Log in

Evaluating the Impact of an Organic Trace Mineral mix on the Redox Homeostasis, Immunity, and Performance of Sows and their Offspring

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of the study was to evaluate the effects of trace mineral supplementation in sows during gestation and lactation on the performance and health status of sows and their offspring. Sows (n = 30; Landrace × Yorkshire; avg parity = 3.9) were randomly allocated into two dietary treatments. Sows received a basal diet supplemented with 12 mg/kg Cu, 30 mg/kg Fe, 90 mg/kg Zn, 70 mg/kg Mn, 0.30 mg/kg Se, and 1.5 mg/kg I from an inorganic trace mineral source (ITM) or a blend of hydroxychloride and organic trace mineral source (HOTM) from day 1 of gestation until the end of the lactation period at day 21. Compared to the ITM, the HOTM supplementation increased (P < 0.05) both litter birth weight and individual piglet birth weight. Although not statistically significant, HOTM tended to increase (P = 0.069) the level of lactose in colostrum. HOTM increased (P < 0.05) the concentration of Mn and Se in the colostrum, milk, and serum of sows and/or piglets. Notably, the Zn concentration in the serum of sows was higher in sows supplemented with ITM compared to HOTM. Moreover, HOTM increased (P < 0.05) the activities of GPX and SOD in gestating sows and piglets, as well as increased (P < 0.05) cytokines (IL-1β, TNF-α, and IL-10) in the serum of sows. The immunoglobulins (IgA, IgG, and IgM) also increased in sows and/or piglets at certain experimental time points. In conclusion, HOTM supplementation positively affected piglet development and improved the health status of sows and piglets potentially by regulating redox homeostasis and immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

The datasets used and/or analyzed during the current study are publicly available.

References

  1. Björkman S, Kauffold J, Kaiser MØ (2022) Reproductive health of the sow during puerperium. Mol Reprod Dev 90(7):561–579. https://doi.org/10.1002/mrd.23642

    Article  CAS  PubMed  Google Scholar 

  2. Stevenson P (2023) Links between industrial livestock production, disease including zoonoses and antimicrobial resistance. Anim Res One Health 1(1):137–144. https://doi.org/10.1002/aro2.19

    Article  Google Scholar 

  3. Miao JF, Adewole D, Liu SX, ** PP, Yang CB, Yin YL (2019) Tryptophan supplementation increases reproduction performance, milk yield, and milk composition in lactating sows and growth performance of their piglets. J Agric Food Chem 67(18):5096–5104. https://doi.org/10.1021/acs.jafc.9b00446

    Article  CAS  PubMed  Google Scholar 

  4. Koketsu Y, Tani S, Iida R (2017) Factors for improving reproductive performance of sows and herd productivity in commercial breeding herds. Porcine Health Manag. https://doi.org/10.1186/s40813-016-0049-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Riddersholm KV, Bahnsen I, Bruun TS, de Knegt LV, Amdi C (2021) Identifying risk factors for low piglet birth weight, high within-litter variation and occurrence of intrauterine growth-restricted piglets in hyperprolific sows. Animals 11:9. https://doi.org/10.3390/ani11092731

    Article  Google Scholar 

  6. Zhang X, Wu Y, Liu X, Lin X, Liu Y, Kang L et al (2023) Proinflammatory polarization of macrophages causes intestinal inflammation in low-birth-weight piglets and mice. J Nutr 153(6):1803–1815. https://doi.org/10.1016/j.tjnut.2023.04.016

    Article  CAS  PubMed  Google Scholar 

  7. Tan CQ, Ji YC, Zhao XC, **n ZQ, Li JY, Huang SB et al (2021) Effects of dietary supplementation of nucleotides from late gestation to lactation on the performance and oxidative stress status of sows and their offspring. Anim Nutr 7(1):111–118. https://doi.org/10.1016/j.aninu.2020.10.004

    Article  CAS  PubMed  Google Scholar 

  8. Berchieri-Ronchi CB, Kim SW, Zhao Y, Correa CR, Yeum KJ, Ferreira ALA (2011) Oxidative stress status of highly prolific sows during gestation and lactation. Animal 5(11):1774–1779. https://doi.org/10.1017/s1751731111000772

