Log in

Crosstalk between trace elements and T-cell immunity during early-life health in pigs

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

With gradual ban on the use of antibiotics, the deficiency and excessive use of trace elements in intestinal health is gaining attention. In mammals, trace elements are essential for the development of the immune system, specifically T-cell proliferation, and differentiation. However, there remain significant gaps in our understanding of the effects of certain trace elements on T-cell immune phenotypes and functions in pigs. In this review, we summarize the specificity, development, subpopulations, and responses to pathogens of porcine T cells and the effects of functional trace elements (e.g., iron, copper, zinc, and selenium) on intestinal T-cell immunity during early-life health in pigs. Furthermore, we discuss the current trends of research on the crosstalk mechanisms between trace elements and T-cell immunity. The present review expands our knowledge of the association between trace elements and T-cell immunity and provides an opportunity to utilize the metabolism of trace elements as a target to treat various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alhusaini, A., Hasan, I.H., Aldowsari, N., and Alsaadan, N. (2018). Prophylactic administration of nanocurcumin abates the incidence of liver toxicity induced by an overdose of copper sulfate: role of CYP4502E1, NF-κB and Bax expressions. Dose Response 16, 155932581881628.

    Article  Google Scholar 

  • Andreini, C., Banci, L., Bertini, I., and Rosato, A. (2006). Counting the zinc-proteins encoded in the human genome. J Proteome Res 5, 196–201.

    Article  CAS  PubMed  Google Scholar 

  • Andreini, C., Banci, L., Bertini, I., and Rosato, A. (2008a). Occurrence of copper proteins through the three domains of life: a bioinformatic approach. J Proteome Res 7, 209–216.

    Article  CAS  PubMed  Google Scholar 

  • Andreini, C., Bertini, I., Cavallaro, G., Holliday, G.L., and Thornton, J.M. (2008b). Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13, 1205–1218.

    Article  CAS  PubMed  Google Scholar 

  • Appleyard, G.D., Furesz, S.E., and Wilkie, B.N. (2002). Blood lymphocyte subsets in pigs vaccinated and challenged with Actinobacillus pleuropneumoniae. Vet Immunol Immunopathol 86, 221–228.

    Article  CAS  PubMed  Google Scholar 

  • Asikainen, T.M., Heikkilä, P., Kaarteenaho-Wiik, R., Kinnula, V.L., and Raivio, K.O. (2001). Cell-specific expression of manganese superoxide dismutase protein in the lungs of patients with respiratory distress syndrome, chronic lung disease, or persistent pulmonary hypertension. Pediatr Pulmonol 32, 193–200.

    Article  CAS  PubMed  Google Scholar 

  • Bach, J.F., Dardenne, M., Pleau, J.M., and Rosa, J. (1977). Biochemical characterisation of a serum thymic factor. Nature 266, 55–57.

    Article  CAS  PubMed  Google Scholar 

  • Bassaganya-Riera, J., Thacker, B.J., Yu, S., Strait, E., Wannemuehler, M.J., and Thacker, E.L. (2004). Impact of immunizations with porcine reproductive and respiratory syndrome virus on lymphoproliferative recall responses of CD8+ T cells. Viral Immunol 17, 25–37.

    Article  CAS  PubMed  Google Scholar 

  • Batista, A., Millan, J., Mittelbrunn, M., Sanchez-Madrid, F., and Alonso, M.A. (2004). Recruitment of transferrin receptor to immunological synapse in response to TCR engagement. J Immunol 172, 6709–6714.

    Article  CAS  PubMed  Google Scholar 

  • Beck, F.W., Prasad, A.S., Kaplan, J., Fitzgerald, J.T., and Brewer, G.J. (1997). Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans. Am J Physiol Endocrinol Metab 272, E1002–E1007.

    Article  CAS  Google Scholar 

  • Berndt, A., and Müller, G. (1995). Occurrence of T lymphocytes in perivascular regions of the lung after intratracheal infection of swine with Pasteurella multocida. Vet Immunol Immunopathol 49, 143–159.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi, A.T.J., Zwart, R.J., Jeurissen, S.H.M., and Moonen-Leusen, H.W.M. (1992). Development of the B- and T-cell compartments in porcine lymphoid organs from birth to adult life: an immunohistological approach. Vet Immunol Immunopathol 33, 201–221.

