Log in

Bone-marrow mesenchymal stem-cell administration significantly improves outcome after retinal ischemia in rats

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Ischemia-associated retinal degeneration is one of the leading causes of vision loss, and to date, there are no effective treatment options. We hypothesized that delayed injection of bone-marrow stem cells (BMSCs) 24 h after the onset of ischemia could effectively rescue ischemic retina from its consequences, including apoptosis, inflammation, and increased vascular permeability, thereby preventing retinal cell loss.

Methods

Retinal ischemia was induced in adult Wistar rats by increasing intraocular pressure (IOP) to 130–135 mmHg for 55 min. BMSCs harvested from rat femur were injected into the vitreous 24 h post-ischemia. Functional recovery was assessed 7 days later using electroretinography (ERG) measurements of the a-wave, b-wave, P2, scotopic threshold response (STR), and oscillatory potentials (OP). The retinal injury and anti-ischemic effects of BMSCs were quantitated by measuring apoptosis, autophagy, inflammatory markers, and retinal–blood barrier permeability. The distribution and fate of BMSC were qualitatively examined using real-time fundus imaging, and retinal flat mounts.

Results

Intravitreal delivery of BMSCs significantly improved recovery of the ERG a- and b-waves, OP, negative STR, and P2, and attenuated apoptosis as evidenced by decreased TUNEL and caspase-3 protein levels. BMSCs significantly increased autophagy, decreased inflammatory mediators (TNF-α, IL-1β, IL-6), and diminished retinal vascular permeability. BMSCs persisted in the vitreous and were also found within ischemic retina.

Conclusions

Taken together, our results indicate that intravitreal injection of BMSCs rescued the retina from ischemic damage in a rat model. The mechanisms include suppression of apoptosis, attenuation of inflammation and vascular permeability, and preservation of autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Al-Shabrawey M, Rojas M, Sanders T, Behzadian A, El-Remessy A, Bartoli M, Parpia AK, Liou G, Caldwell RB (2008) Role of NADPH oxidase in retinal vascular inflammation. Invest Ophthalmol Vis Sci 49:3239–3244

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hangai M, Yoshimura N, Honda Y (1996) Increased cytokine gene expression in rat retina following transient ischemia. Ophthalmic Res 28:248–254

    Article  CAS  PubMed  Google Scholar 

  3. Gustavsson C, Agardh C-D, Hagert P, Agardh E (2008) Inflammatory markers in nondiabetic and diabetic rat retinas exposed to ischemia followed by reperfusion. Retina 28:645–652

    Article  PubMed  Google Scholar 

  4. Abcouwer SF, Lin CM, Wolpert EB, Shanmugam S, Schaefer EW, Freeman WM, Barber AJ, Antonetti DA (2010) Effects of ischemic preconditioning and bevacizumab on apoptosis and vascular permeability following retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 51:5920–5933. doi:10.1167/iovs.10-5264

    Article  PubMed  Google Scholar 

  5. Osborne NN, Casson RJ, Wood JPM, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91–147

    Article  CAS  PubMed  Google Scholar 

  6. Dattilo M, Biousse V, Newman NJ (2017) Update on the management of central retinal artery occlusion. Neurol Clin 35:83–100. doi:10.1016/j.ncl.2016.08.013

    Article  PubMed  Google Scholar 

  7. Park SS, Moisseiev E, Bauer G, Anderson JD, Grant MB, Zam A, Zawadzki RJ, Werner JS, Nolta JA (2017) Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res 56:148–165. doi:10.1016/j.preteyeres.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  8. Sun J, Wei ZZ, Gu X, Zhang JY, Zhang Y, Li J, Wei L (2015) Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Exp Neurol 272:78–87 http://dx.doi.org/10.1016/j.expneurol.2015.03.011