    Article  CAS  PubMed  Google Scholar 

  9. Dong ZL, Liu S, Deng QQ, Li GY, Tang YL, Wu X et al (2023) Role of iron in host-microbiota interaction and its effects on intestinal mucosal growth and immune plasticity in a piglet model. Sci China Life Sci 66(9):2086–2098. https://doi.org/10.1007/s11427-022-2409-0

    Article  CAS  PubMed  Google Scholar 

  10. Wang D, Kuang Y, Lv Q, **e W, Xu X, Zhu H et al (2023) Selenium-enriched Cardamine violifolia protects against sepsis-induced intestinal injury by regulating mitochondrial fusion in weaned pigs. Sci China Life Sci 66(9):2099–2111. https://doi.org/10.1007/s11427-022-2274-7

    Article  CAS  PubMed  Google Scholar 

  11. Hostetler CE, Kincaid RL, Mirando MA (2003) The role of essential trace elements in embryonic and fetal development in livestock. Vet J 166(2):125–139. https://doi.org/10.1016/s1090-0233(02)00310-6

    Article  CAS  PubMed  Google Scholar 

  12. Daniel JB, Brugger D, van der Drift S, van der Merwe D, Kendall N, Windisch W et al (2023) Zinc, copper, and manganese homeostasis and potential trace metal accumulation in dairy cows: longitudinal study from late lactation to subsequent mid-lactation. J Nutr 153(4):1008–1018. https://doi.org/10.1016/j.tjnut.2023.02.022

    Article  CAS  PubMed  Google Scholar 

  13. Aplin JD, Myers JE, Timms K, Westwood M (2020) Tracking placental development in health and disease. Nat Rev Endocrinol 16(9):479–494. https://doi.org/10.1038/s41574-020-0372-6

    Article  CAS  PubMed  Google Scholar 

  14. Karkoodi K, Chamani M, Beheshti M, Mirghaffari SS, Azarfar A (2012) Effect of organic zinc, manganese, copper, and selenium chelates on colostrum production and reproductive and lameness indices in adequately supplemented Holstein cows. Biol Trace Elem Res 146(1):42–46. https://doi.org/10.1007/s12011-011-9216-5

    Article  CAS  PubMed  Google Scholar 

  15. Liu X, Adamo AM, Oteiza PI (2023) Marginal zinc deficiency during gestation and lactation in rats affects oligodendrogenesis, motor performance, and behavior in the offspring. J Nutr 153(10):2778–2796. https://doi.org/10.1016/j.tjnut.2023.08.029

    Article  CAS  PubMed  Google Scholar 

  16. NRC (2012) Nutrient requirements of swine, 12th edn. National Academies Press, Washington(DC)

    Google Scholar 

  17. Villagómez-Estrada S, Pérez JF, van Kuijk S et al (2021) Strategies of inorganic and organic trace mineral supplementation in gestating hyperprolific sow diets: effects on the offspring performance and fetal programming. J Anim Sci 99:7. https://doi.org/10.1093/jas/skab178

    Article  Google Scholar 

  18. Liu Z, Bryant MM, Roland DA (2005) Layer performance and phytase retention as influenced by copper sulfate pentahydrate and tribasic copper chloride. J Appl Poult Res 14(3):499–505. https://doi.org/10.1093/japr/14.3.499

    Article  CAS  Google Scholar 

  19. Luo XG, Ji F, Lin YX, Steward FA, Lu L, Liu B, Yu SX (2005) Effects of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and oxidation stability of vitamin E in feed. Poult Sci 84(6):888–893. https://doi.org/10.1093/ps/84.6.888

    Article  CAS  PubMed  Google Scholar 

  20. Shaeffer GL, Lloyd KE, Spears JW (2017) Bioavailability of zinc hydroxychloride relative to zinc sulfate in growing cattle fed a corn-cottonseed hull-based diet. Anim Feed Sci Technol 232:1–5. https://doi.org/10.1016/j.anifeedsci.2017.07.013

    Article  CAS  Google Scholar 

  21. Zhang B, Guo Y (2007) Beneficial effects of tetrabasic zinc chloride for weanling piglets and the bioavailability of zinc in tetrabasic form relative to ZnO. Anim Feed Sci Technol 135(1–2):75–85. https://doi.org/10.1016/j.anifeedsci.2006.06.006

    Article  CAS  Google Scholar 

  22. Guo YM, Ai HS, Ren J, Wang GJ, Wen Y, Mao HR et al (2009) A whole genome scan for quantitative trait loci for leg weakness and its related traits in a large F intercross population between White Duroc and Erhualian. J Anim Sci 87(5):1569–1575. https://doi.org/10.2527/jas.2008-1191