    Article  CAS  PubMed  Google Scholar 

  • Binns, R.M., Duncan, I.A., Powis, S.J., Hutchings, A., and Butcher, G.W. (1992). Subsets of null and gamma delta T-cell receptor+ T lymphocytes in the blood of young pigs identified by specific monoclonal antibodies. Immunology 77, 219.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binns, R.M., and Pabst, R. (1994). Lymphoid tissue structure and lymphocyte trafficking in the pig. Vet Immunol Immunopathol 43, 79–87.

    Article  CAS  PubMed  Google Scholar 

  • Blecha, F., Pollman, D.S., and Nichols, D.A. (1983). Weaning pigs at an early age decreases cellular immunity. J Anim Sci 56, 396–400.

    Article  CAS  PubMed  Google Scholar 

  • Bonaventura, P., Benedetti, G., Albarède, F., and Miossec, P. (2015). Zinc and its role in immunity and inflammation. Autoimmun Rev 14, 277–285.

    Article  CAS  PubMed  Google Scholar 

  • Broom, L.J., Monteiro, A., and Piñon, A. (2021). Recent advances in understanding the influence of zinc, copper, and manganese on the gastrointestinal environment of pigs and poultry. Animals 11, 1276.

    Article  PubMed  PubMed Central  Google Scholar 

  • Campana, D. (1989). The developmental stages of the human T cell receptors: a review. Thymus 13, 3–18.

    CAS  PubMed  Google Scholar 

  • Cao, S., Hou, L., Sun, L., Gao, J., Gao, K., Yang, X., Jiang, Z., and Wang, L. (2022). Intestinal morphology and immune profiles are altered in piglets by early-weaning. Int Immunopharmacol 105, 108520.

    Article  CAS  PubMed  Google Scholar 

  • Chai, W., Zakrzewski, S.S., Günzel, D., Pieper, R., Wang, Z., Twardziok, S., Janczyk, P., Osterrieder, N., and Burwinkel, M. (2014). High-dose dietary zinc oxide mitigates infection with transmissible gastroenteritis virus in piglets. BMC Vet Res 10, 75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang, W.P., Hom, J.S.H., Dietert, R.R., Combs, G.F., and Marsh, J.A. (1994). Effect of dietary vitamin E and selenium deficiency on chicken splenocyte proliferan and cell surface marker expresssion. Immunopharmacol Immunotoxicol 16, 203–223.

    Article  CAS  PubMed  Google Scholar 

  • Charerntantanakul, W., and Roth, J.A. (2006). Biology of porcine T lymphocytes. Anim Health Res Rev 7, 81–96.

    Article  PubMed  Google Scholar 

  • Chen, H., Du, G., Yan, X., Ye, H., Guo, Q., Wang, Z., Yuan, Y., and Yue, T. (2022). Selenium-enriched Pediococcus acidilactici MRS-7 alleviates patulin-induced jejunum injuries in mice and its possible mechanisms. J Agric Food Chem 70, 4755–4764.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., Li, L., Brod, T., Saeed, O., Thabet, S., Jansen, T., Dikalov, S., Weyand, C., Goronzy, J., and Harrison, D.G. (2011). Role of increased guanosine triphosphate cyclohydrolase-1 expression and tetrahydrobiopterin levels upon T cell activation. J Biol Chem 286, 13846–13851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronin, S.J.F., and Penninger, J.M. (2007). From T-cell activation signals to signaling control of anti-cancer immunity. Immunol Rev 220, 151–168.

    Article  CAS  PubMed  Google Scholar 

  • Cronin, S.J.F., Seehus, C., Weidinger, A., Talbot, S., Reissig, S., Seifert, M., Pierson, Y., McNeill, E., Longhi, M.S., Turnes, B.L., et al. (2018). The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature 563, 564–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dölen, Y., Valente, M., Tagit, O., Jäger, E., Van Dinther, E.A.W., van Riessen, N.K., Hruby, M., Gileadi, U., Cerundolo, V., and Figdor, C.G. (2020). Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. Oncoimmunology 9, 1738813.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrara, F., Tedin, L., Pieper, R., Meyer, W., and Zentek, J. (2017). Influence of medium-chain fatty acids and short-chain organic acids on jejunal morphology and intra-epithelial immune cells in weaned piglets. J Anim Physiol Anim Nutr 101, 531–540.

    Article  CAS  Google Scholar 

  • Fraker, P.J., and Telford, W.G. (1997). A reappraisal of the role of zinc in life and death decisions of cells. Exp Biol Med 215, 229–236.