    Article  CAS  PubMed  Google Scholar 

  9. Roth S, Dreixler JC, Mathew B, Balyasnikova I, Mann JR, Boddapati V, Xue L, Lesniak MS (2016) Hypoxic-preconditioned bone marrow stem cell medium significantly improves outcome after retinal ischemia in RatsPreconditioned stem cells and retinal ischemia. Invest Ophthalmol Vis Sci 57:3522–3532. doi:10.1167/iovs.15-17381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li N, X-r L, J-q Y (2009) Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion. Graefes Arch Clin Exp Ophthalmol 247:503–514

    Article  PubMed  Google Scholar 

  11. Zheng L, Gong B, Hatala DA, Kern TS (2007) Retinal ischemia and reperfusion causes capillary degeneration: similarities to diabetes. Invest Ophthalmol Vis Sci 48:361–367

    Article  PubMed  Google Scholar 

  12. Dowling JE (1963) Neural and photochemical mechanisms of visual adaptation in the rat. J Gen Physiol 46:1287–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roth S, Shaikh AR, Hennelly MM, Li Q, Bindokas V, Graham CE (2003) Mitogen-activated protein kinases and retinal ischemia. Invest Ophthalmol Vis Sci 44:5383–5395

    Article  PubMed  Google Scholar 

  14. Roth S, Dreixler JC, Shaikh AR, Lee KH, Bindokas V (2006) Mitochondrial potassium ATP channels and retinal ischemic preconditioning. Invest Ophthalmol Vis Sci 47:2114–2124

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dreixler JC, Shaikh AR, Shenoy SK, Shen Y, Roth S (2008) Protein kinase C subtypes and retinal ischemic preconditioning. Exp Eye Res 87:300–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dreixler JC, Poston JN, Balyasnikova I, Shaikh AR, Lesniak MS, Roth S (2014) Delayed administration of bone marrow mesenchymal stem cell conditioned medium significantly improves outcome after retinal ischemia in rats. Invest Ophthalmol Vis Sci 55:3785–3796. doi:10.1167/iovs.13-11683

    Article  PubMed  PubMed Central  Google Scholar 

  17. Weymouth AE, Vingrys AJ (2008) Rodent electroretinography: methods for extraction and interpretation of rod and cone responses. Prog Retin Eye Res 27:1–44

    Article  CAS  PubMed  Google Scholar 

  18. Bui BV, Edmunds B, Cioffi GA, Fortune B (2005) The gradient of retinal functional changes during acute intraocular pressure elevation. Invest Ophthalmol Vis Sci 46:202–213

    Article  PubMed  Google Scholar 

  19. Singh M, Savitz SI, Hoque R, Rosenbaum PS, Roth S, Rosenbaum DM (2001) Cell-specific caspase expression by different neuronal phenotypes in transient retinal ischemia. J Neurochem 77:466–475

    Article  CAS  PubMed  Google Scholar 

  20. Zhang C, Rosenbaum DM, Shaikh AR, Li Q, Rosenbaum PS, Pelham DJ, Roth S (2002) Ischemic preconditioning attenuates apoptosis following retinal ischemia in rats. Invest Ophthalmol Vis Sci 43:3059–3066

    PubMed  Google Scholar 

  21. Huang C, Andres AM, Ratliff EP, Hernandez G, Lee P, Gottlieb RA (2011) Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One 6:e20975. doi:10.1371/journal.pone.0020975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W (2015) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia–ischemia. Autophagy 6:366–377

    Article  Google Scholar 

  23. Fang IM, Yang C-M, Yang C-H, Chiou S-H, Chen M-S (2013) Transplantation of induced pluripotent stem cells without C-Myc attenuates retinal ischemia and reperfusion injury in rats. Exp Eye Res 113:49–59. doi:10.1016/j.exer.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  24. Goncalves A, Lin CM, Muthusamy A, Fontes-Ribeiro C, Ambrosio AF, Abcouwer SF, Fernandes R, Antonetti DA (2016) Protective effect of a GLP-1 analog on ischemia-reperfusion induced blood–retinal barrier breakdown and inflammation. Invest Ophthalmol Vis Sci 57:2584–2592. doi:10.1167/iovs.15-19006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dreixler JC, Poston JN, Shaikh AR, Alexander M, Tupper KY, Marcet MM, Bernaudin M, Roth S (2011) Delayed post-ischemic conditioning significantly improves the outcome after retinal ischemia. Exp Eye Res 92:521–527

