Log in

VEGF Induces Neuroglial Differentiation in Bone Marrow-Derived Stem Cells and Promotes Microglia Conversion Following Mobilization with GM-CSF

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Purpose

Evaluation of potential tropic effects of vascular endothelial growth factor (VEGF) on the incorporation and differentiation of bone-marrow-derived stem cells (BMSCs) in a murine model of anterior ischemic optic neuropathy (AION).

Methods

In the first approach, small-sized subset of BMCs were isolated from GFP donors mice by counterflow centrifugal elutriation and depleted of hematopoietic lineages (Fr25lin-). These cells were injected into a peripheral vein (1 × 106 in 0.2 ml) or inoculated intravitreally (2 × 105) to syngeneic mice, with or without intravitreal injection of 5 μg/2μL VEGF, simultaneously with AION induction. In a second approach, hematopoietic cells were substituted by myelablative transplant of syngeseic GFP + bone marrow cells. After 3 months, progenitors were mobilized with granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by VEGF inoculation into the vitreous body and AION induction . Engraftment and phenotype were examined by immunohistochemistry and FISH at 4 and 24 weeks post-transplantation, and VEGF receptors were determined by real time PCR.

Results

VEGF had no quantitative effect on incorporation of elutriated cells in the injured retina, yet it induced early expression of neuroal markers in cells incorporated in the RGC layer and promoted durable gliosis, most prominent perivascular astrocytes. These effects were mediated by VEGF-R1/Flt-1, which is constitutively expresses in the elutriated fraction of stem cells. Mobilization with GM-CSF limited the differentiation of bone marrow progenitors to microglia, which was also fostered by VEGF.

Conclusions

VEGF signaling mediated by Flt-1 induces early neural and sustained astrocytic differentiation of stem cells elutriated from adult bone-marrow, with significant contribution to stabilization retinal architecture following ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Friedlander, M., Dorrell, M. I., Ritter, M. R., et al. (2007). Progenitor cells and retinal angiogenesis. Angiogenesis, 10(2), 89–101.

    Article  PubMed  Google Scholar 

  2. Liu, X., Li, Y., Liu, Y., et al. (2010). Endothelial progenitor cells (EPCs) mobilized and activated by neurotrophic factors may contribute to pathologic neovascularization in diabetic retinopathy. American Journal of Pathology, 176(1), 504–515.

    Article  PubMed  CAS  Google Scholar 

  3. McVicar, C. M., Colhoun, L. M., Abrahams, J. L., et al. (2010). Differential modulation of angiogenesis by erythropoiesis-stimulating agents in a mouse model of ischaemic retinopathy. PLoS One, 5(7), e11870.

    Article  PubMed  Google Scholar 

  4. Eglitis, M. A., & Mezey, E. (1997). Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proceedings of the National Academy of Sciences of the United States of America, 94, 4080–4085.

    Article  PubMed  CAS  Google Scholar 

  5. Brazelton, T. R., Rossi, F. M., Keshet, G. I., & Blau, H. M. (2000). From marrow to brain: Expression of neuronal phenotypes in adult mice. Science, 290, 1775–1779.

    Article  PubMed  CAS  Google Scholar 

  6. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., & McKercher, S. R. (2000). Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science, 290, 17791782.

    Article  Google Scholar 

  7. Tomita, M., Adachi, Y., Yamada, H., et al. (2002). Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina. Stem Cells, 20, 279–283.

    Article  PubMed  CAS  Google Scholar 

  8. Mezey, E., Key, S., Vogelsang, G., Szalayova, I., Lange, G. D., & Crain, B. (2003). Transplanted bone marrow generates new neurons in human brains. Proceedings of the National Academy of Sciences of the United States of America, 100, 1364–1369.

    Article  PubMed  CAS  Google Scholar 

  9. Otani, A., Dorrell, M. I., Kinder, K., et al. (2004). Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. The Journal of Clinical Investigation, 114, 765–774.

    PubMed  CAS  Google Scholar 

  10. Badami, C. D., Livingston, D. H., Sifri, Z. C., et al. (2007). Hematopoietic progenitor cells mobilize to the site of injury after trauma and hemorrhagic shock in rats. The Journal of Trauma, 63, 596–602.

    Article  PubMed  Google Scholar 

  11. Asahara, T., Masuda, H., Takahashi, T., et al. (1999). Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circulation Research, 85, 221–228.