    Article  CAS  Google Scholar 

  • Fukamachi, Y., Karasaki, Y., Sugiura, T., Itoh, H., Abe, T., Yamamura, K., and Higashi, K. (1998). Zinc suppresses apoptosis of U937 cells induced by hydrogen peroxide through an increase of the Bcl-2/Bax ratio. Biochem Biophys Res Commun 246, 364–369.

    Article  CAS  PubMed  Google Scholar 

  • Gao, J., Yang, Z., Zhao, C., Tang, X., Jiang, Q., and Yin, Y. (2022). A comprehensive review on natural phenolic compounds as alternatives to in-feed antibiotics. Sci China Life Sci doi: https://doi.org/10.1007/s11427-022-2246-4.

  • Getz, G.S., and Reardon, C.A. (2017). Natural killer T cells in atherosclerosis. Nat Rev Cardiol 14, 304–314.

    Article  CAS  PubMed  Google Scholar 

  • Godfrey, D.I., Le Nours, J., Andrews, D.M., Uldrich, A.P., and Rossjohn, J. (2018). Unconventional T cell targets for cancer immunotherapy. Immunity 48, 453–473.

    Article  CAS  PubMed  Google Scholar 

  • Gombart, A.F., Pierre, A., and Maggini, S. (2020). A review of micro-nutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients 12, 236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haase, H., and Rink, L. (2014). Multiple impacts of zinc on immune function. Metallomics 6, 1175–1180.

    Article  CAS  PubMed  Google Scholar 

  • Hammerberg, C., and Schurig, G.G. (1986). Characterization of monoclonal antibodies directed against swine leukocytes. Vet Immunol Immunopathol 11, 107–121.

    Article  CAS  PubMed  Google Scholar 

  • Harvey, L.J., Majsak-Newman, G., Dainty, J.R., Lewis, D.J., Langford, N. J., Crews, H.M., and Fairweather-Tait, S.J. (2003). Adaptive responses in men fed low- and high-copper diets. Br J Nutr 90, 161–168.

    Article  CAS  PubMed  Google Scholar 

  • Hatfield, D.L., Tsuji, P.A., Carlson, B.A., and Gladyshev, V.N. (2014). Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39, 112–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Y.W., Huang, L., Zhou, X.H., Yin, Y.L., and He, L.Q. (2023). Role of selenium and selenoprotein in gut health (in Chinese). Sci Sin Vitae (In press).

  • Helke, K.L., Ezell, P.C., Duran-Struuck, R., and Swindle, M.M. (2015). Biology and diseases of swine. In: Fox, J.G., Anderson, L.C., Otto, G. M., Pritchett-Corning, K.R., and Whary, M.T., eds. Laboratory Animal Medicine (Third Edition). Boston: Academic Press. 695–769.

    Chapter  Google Scholar 

  • Herpin, P., Hulin, J.C., Le Dividich, J., and Fillaut, M. (2001). Effect of oxygen inhalation at birth on the reduction of early postnatal mortality in pigs. J Anim Sci 79, 5–10.

    Article  CAS  PubMed  Google Scholar 

  • Hill, G.M., and Shannon, M.C. (2019). Copper and zinc nutritional issues for agricultural animal production. Biol Trace Elem Res 188, 148–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann, F.K.W., Hashimoto, A.C., Shafer, L.A., Dow, S., Berry, M.J., and Hoffmann, P.R. (2010). Dietary selenium modulates activation and differentiation of CD4+ T cells in mice through a mechanism involving cellular free thiols. J Nutr 140, 1155–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann, P.R. (2007). Mechanisms by which selenium influences immune responses. Arch Immunol Ther Exp 55, 289–297.

    Article  CAS  Google Scholar 

  • Honscheid, A., Rink, L., and Haase, H. (2009). T-lymphocytes: a target for stimulatory and inhibitory effects of zinc Ions. Endocr Metab Immune Disord Drug Target 9, 132–144.

    Article  Google Scholar 

  • Hontecillas, R., Bassaganya-Riera, J., Wilson, J., Hutto, D.L., and Wannemuehler, M.J. (2005). CD4+ T-cell responses and distribution at the colonic mucosa during Brachyspira hyodysenteriae-induced colitis in pigs. Immunology 115, 127–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins, R.G., and Failla, M.L. (1999). Transcriptional regulation of interleukin-2 gene expression is impaired by copper deficiency in Jurkat human T lymphocytes. J Nutr 129, 596–601.