    Article  CAS  PubMed  Google Scholar 

  23. Herve L, Quesnel H, Greuter A, Hugonin L, Merlot E, Le Floc'h N (2023) Effect of the supplementation with a combination of plant extracts on sow and piglet performance and physiology during lactation and around weaning. J Anim Sci 101:skad282. https://doi.org/10.1093/jas/skad282

  24. Liu M, Zhang L, Mo Y, Li J, Yang J, Wang J et al (2023) Ferroptosis is involved in deoxynivalenol-induced intestinal damage in pigs. J Anim Sci Biotechnol 14:1. https://doi.org/10.1186/s40104-023-00841-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deng J, Yang JC, Feng Y, Xu Z, Kuca K, Liu M, Sun LH (2024) AP-1 and SP1 trans-activated the expression of CYP1A1 and CYP2A6 in the bioactivation of AFB1 in chicken. Sci China Life Sci. https://doi.org/10.1007/s11427-023-2512-6

    Article  PubMed  Google Scholar 

  26. Deng ZC, Wang J, Wang J, Yan YQ, Huang YX, Chen CQ, Sun LH, Liu M (2024) Tannic acid extracted from gallnut improves intestinal health with regulation of redox homeostasis and gut microbiota of weaned piglets. Anim Res One Health 2(1):16–27. https://doi.org/10.1002/aro2.51

    Article  Google Scholar 

  27. Yang JC, Huang YX, Sun H, Liu M, Zhao L, Sun LH (2023) Selenium deficiency dysregulates one-carbon metabolism in nutritional muscular dystrophy of chicks. J Nutr 153(1):47–55. https://doi.org/10.1016/j.tjnut.2022.12.001

    Article  CAS  PubMed  Google Scholar 

  28. Deng ZC, Yang JC, Huang YX, Zhao L, Zheng J, Xu QB, Guan L, Sun LH (2023) Translocation of gut microbes to epididymal white adipose tissue drives lipid metabolism disorder under heat stress. Sci China Life Sci 66(12):2877–2895. https://doi.org/10.1007/s11427-022-2320-y

    Article  CAS  PubMed  Google Scholar 

  29. Yan YQ, Liu M, Xu ZJ, Xu ZJ, Huang YX, Li XM, Chen CJ, Zuo G, Yang JC, Lei XG, Sun LH (2024) Optimum doses and forms of selenium maintaining reproductive health via regulating homeostasis of gut microbiota and testicular redox, inflammation, cell proliferation, and apoptosis in roosters. J Nutr 154(2):369–380. https://doi.org/10.1016/j.tjnut.2023.12.021

    Article  CAS  PubMed  Google Scholar 

  30. Acda SP, Chae J (2002) Effects of organic trace mineral supplementation on sows’ reproductive and neonates’ growth performance through 2 wk postweaning. Asian-Aust J Animal Sci 15(9):1312–1318. https://doi.org/10.5713/ajas.2002.1312

    Article  CAS  Google Scholar 

  31. Ma L, He J, Lu X, Qiu J, Hou C, Liu B, Lin G, Yu D (2020) Effects of low-dose organic trace minerals on performance, mineral status, and fecal mineral excretion of sows. Asian-Australas J Anim Sci 33(1):132–138. https://doi.org/10.5713/ajas.18.0861

    Article  CAS  PubMed  Google Scholar 

  32. Wang S, Wu S, Zhang Y, Chen J, Zhou X (2022) Effects of different levels of organic trace minerals on oxidative status and intestinal function in weanling piglets. Biol Trace Elem Res 201(2):720–727. https://doi.org/10.1007/s12011-022-03174-x

    Article  CAS  PubMed  Google Scholar 

  33. Wan D, Yin Y (2023) Trace elements in nutrition and health: a deep dive into essentiality and mechanism of their biological roles. Sci China Life Sci 66(9):1949–1951. https://doi.org/10.1007/s11427-023-2426-3

    Article  PubMed  Google Scholar 

  34. Byrne L, Murphy RA (2022) Relative bioavailability of trace minerals in production animal nutrition: a review. Animals 12:15. https://doi.org/10.3390/ani12151981