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi, T., Kalka, C., Masuda, H., et al. (1999). Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine, 5, 434–438.

    Article  PubMed  CAS  Google Scholar 

  13. Zou, H., Otani, A., Oishi, A., et al. (2010). Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice. Biochemical and Biophysical Research Communications, 391(2), 1268–1273.

    Article  PubMed  CAS  Google Scholar 

  14. Grant, M. B., May, W. S., Caballero, S., et al. (2002). Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nature Medicine, 8, 607–612.

    Article  PubMed  CAS  Google Scholar 

  15. Otani, A., Kinder, K., Ewalt, K., Otero, F. J., Schimmel, P., & Friedlander, M. (2002). Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nature Medicine, 8, 1004–1010.

    Article  PubMed  CAS  Google Scholar 

  16. Harris, J. R., Fisher, R., Jorgensen, M., Kaushal, S., & Scott, E. W. (2009). CD133 progenitor cells from the bone marrow contribute to retinal pigment epithelium repair. Stem Cells, 27, 457–466.

    Article  PubMed  Google Scholar 

  17. Sengupta, N., Caballero, S., Sullivan, S. M., et al. (2009). Regulation of adult hematopoietic stem cells fate for enhanced tissue-specific repair. Molecular Therapy, 17, 1594–1604.

    Article  PubMed  CAS  Google Scholar 

  18. Goldenberg-Cohen, N., Avraham-Lubin, B. R., Sadikov, T., Goldstein, R. S., & Askenasy, N. (2012). Primitive stem cells derived from bone marrow express glial and neuronal markers and support revascularization in injured retina exposed to ischemic and mechanical damage. Stem Cells and Development, 21(9), 1488–1500.

    Google Scholar 

  19. Bernstein, S. L., Guo, Y., Kelman, S. E., Flower, R. A., & Johnson, M. A. (2003). Functional and cellular responses in a novel rodent model of anterior ischemic optic neuropathy. Investigative Ophthalmology & Visual Science, 44, 4153–4162.

    Article  Google Scholar 

  20. Goldenberg-Cohen, N., Guo, Y., Margolis, F., Cohen, Y., Miller, N. R., & Bernstein, S. L. (2005). Oligodendrocyte dysfunction after induction of experimental anterior optic nerve ischemia. Investigative Ophthalmology & Visual Science, 46, 2716–2725.

    Article  Google Scholar 

  21. Miller, J. W., Adamis, A. P., Shima, D. T., et al. (1994). Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. American Journal of Pathology, 145, 574–584.

    PubMed  CAS  Google Scholar 

  22. Aiello, L. P., Pierce, E. A., Foley, E. D., et al. (1995). Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proceedings of the National Academy of Sciences of the United States of America, 92, 10457–10461.

    Article  PubMed  CAS  Google Scholar 

  23. Pierce, E. A., Avery, R. L., Foley, E. D., Aiello, L. P., & Smith, L. E. H. (1995). Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 92, 905–909.

    Article  PubMed  CAS  Google Scholar 

  24. Okamoto, N., Tobe, T., Hackett, S. F., et al. (1997). Transgenic mice with increased expression of vascular endothelial growth factor in the retina: A new model of intraretinal and subretinal neovascularization. American Journal of Pathology, 151, 281–291.

    PubMed  CAS  Google Scholar 

  25. Matsuzaki, H., Tamatani, M., Yamaguchi, A., et al. (2001). Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: Signal transduction cascades. ASEB Journal, 15, 1218–1220.

    CAS  Google Scholar 

  26. Widenfalk, J., Lipson, A., Jubran, M., et al. (2003). Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience, 120, 951–960.

    Article  PubMed  CAS  Google Scholar 

  27. **, K., Zhu, Y., Sun, Y., Mao, X. O., **e, L., & Greenberg, D. A. (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 99, 11946–11950.

    Article  PubMed  CAS  Google Scholar 

  28. Sun, Y. E., Martinowich, K., & Ge, W. (2003). Making and repairing the mammalian brain–signaling toward neurogenesis and gliogenesis. Seminars in Cell & Developmental Biology, 14, 161–168.

    Article  CAS  Google Scholar 

  29. Schänzer, A., Wachs, F. P., Wilhelm, D., et al. (2004). Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathology, 14, 237–248.