    Article  CAS  PubMed  Google Scholar 

  • Hosea, H.J., Rector, E.S., and Taylor, C.G. (2004). Dietary repletion can replenish reduced T cell subset numbers and lymphoid organ weight in zinc-deficient and energy-restricted rats. Br J Nutr 91, 741–747.

    Article  CAS  PubMed  Google Scholar 

  • Humann-Ziehank, E., Menzel, A., Roehrig, P., Schwert, B., Ganter, M., and Hennig-Pauka, I. (2014). Acute and subacute response of iron, zinc, copper and selenium in pigs experimentally infected with Actinobacillus pleuropneumoniae. Metallomics 6, 1869–1879.

    Article  CAS  PubMed  Google Scholar 

  • Jarosz, M., Olbert, M., Wyszogrodzka, G., Miyniec, K., and Librowski, T. (2017). Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 25, 11–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, X., and Wang, J. (2020). Knockdown of TFAM in Tumor cells retarded autophagic flux through regulating p53 acetylation and PISD expression. Cancers 12, 493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **, Q., Yang, X., Gou, S., Liu, X., Zhuang, Z., Liang, Y., Shi, H., Huang, J., Wu, H., Zhao, Y., et al. (2022). Double knock-in pig models with elements of binary Tet-On and phiC31 integrase systems for controllable and switchable gene expression. Sci China Life Sci 65, 2269–2286.

    Article  CAS  PubMed  Google Scholar 

  • Kalita, A., Talukdar, M., Sarma, K., Kalita, P.C., Roychoudhury, P., Kalita, G., Choudhary, O.P., Chaudhary, J.K., Doley, P.J., and Debroy, S. (2021). Small intestinal mucosal cells in piglets fed with probiotic and zinc: a qualitative and quantitative microanatomical study. Folia Morphol 80, 605–617.

    Article  CAS  Google Scholar 

  • Kelley, D.S., Daudu, P.A., Taylor, P.C., Mackey, B.E., and Turnlund, J.R. (1995). Effects of low-copper diets on human immune response. Am J Clin Nutr 62, 412–416.

    Article  CAS  PubMed  Google Scholar 

  • King, L.E., Osati-Ashtiani, F., and Fraker, P.J. (2002). Apoptosis plays a distinct role in the loss of precursor lymphocytes during zinc deficiency in mice. J Nutr 132, 974–979.

    Article  CAS  PubMed  Google Scholar 

  • Kiremidjian-Schumacher, L., Roy, M., Wishe, H.I., Cohen, M.W., and Stotzky, G. (1994). Supplementation with selenium and human immune cell functions. Biol Trace Elem Res 41, 115–127.

    Article  CAS  PubMed  Google Scholar 

  • Kloubert, V., Blaabjerg, K., Dalgaard, T.S., Poulsen, H.D., Rink, L., and Wessels, I. (2018). Influence of zinc supplementation on immune parameters in weaned pigs. J Trace Elem Med Biol 49, 231–240.

    Article  CAS  PubMed  Google Scholar 

  • Koski, K.G., and Scott, M.E. (2003). Gastrointestinal nematodes, trace elements, and immunity. J Trace Elem Exp Med 16, 237–251.

    Article  CAS  Google Scholar 

  • Kramer, J.L., Baltathakis, I., Alcantara, O.S.F., and Boldt, D.H. (2002). Differentiation of functional dendritic cells and macrophages from human peripheral blood monocyte precursors is dependent on expression of p21 (WAF1/CIP1) and requires iron. Br J Haematol 117, 727–734.

    Article  CAS  PubMed  Google Scholar 

  • Kuvibidila, S.R., Kitchens, D., and Baliga, B.S. (1999). In vivo and in vitro iron deficiency reduces protein kinase C activity and translocation in murine splenic and purified T cells. J Cell Biochem 74, 468–478.

    Article  CAS  PubMed  Google Scholar 

  • Lacorazza, H.D., Porritt, H.E., and Nikolich-Zugich, J. (2001). Dysregulated expression of pre-Ta reveals the opposite effects of pre-TCR at successive stages of T cell development. J Immunol 167, 5689–5696.