    Article  Google Scholar 

  35. Xu ZJ, Liu M, Niu QJ, Huang YX, Zhao L, Lei XG et al (2023) Both selenium deficiency and excess impair male reproductive system via inducing oxidative stress-activated PI3K/AKT-mediated apoptosis and cell proliferation signaling in testis of mice. Free Radic Biol Med 197:15–22. https://doi.org/10.1016/j.freeradbiomed.2023.01.024

    Article  CAS  PubMed  Google Scholar 

  36. Li J, Fu C, Feng B, Liu Q, Gu J, Khan MN et al (2024) Polyacrylic acid-coated selenium-doped carbon dots inhibit ferroptosis to alleviate chemotherapy-associated acute kidney injury. Adv Sci (Weinh) e2400527. https://doi.org/10.1002/advs.202400527

  37. Gustin K, Vahter M, Barman M, Jacobsson B, Skröder H, FilipssonNyström H et al (2022) Assessment of joint impact of iodine, selenium, and zinc status on women’s third-trimester plasma thyroid hormone concentrations. J Nutr 152(7):1737–1746. https://doi.org/10.1093/jn/nxac081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao L, Liu M, Sun H, Yang JC, Huang YX, Huang JQ, Lei X (2023) Sun LH (2023) Selenium deficiency-induced multiple tissue damage with dysregulation of immune and redox homeostasis in broiler chicks under heat stress. Sci China Life Sci 66(9):2056–2069. https://doi.org/10.1007/s11427-022-2226-1

    Article  CAS  PubMed  Google Scholar 

  39. Bielik V, Kolisek M (2021) Bioaccessibility and bioavailability of minerals in relation to a healthy gut microbiome. Int J Mol Sci 22(13):6803. https://doi.org/10.3390/ijms22136803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yin J, Ren W, Liu G, Duan J, Yang G, Wu L et al (2013) Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radic Res 47(12):1027–1035. https://doi.org/10.3109/10715762.2013.848277

    Article  CAS  PubMed  Google Scholar 

  41. Sunde RA (2021) Gene set enrichment analysis of selenium-deficient and high-selenium rat liver transcript expression and comparison with turkey liver expression. J Nutr 151(4):772–784. https://doi.org/10.1093/jn/nxaa333

    Article  CAS  PubMed  Google Scholar 

  42. Zhao L, Sun LH, Huang JQ, Briens M, Qi DS, Xu SW, Lei XG (2017) A novel organic selenium compound exerts unique regulation of selenium speciation, selenogenome, and selenoproteins in broiler chicks. J Nutr 147(5):789–797. https://doi.org/10.3945/jn.116.247338

    Article  CAS  PubMed  Google Scholar 

  43. Zhao L, Chu XH, Liu S, Li R, Zhu YF, Li FN et al (2022) Selenium-enriched Cardamine violifolia increases selenium and decreases cholesterol concentrations in liver and pectoral muscle of broilers. J Nutr 152(9):2072–2079. https://doi.org/10.1093/jn/nxac141

    Article  CAS  PubMed  Google Scholar 

  44. Mou DL, Ding DJ, Li S, Yan H, Qin BT, Li Z et al (2020) Effect of maternal organic selenium supplementation during pregnancy on sow reproductive performance and long-term effect on their progeny. J Anim Sci 98:12. https://doi.org/10.1093/jas/skaa366

    Article  Google Scholar 

  45. Yin LM, Zhang YT, Li J, Zhou J, Wang QY, Huang J et al (2023) Mechanism of iron on the intestinal epithelium development in suckling piglets. Sci China Life Sci 66(9):2070–2085. https://doi.org/10.1007/s11427-022-2307-7

    Article  CAS  PubMed  Google Scholar 

  46. Mor G, Aldo P, Alvero AB (2017) The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol 17(8):469–482. https://doi.org/10.1038/nri.2017.64

    Article  CAS  PubMed  Google Scholar 

  47. ** SS, He LQ, Yang CB, He XM, Chen HS, Feng YZ et al (2023) Crosstalk between trace elements and T-cell immunity during early-life health in pigs. Sci China Life Sci 66(9):1994–2005. https://doi.org/10.1007/s11427-022-2339-0

    Article  PubMed  Google Scholar 

  48. Saraiva M, Vieira P (2020) O’Garra A (2020) Biology and therapeutic potential of interleukin-10. J Exp Med 217:1. https://doi.org/10.1084/jem.20190418