    Article  CAS  PubMed  Google Scholar 

  26. Fortune B, Bui BV, Morrison JC, Johnson EC, Dong J, Cepurna WO, Jia L, Barber S, Cioffi GA (2004) Selective ganglion cell functional loss in rats with experimental glaucoma. Invest Ophthalmol Vis Sci 45:1854–1862

    Article  PubMed  Google Scholar 

  27. Schlamp CL, Johnson EC, Li Y, Morrison JC, Nickells RW (2001) Changes in Thy1 gene expression associated with damaged retinal ganglion cells. Mol Vis 7:192–201

    CAS  PubMed  Google Scholar 

  28. Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1:84–91

    Article  CAS  PubMed  Google Scholar 

  29. Feng Y, Yao Z, Klionsky DJ (2015) How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. doi:10.1016/j.tcb.2015.02.002

    PubMed  PubMed Central  Google Scholar 

  30. Saftig P, Beertsen W, Eskelinen EL (2008) LAMP-2: a control step for phagosome and autophagosome maturation. Autophagy 4:510–512

    Article  CAS  PubMed  Google Scholar 

  31. Johnson TV, Bull ND, Martin KR (2010) Identification of barriers to retinal engraftment of transplanted stem cells. Invest Ophthalmol Vis Sci 51:960–970

    Article  PubMed  PubMed Central  Google Scholar 

  32. Reichenbach A, Wurm A, Pannicke T, Iandiev I, Wiedemann P, Bringmann A (2007) Muller cells as players in retinal degeneration and edema. Graefes Arch Clin Exp Ophthalmol 245:627–636

    Article  PubMed  Google Scholar 

  33. Uckermann O, Kutzera F, Wolf A, Pannicke T, Reichenbach A, Wiedemann P, Wolf S, Bringmann A (2005) The glucocorticoid triamcinolone acetonide inhibits osmotic swelling of retinal glial cells via stimulation of endogenous adenosine signaling. J Pharmacol Exp Ther 315:1036–1045

    Article  CAS  PubMed  Google Scholar 

  34. Dreixler JC, Barone FC, Shaikh AR, Du E, Roth S (2009) Mitogen-activated protein kinase p38alpha and retinal ischemic preconditioning. Exp Eye Res 89:782–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dreixler JC, Hemmert JW, Shenoy SK, Shen Y, Lee HT, Shaikh AR, Rosenbaum DM, Roth S (2009) The role of Akt/protein kinase B subtypes in retinal ischemic preconditioning. Exp Eye Res 88:512–521

    Article  CAS  PubMed  Google Scholar 

  36. Dreixler J, Shaikh A, Alexander M, Savoie B, Roth S (2010) Post-ischemic conditioning in the rat retina is dependent upon ischemia duration and is not additive with ischemic preconditioning. Exp Eye Res 91:844–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jo N, Wu G-S, Rao NA (2003) Upregulation of chemokine expression in the retinal vasculature in ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 44:4054–4060

    Article  PubMed  Google Scholar 

  38. Hattori T, Hayashi H, Chiba T, Onozaki K (2001) Activation of two distinct anti-proliferative pathways, apoptosis and p38 MAP kinase-dependent cell cycle arrest, by tumor necrosis factor in human melanoma cell line A375. Eur Cytokine Netw 12(2):244–252

    CAS  PubMed  Google Scholar 

  39. Danesh-Meyer HV, Kerr NM, Zhang J, Eady EK, O'Carroll SJ, Nicholson LFB, Johnson CS, Green CR (2012) Connexin43 mimetic peptide reduces vascular leak and retinal ganglion cell death following retinal ischaemia. Brain 135:506–520. doi:10.1093/brain/awr338