    Article  CAS  PubMed  Google Scholar 

  • Leach, R.M. Jr., and Muenster, A.M. (1962). Studies on the role of manganese in bone formation: I. Effect upon the mucopolysaccharide content of chick bone. J Nutr 78, 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Lee, I.K., Kye, Y.C., Kim, G., Kim, H.W., Gu, M.J., Umboh, J., Maaruf, K., Kim, S.W., and Yun, C.H. (2016). Stress, nutrition, and intestinal immune responses in pigs—a review. Asian Australas J Anim Sci 29, 1075–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S.H., Shinde, P., Choi, J., Park, M., Ohh, S., Kwon, I.K., Pak, S.I., and Chae, B.J. (2008). Effects of dietary iron levels on growth performance, hematological status, liver mineral concentration, fecal microflora, and diarrhea incidence in weanling pigs. Biol Trace Elem Res 126, 57–68.

    Article  Google Scholar 

  • Li, J., Zhong, Y., Li, H., Zhang, N., Ma, W., Cheng, G., Liu, F., Liu, F., and Xu, J. (2011). Enhancement of Astragalus polysaccharide on the immune responses in pigs inoculated with foot-and-mouth disease virus vaccine. Int J Biol Macromol 49, 362–368.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Sun, W., Zhang, K., Zhu, J., Jia, X., Guo, X., Zhao, Q., Tang, C., Yin, J., and Zhang, J. (2021). Selenium deficiency induces spleen pathological changes in pigs by decreasing selenoprotein expression, evoking oxidative stress, and activating inflammation and apoptosis. J Anim Sci Biotechnol 12, 65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Licence, S.T., and Binns, R.M. (1995). Major long-term changes in gamma delta T-cell receptor-positive and CD2+ T-cell subsets after neonatal thymectomy in the pig: a longitudinal study lasting nearly 2 years. Immunology 85, 276.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linder, M.C., and Hazegh-Azam, M. (1996). Copper biochemistry and molecular biology. Am J Clin Nutr 63, 797S–811S.

    CAS  PubMed  Google Scholar 

  • Liu, L., Chen, D., Yu, B., Luo, Y., Huang, Z., Zheng, P., Mao, X., Yu, J., Luo, J., and Yan, H. (2021). Influences of selenium-enriched yeast on growth performance, immune function, and antioxidant capacity in weaned pigs exposure to oxidative stress. Biomed Res Int 2021, 1–11.

    Google Scholar 

  • Liu, Y.H., Long, J., He, L.Q., Li, T.J., He, X.G., Ouyang, L., Li, J.Z., and Yin, Y.L. (2020a). Advances in research on the effects of aquaporins on animal health (in Chinese). Sci Sin Vitae 50, 427–437.

    Article  Google Scholar 

  • Liu, Y.H., Zhou, X.H., He, L.Q., Yin, Y.L., and Li, F.N. (2020b). Recent advances in the effects and mechanism of selenium on the quality of domestic animal products (in Chinese). Sci Sin Vitae 50, 25–32.

    Article  Google Scholar 

  • López-Gálvez, G., López-Alonso, M., Pechova, A., Mayo, B., Dierick, N., and Gropp, J. (2021). Alternatives to antibiotics and trace elements (copper and zinc) to improve gut health and zootechnical parameters in piglets: a review. Anim Feed Sci Tech 271, 114727.

    Article  Google Scholar 

  • Macchia, I., Gauduin, M.C., Kaur, A., and Johnson, R.P. (2006). Expression of CD8α identifies a distinct subset of effector memory CD4+ T lymphocytes. Immunology 119, 232–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macián, F., López-Rodríguez, C., and Rao, A. (2001). Partners in transcription: NFAT and AP-1. Oncogene 20, 2476–2489.

    Article  PubMed  Google Scholar 

  • Maggini, S., Wintergerst, E.S., Beveridge, S., and Hornig, D.H. (2007). Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr 98, S29–S35.

    Article  CAS  PubMed  Google Scholar 

  • Manna, P., Ghosh, M., Ghosh, J., Das, J., and Sil, P.C. (2012). Contribution of nano-copper particles to in vivo liver dysfunction and cellular damage: role of IκBα/NF–κB, MAPKs and mitochondrial signal. Nanotoxicology 6, 1–21.

    Article  CAS  PubMed  Google Scholar 

  • Maret, W. (2006). Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid Redox Signal 8, 1419–1441.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, L.S., Uciechowski, P., Meyer, S., Schwerdtle, T., Rink, L., and Haase, H. (2014). Differential impact of zinc deficiency on phagocytosis, oxidative burst, and production of pro–inflammatory cytokines by human monocytes. Metallomics 6, 1288–1295.