    Article  CAS  Google Scholar 

  49. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP (2011) Fahmi H (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7(1):33–42. https://doi.org/10.1038/nrrheum.2010.196

    Article  CAS  PubMed  Google Scholar 

  50. Liu C, Chu DW, Kalantar-Zadeh K, George J, Young HA, Liu GZ (2021) Cytokines: from clinical significance to quantification. Adv Sci 8:15. https://doi.org/10.1002/advs.202004433

    Article  CAS  Google Scholar 

  51. Cai S, Zhu JL, Zeng XZ, Ye QH, Ye CC, Mao XB, Zhang SH, Qiao SY, Zeng XF (2018) Maternal-carbamylglutamate supply during early pregnancy enhanced pregnancy outcomes in sows through modulations of targeted genes and metabolism pathways. J Agric Food Chem 66(23):5845–5852. https://doi.org/10.1021/acs.jafc.8b01637

    Article  CAS  PubMed  Google Scholar 

  52. Huus KE, Bauer KC, Brown EM, Bozorgmehr T, Woodward SE, Serapio-Palacios A, Boutin RCT, Petersen C, Finlay BB (2020) Commensal bacteria modulate immunoglobulin a binding in response to host nutrition. Cell Host Microbe 27(6):909-921.e905. https://doi.org/10.1016/j.chom.2020.03.012

    Article  CAS  PubMed  Google Scholar 

  53. Li X, **ong X, Wu X, Liu G, Zhou K, Yin YL (2020) Effects of stocking density on growth performance, blood parameters and immunity of growing pigs. Anim Nutr 6(4):529–534. https://doi.org/10.1016/j.aninu.2020.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhao K, Yin H, Yan H, Tang W, Diao H, Wang Q, Qi R, Liu J (2023) Dietary supplementation of Lactobacillus johnsonii RS-7 improved antioxidant and immune function of weaned piglets. Animals 13:10. https://doi.org/10.3390/ani13101595

    Article  Google Scholar 

  55. Zhao K, Yin H, Yan H, Tang W, Diao H, Wang Q, Qi R, Liu J (2024) From probiotics to postbiotics: concepts and applications. Anim Res One Health 1(1):92–114. https://doi.org/10.1002/aro2.7

    Article  Google Scholar 

  56. Cao KX, Deng ZC, Liu M, Huang YX, Yang JC, Sun LH (2023) Heat stress impairs male reproductive system with potential disruption of retinol metabolism and microbial balance in the testis of mice. J Nutr 153(12):3373–3381. https://doi.org/10.1016/j.tjnut.2023.10.017

    Article  CAS  PubMed  Google Scholar 

  57. Francis EC, Dabelea D, Boyle KE, Jansson T, Perng W (2022) Maternal diet quality is associated with placental proteins in the placental insulin/growth factor, environmental stress, inflammation, and mtor signaling pathways: the Healthy Start ECHO Cohort. J Nutr 152(3):816–825. https://doi.org/10.1093/jn/nxab403

    Article  CAS  PubMed  Google Scholar 

  58. Sun H, Zhao L, Xu ZJ, De Marco M, Briens M, Yan XH, Sun LH (2021) Hydroxy-selenomethionine improves the selenium status and helps to maintain broiler performances under a high stocking density and heat stress conditions through a better redox and immune response. Antioxidants 10(10):1542. https://doi.org/10.1186/s40104-021-00603-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported in part by the Key R&D Program of Shandong Province, China (2023TZXD038), the Fundamental Research Funds for the Central Universities (Project 2662023DKPY002), and a research gift from Trouw Nutrition.

Author information

Authors and Affiliations

Authors

Contributions

Shao-Qing Wang, Hua Sun, and Zhe Peng: animal trials, investigation, methodology, and data analysis; Yan-Ming Han, Bo Zhang, Lane Pineda, Gavin Boerboom, and Ying Liu: writing—review and editing, funding acquisition; Lv-Hui Sun, Zhang-Chao Deng, and Ying Liu: supervision, writing—original draft, visualization, writing—review and editing, and project administration. All authors have read and agreed to the published version of the final manuscript.

Corresponding authors

Correspondence to Lv-hui Sun, Ying Liu or Zhang-Chao Deng.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SQ., Peng, Z., Sun, H. et al. Evaluating the Impact of an Organic Trace Mineral mix on the Redox Homeostasis, Immunity, and Performance of Sows and their Offspring. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04300-7

Keywords

Navigation