    Article  PubMed  Google Scholar 

  40. Peng J, Drobish JK, Liang G, Wu Z, Liu C, Joseph DJ, Abdou H, Eckenhoff MF, Wei H (2014) Anesthetic preconditioning inhibits isoflurane-mediated apoptosis in the develo** rat brain. Anesth Analg 119:939–946. doi:10.1213/ane.0000000000000380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng Y, Rhodes PG, Bhatt AJ (2015) Hypoxic preconditioning provides neuroprotection and increases vascular endothelial growth factor a, preserves the phosphorylation of Akt-Ser-473 and diminishes the increase in caspase-3 activity in neonatal rat hypoxic-ischemic model. Brain Res 1325:1–9

    Article  Google Scholar 

  42. Amato R, Biagioni M, Cammalleri M, Dal Monte M, Casini G (2016) VEGF as a survival factor in ex vivo models of early diabetic retinopathy. Invest Ophthalmol Vis Sci 57:3066–3076. doi:10.1167/iovs.16-19285

    Article  CAS  PubMed  Google Scholar 

  43. Nakahara T, Hoshino M, Hoshino S, Mori A, Sakamoto K, Ishii K (2015) Structural and functional changes in retinal vasculature induced by retinal ischemia-reperfusion in rats. Exp Eye Res 135:134–145. doi:10.1016/j.exer.2015.02.020

    Article  CAS  PubMed  Google Scholar 

  44. Piras A, Gianetto D, Conte D, Bosone A, Vercelli A (2011) Activation of autophagy in a rat model of retinal ischemia following high intraocular pressure. PLoS One 6:e22514. doi:10.1371/journal.pone.0022514;

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Russo R, Berliocchi L, Adornetto A, Varano GP, Cavaliere F, Nucci C, Rotiroti D, Morrone LA, Bagetta G, Corasaniti MT (2011) Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death Dis 2:e144. doi:10.1038/cddis.2011.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang G, Zhou D, Wang C, Gao Y, Zhou Q, Qian G, DeCoster MA (2010) Hypoxic preconditioning suppresses group III secreted phospholipase A2-induced apoptosis via JAK2-STAT3 activation in cortical neurons. J Neurochem 114:1039–1048. doi:10.1111/j.1471-4159.2010.06817.x

    CAS  PubMed  Google Scholar 

  47. Tang X, Tzekov R, Passaglia CL (2016) Retinal cross talk in the mammalian visual system. J Neurophysiol 115:3018–3029. doi:10.1152/jn.01137.2015

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Roth.

Ethics declarations

Funding

This study was supported by National Institutes of Health (Rockville, MD, USA) grants EY10343 and EY10343-16S1 (American Recovery and Reinvestment Act) to Dr. Roth, NS087990 to Dr. Lesniak and to Dr. Balyasnikova, AG029795 for the Medical Student Summer Research Program at the University of Chicago Pritzker School of Medicine, UL1RR024999 to the University of Chicago Institute for Translational Medicine; the Illinois Society for the Prevention of Blindness, Chicago (Dr. Poston); Core Grant P30 EY001792 (to the Department of Ophthalmology, University of Illinois at Chicago, Chicago); and a Center-Style Grant from the Dean’s Research Advisory Committee of the Division of Biological Sciences of the University of Chicago (Drs. Lesniak and Roth). Jacqueline N. Poston was the recipient of a Medical Student Research Fellowship Award from the American Academy of Neurology (St. Paul, MN, USA) and a student scholarship from the Achievement Rewards for College Scientists Foundation (Washington, DC, USA). There was no involvement of the funding bodies in the design of the study or in collection, analysis, and interpretation of the data or the writing of the manuscript.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval: Animal experiments

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the Animal Care Committees of the Universities of Chicago and Illinois.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, B., Poston, J.N., Dreixler, J.C. et al. Bone-marrow mesenchymal stem-cell administration significantly improves outcome after retinal ischemia in rats. Graefes Arch Clin Exp Ophthalmol 255, 1581–1592 (2017). https://doi.org/10.1007/s00417-017-3690-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-017-3690-1

Keywords

Navigation