1):792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Depil S, et al. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020;19(3):185–99.

    Article  CAS  PubMed  Google Scholar 

  117. Cripe TP, et al. Leveraging gene therapy to achieve long-term continuous or controllable expression of biotherapeutics. Sci Adv. 2022;8(28):eabm1890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu X, et al. Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation. Protein Cell. 2017;8(7):514–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31870899 and 32070899 to X.Z.).

Author information

Authors and Affiliations

Authors

Contributions

GXY, MKY and XZ wrote the main manuscript text and YXZ prepared Figs. 1 and 2. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yixi Zhang or Xun Zeng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, G., Ye, M., Zhang, Y. et al. Challenges and strategies in relation to effective CAR-T cell immunotherapy for solid tumors. Med Oncol 41, 126 (2024). https://doi.org/10.1007/s12032-024-02310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02310-y

Keywords

Navigation