    Article  PubMed  Google Scholar 

  30. Asahara, T., Takahashi, T., Masuda, H., et al. (1999). VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO Journal, 18, 3964–3972.

    Article  PubMed  CAS  Google Scholar 

  31. Kwak, N., Okamoto, N., Wood, J. M., & Campochiaro, P. A. (2000). VEGF is major stimulator in model of choroidal neovascularization. Investigative Ophthalmology & Visual Science, 41, 3158–3164.

    CAS  Google Scholar 

  32. Tomita, M., Yamada, H., Adachi, Y., et al. (2004). Choroidal neovascularization is provided by bone marrow cells. Stem Cells, 22, 21–26.

    Article  PubMed  Google Scholar 

  33. Krum, J. M., Mani, N., & Rosenstein, J. M. (2002). Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience, 110, 589–604.

    Article  PubMed  CAS  Google Scholar 

  34. Shen, J., Yang, X., **ao, W. H., Hackett, S. F., Sato, Y., & Campochiaro, P. A. (2006). Vasohibin is up-regulated by VEGF in the retina and suppresses VEGF receptor 2 and retinal neovascularization. The FASEB Journal, 20, 723–725.

    CAS  Google Scholar 

  35. Hashimoto, T., Zhang, X. M., Chen, B. Y., & Yang, X. J. (2006). VEGF activates divergent intracellular signaling components to regulate retinal progenitor cell proliferation and neuronal differentiation. Development, 133, 2201–2210.

    Article  PubMed  CAS  Google Scholar 

  36. Wada, T., Haigh, J. J., Ema, M., et al. (2006). Vascular endothelial growth factor directly inhibits primitive neural stem cell survival but promotes definitive neural stem cell survival. Journal of Neuroscience, 26, 6803–6812.

    Article  PubMed  CAS  Google Scholar 

  37. Nishiguchi, K. M., Nakamura, M., Kaneko, H., Kachi, S., & Terasaki, H. (2007). The role of VEGF and VEGFR2/Flk1 in proliferation of retinal progenitor cells in murine retinal degeneration. Investigative Ophthalmology & Visual Science, 48, 4315–4320.

    Article  Google Scholar 

  38. Zhang, F., Tang, Z., Hou, X., et al. (2009). VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 106, 6152–6157.

    Article  PubMed  CAS  Google Scholar 

  39. Purpura, K. A., George, S. H., Dang, S. M., Choi, K., Nagy, A., & Zandstra, P. A. (2008). Soluble Flt-1 regulates Flk-1 activation to control hematopoietic and endothelial development in an oxygen-responsive manner. Stem Cells, 26, 2832–2842.

    Article  PubMed  CAS  Google Scholar 

  40. Jang, Y. Y., Collector, M. I., Baylin, S. B., Diehl, A. M., & Sharkis, S. J. (2004). Hematopoietic stem cells convert into liver cells within days without fusion. Nature Cell Biology, 6, 532–539.

    Article  PubMed  CAS  Google Scholar 

  41. Krause, D. S., Theise, N. D., Collector, M. I., et al. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105, 369–377.

    Article  PubMed  CAS  Google Scholar 

  42. Iskovich, S., Goldenberg-Cohen, N., Stein, J., Yaniv, I., Fabian, I., & Askenasy, N. (2012). Elutriated stem cells derived from the adult bone marrow differentiate into insulin producing cells in vivo and reverse chemical diabetes. Stem Cells and Development, 21(1):86–96.

    Google Scholar 

  43. Pearl-Yafe, M., Stein, J., Yolcu, E. S., et al. (2007). Fas transduces dual apoptotic and trophic signals in hematopoietic progenitors. Stem Cells, 25, 3194–3203.

    Article  PubMed  Google Scholar 

  44. Iskovich, S., Goldenberg-Cohen, N., Stein, J., Yaniv, I., Farkas, D. L., & Askenasy, N. (2011). β-cell neogenesis: experimental considerations in stem cell differentiation. Stem Cells and Development, 20, 569–582.

    Article  PubMed  CAS  Google Scholar 

  45. Vroemen, M., Weidner, N., & Blesch, A. (2005). Loss of gene expression in lentivirus- and retrovirus-transduced neural progenitor cells is correlated to migration and differentiation in the adult spinal cord. Experimental Neurology, 195, 127–139.

    Article  PubMed  CAS  Google Scholar 

  46. Krum, J. M., Mani, N., & Rosenstein, J. M. (2008). Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury. Experimental Neurology, 212, 108–117.

    Article  PubMed  CAS  Google Scholar 

  47. Lee, S. S., Ghosn, C., Yu, Z., et al. (2010). Vitreous VEGF clearance is increased after vitrectomy. Investigative Ophthalmology & Visual Science, 51, 2135–2138.

    Article  Google Scholar 

  48. Shibuya, M., & Claesson-Welsh, L. (2006). Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Experimental Cell Research, 312, 549–560.

    Article  PubMed  CAS  Google Scholar 

  49. Wehner, T., Böntert, M., Eyüpoglu, I., et al. (2003). Bone marrow-derived cells expressing green fluorescent protein under the control of the glial fibrillary acidic protein promoter do not differentiate into astrocytes in vitro and in vivo. Journal of Neuroscience, 23, 5004–5011.

    PubMed  CAS  Google Scholar 

  50. Xu, H., Chen, M., Mayer, E. J., Forrester, J. V., & Dick, A. D. (2007). Turnover of resident retinal microglia in the normal adult mouse. Glia, 55, 1189–1198.

    Article  PubMed  Google Scholar 

  51. Kezic, J., & McMenamin, P. G. (2008). Differential turnover rates of monocyte-derived cells in varied ocular tissue microenvironments. Journal of Leukocyte Biology, 84, 721–729.

    Article  PubMed  CAS  Google Scholar 

  52. Hess, D. C., Abe, T., Hill, W. D., et al. (2004). Hematopoietic origin of microglial and perivascular cells in brain. Experimental Neurology, 186, 134–144.

    Article  PubMed  CAS  Google Scholar 

  53. Simard, A. R., & Rivest, S. (2004). Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. The FASEB Journal, 18, 998–1000.

    CAS  Google Scholar 

  54. Kaneko, H., Nishiguchi, K. M., Nakamura, M., Kachi, S., & Terasaki, H. (2008). Characteristics of bone marrow–derived microglia in the normal and injured retina. Investigative Ophthalmology & Visual Science, 49, 4162–4168.

    Article  Google Scholar 

  55. Schilling, M., Besselmann, M., Leonhard, C., Mueller, M., Ringelstein, E. B., & Kiefer, R. (2003). Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: A study in green fluorescent protein transgenic bone marrow chimeric mice. Experimental Neurology, 183, 25–33.

    Article  PubMed  Google Scholar 

  56. Tanaka, R., Komine-Kobayashi, M., Mochizuki, H., et al. (2003). Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience, 117, 531–539.

    Article  PubMed  CAS  Google Scholar 

  57. Hisatomi, T., Sakamoto, T., Sonoda, K. H., et al. (2003). Clearance of apoptotic photoreceptors: Elimination of apoptotic debris into the subretinal space and macrophage-mediated phagocytosis via phosphatidylserine receptor and integrin αvβ3. American Journal of Pathology, 162, 1869–1879.

    Article  PubMed  CAS  Google Scholar 

  58. Djukic, M., Mildner, A., Schmidt, H., et al. (2006). Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain, 129, 2394–2403.

    Article  PubMed  Google Scholar 

  59. Schabitz, W. R., Krüger, C., Pitzer, C., et al. (2008). A neuroprotective function for the hematopoietic protein granulocyte-macrophage colony stimulating factor (GM-CSF). Journal of Cerebral Blood Flow and Metabolism, 28(1), 29–43.

    Article  PubMed  Google Scholar 

  60. Navarro-Sobrino, M., Rosell, A., Penalba, A., et al. (2009). Role of endogenous granulocyte-macrophage colony stimulating factor following stroke and relationship to neurological outcome. Current Neurovascular Research, 6(4), 246–251.

    Article  PubMed  CAS  Google Scholar 

  61. Schallenberg, M., Charalambous, P., & Thanos, S. (2009). GM-CSF regulates the ERK1/2 pathways and protects injured retinal ganglion cells from induced death. Experimental Eye Research, 89(5), 665–677.

    Article  PubMed  CAS  Google Scholar 

  62. Tsai, R. K., Chang, A. H., Sheu, M. M., & Huang, Z. L. (2010). Anti-apoptotic effects of human granulocyte colony-stimulating factor (G-CSF) on retinal ganglion cells after optic nerve crush are PI3K/AKT-dependent. Experimental Eye Research, 90, 537–545.

    Article  PubMed  CAS  Google Scholar 

  63. Kong, T., Choi, J. K., Park, H., et al. (2009). Reduction in programmed cell death and improvement in functional outcome of transient focal cerebral ischemia after administration of granulocyte-macrophage colony-stimulating factor in rats. Laboratory investigation. Journal of Neurosurgery, 111(1), 155–163.

    Article  PubMed  CAS  Google Scholar 

  64. Sasahara, M., Otani, A., Oishi, A., et al. (2008). Activation of bone marrow-derived microglia promotes photoreceptor survival in inherited retinal degeneration. American Journal of Pathology, 172, 1693–1703.

    Article  PubMed  CAS  Google Scholar 

  65. Cuthbertson, R. A., & Lang, R. A. (1989). Developmental ocular disease in GM-CSF transgenic mice is mediated by autostimulated macrophages. Developmental Biology, 134(1), 119–129.

    Article  PubMed  CAS  Google Scholar 

  66. Tsai, R. K., Chang, C. H., & Wang, H. Z. (2008). Neuroprotective effects of recombinant human granulocyte colony-stimulating factor (G-CSF) in neurodegeneration after optic nerve crush in rats. Experimental Eye Research, 87, 242–250.

    Article  PubMed  CAS  Google Scholar 

  67. Frank, T., Schlachetzki, J. C., Göricke, B., et al. (2009). Both systemic and local application of granulocyte-colony stimulating factor (G-CSF) is neuroprotective after retinal ganglion cell axotomy. BMC Neuroscience, 10, 49.

    Article  PubMed  Google Scholar 

  68. Bu, P., Basith, B., Stubbs, E. B., Jr., & Perlman, J. I. (2010). Granulocyte colony-stimulating factor facilitates recovery of retinal function following retinal ischemic injury. Experimental Eye Research, 91, 104–106.

    Article  PubMed  CAS  Google Scholar 

  69. Englund-Johansson, U., Mohlin, C., Liljekvist-Soltic, I., Ekstrom, P., & Johansson, K. (2010). Human neural progenitor cells promote photoreceptor survival in retinal explants. Experimental Eye Research, 90(2), 292–299.

    Article  PubMed  CAS  Google Scholar 

  70. Taneera, J., Rosengree, A., Renstrom, E., Nygren, J. M., Serup, P., Rorsman, P., & Jacobsen, S. E. (2006). Failure of transplanted bone marrow cells to adopt a pancreatic beta-cell fate. Diabetes, 55, 290–296.

    Article  PubMed  CAS  Google Scholar 

  71. Jung, K. H., Chu, K., Lee, S. T., Kim, S. J., Sinn, D. I., Kim, S. U., Kim, M., & Roh, J. K. (2006). Granulocyte colony-stimulating factor stimulates neurogenesis via vascular endothelial growth factor with STAT activation. Brain Research, 1073–1074, 190–201.

    Article  PubMed  Google Scholar 

  72. Kruger, C., Laage, R., Pitzer, C., Schabitz, W. R., & Schneider, A. (2007). The hematopoietic factor GM-CSF (granulocyte-macrophage colony-stimulating factor) promotes neuronal differentiation of adult neural stem cells in vitro. BMC Neuroscience, 8, 88.

    Article  PubMed  Google Scholar 

  73. Liu, H., Jia, D., Fu, J., et al. (2009). Effects of granulocyte colony-stimulating factor on the proliferation and cell-fate specification of neural stem cells. Neuroscience, 164, 1521–1530.

    Article  PubMed  CAS  Google Scholar 

  74. Love, R. (2003). GM-CSF induced arteriogenesis: A potential treatment for stroke? Lancet Neurology, 2(8), 458.

    Article  PubMed  Google Scholar 

  75. Eubank, T. D., Roberts, R., Galloway, M., Wang, Y., Cohn, D. E., & Marsh, C. B. (2004). GM-CSF induces expression of soluble VEGF receptor-1 from human monocytes and inhibits angiogenesis in mice. Immunity, 21(6), 831–842.

    Article  PubMed  CAS  Google Scholar 

  76. Schneeloch, E., Mies, G., Busch, H. J., Buschmann, I. R., & Hossmann, K. A. (2004). Granulocyte-macrophage colony-stimulating factor-induced arteriogenesis reduces energy failure in hemodynamic stroke. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12730–12735.

    Article  PubMed  CAS  Google Scholar 

  77. Hossmann, K. A., & Buschmann, I. R. (2005). Granulocyte-macrophage colony-stimulating factor as an arteriogenic factor in the treatment of ischaemic stroke. Expert Opinion on Biological Therapy, 5(12), 1547–1556.

    Article  PubMed  CAS  Google Scholar 

  78. Sacramento, C. B., Cantagalli, V. D., Grings, M., et al. (2009). Granulocyte-macrophage colony-stimulating factor gene based therapy for acute limb ischemia in a mouse model. The Journal of Gene Medicine, 11(4), 345–353.

    Article  PubMed  CAS  Google Scholar 

  79. Sharkis, S. J., Collector, M. I., Barber, J. P., Vala, M. S., & Jones, R. J. (1995). Phenotypic and functional characterization of the hematopoietic stem cell. Stem Cells, 15(Suppl 1), 41–45.

    Google Scholar 

  80. Ratajczak, J., Zuba-Surma, A., Paczkowska, E., Kucia, M., Nowacki, P., & Ratajczak, M. Z. (2011). Stem cells for neural regeneration - a potential application of very small embryonic-like stem cells. Journal of Physiology and Pharmacology, 62, 3–12.

    PubMed  CAS  Google Scholar 

  81. Jang, Y. Y., & Sharkis, S. J. (2005). Stem cell plasticity: A rare cell, not a rare event. Stem Cell Reviews, 1, 45–51.

    Article  PubMed  CAS  Google Scholar 

  82. Quesenberry, P. J., Dooner, G., Dooner, M., & Colvin, G. (2005). The stem cell continuum: considerations on the heterogeneity and plasticity of marrow stem cells. Stem Cell Reviews, 1, 29–36.

    Article  PubMed  CAS  Google Scholar 

  83. Zipori, D. (2005). The stem state: Plasticity is essential, whereas self-renewal and hierarchy are optional. Stem Cells, 23, 719–726.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Dr. Saul Sharkis and Dr. Michael Collector for their outstanding support and conceptual contribution to this study. Funding was provided by generous grants from the Leah and Edward M. Frankel Trust for bone marrow transplantation and the Zanvyl and Isabelle Krieger Fund, Baltimore, MD, USA; the Israel Science Foundation (NGC, 1371/08); the Eldor-Metzner Clinician Scientist Award, Chief Scientist, (NGC, 3-3741); Chief Scientist and the Lirot Foundation (NGC, 3-4538), Israel Ministry of Health; Pilot Grant from the North American Neuro-Ophthalmology Society; The Adams Super Center for Brain Research, Tel Aviv University, Israel (NGC); the Clair and Ameddee Maratier Fund to prevent blindness, Tel Aviv University, Israel (NGC, BRAL); Walter Friendliest and Herman Shudder Fund, Tel Aviv University, Israel (NGC), The Lions (BRAL) and Mazritzky Fund (TS), Tel Aviv University, Israel.

The results of this study were presented in part at the Meeting of the Association for Research in Vision and Ophthalmology, Fort Lauderdale, Florida, USA (ARVO); the Meeting of the Israel Society for Eye and Vision Research, Neve Ilan, Israel (ISVER); the Meeting of the North American Neuro-Ophthalmology Society (NANOS), Tucson, AZ; the Meeting of the International Society for Stem Cell Research (ISSCR), Philadelphia, PA; the Meeting of the Federation of the Israel Societies for Experimental Biology (ILANIT/FISEB), Eilat, Israel.

This work was submitted as partial fulfillment of the requirements for a PhD degree of B.R. Avraham-Lubin and MSc degree of T. Sadikov, Tel Aviv University.

Disclosure of potential conflict of interest

The authors have no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitza Goldenberg-Cohen.

Additional information

Bat-Chen R. Avraham-Lubin and Nitza Goldenberg-Cohen contributed equally to this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avraham-Lubin, BC.R., Goldenberg-Cohen, N., Sadikov, T. et al. VEGF Induces Neuroglial Differentiation in Bone Marrow-Derived Stem Cells and Promotes Microglia Conversion Following Mobilization with GM-CSF. Stem Cell Rev and Rep 8, 1199–1210 (2012). https://doi.org/10.1007/s12015-012-9396-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9396-1

Keywords

Navigation