    Article  CAS  PubMed  Google Scholar 

  • Mehri, A., and Marjan, F. (2013). Trace elements in human nutrition: a review. J Med Invest 2, 115–128.

    Google Scholar 

  • Mertz, W. (1981). The essential trace elements. Science 213, 1332–1338.

    Article  CAS  PubMed  Google Scholar 

  • Mocchegiani, E., and Muzzioli, M. (2000). Therapeutic application of zinc in human immunodeficiency virus against opportunistic infections. J Nutr 130, 1424S–1431S.

    Article  CAS  PubMed  Google Scholar 

  • Myers, M.J., Farrell, D.E., Evock–Clover, C.M., Cope, C.V., Henderson, M., and Steele, N.C. (1995). Effect of recombinant growth hormone and chromium picolinate on cytokine production and growth performance in swine. Pathobiology 63, 283–287.

    Article  CAS  PubMed  Google Scholar 

  • Ned, R.M., Swat, W., and Andrews, N.C. (2003). Transferrin receptor 1 is differentially required in lymphocyte development. Blood 102, 3711–3718.

    Article  CAS  PubMed  Google Scholar 

  • Ober, B.T., Summerfield, A., Mattlinger, C., Wiesmuller, K.H., Jung, G., Pfaff, E., Saalmuller, A., and Rziha, H.J. (1998). Vaccine–induced, pseudorabies virus–specific, extrathymic CD4+CD8+ memory T–helper cells in swine. J Virol 72, 4866–4873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh, H.J., Park, Y.J., Cho, J.H., Song, M.H., Gu, B.H., Yun, W., Lee, J.H., An, J.S., Kim, Y.J., Lee, J.S., et al. (2021). Changes in diarrhea score, nutrient digestibility, zinc utilization, intestinal immune profiles, and fecal microbiome in weaned piglets by different forms of zinc. Animals 11, 1356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oleske, J.M., Westphal, M.L., Shore, S., Gorden, D., Bogden, J.D., and Nahmias, A. (1979). Zinc therapy of depressed cellular immunity in acrodermatitis enteropathica. Its correction. Am J Dis Child 133, 915–918.

    Article  CAS  PubMed  Google Scholar 

  • Olin, M.R., Batista, L., **ao, Z., Dee, S.A., Murtaugh, M.P., Pijoan, C.C., and Molitor, T.W. (2005). γδS Lymphocyte response to porcine reproductive and respiratory syndrome virus. Viral Immunol 18, 490–499.

    Article  CAS  PubMed  Google Scholar 

  • Onizuka, N., Maede, Y., Ohsugi, T., and Namioka, S. (1987). Nonspecific cell–mediated cytotoxicity of peripheral blood lymphocytes derived from suckling piglets. Jpn J Vet Res 35, 41–48.

    CAS  PubMed  Google Scholar 

  • Pabst, R. (2020). The pig as a model for immunology research. Cell Tissue Res 380, 287–304.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palacios, E.H., and Weiss, A. (2004). Function of the Src–family kinases, Lck and Fyn, in T–cell development and activation. Oncogene 23, 7990–8000.

    Article  CAS  PubMed  Google Scholar 

  • Pan, Y.J., and Loo, G. (2000). Effect of copper deficiency on oxidative DNA damage in Jurkat T–lymphocytes. Free Radical Biol Med 28, 824–830.

    Article  CAS  Google Scholar 

  • Peña, M.M.O., Lee, J., and Thiele, D.J. (1999). A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 129, 1251–1260.

    Article  PubMed  Google Scholar 

  • Perry, D.K., Smyth, M.J., Stennicke, H.R., Salvesen, G.S., Duriez, P., Poirier, G.G., and Hannun, Y.A. (1997). Zinc is a potent inhibitor of the apoptotic protease, caspase–3: a novel target for zinc in the inhibition of apoptosis. J Biol Chem 272, 18530–18533.

    Article  CAS  PubMed  Google Scholar 

  • Pescovitz, M.D., Sakopoulos, A.G., Gaddy, J.A., Husmann, R.J., and Zuckermann, F.A. (1994). Porcine peripheral blood CD4+/CD8+ dual expressing T–cells. Vet Immunol Immunopathol 43, 53–62.

    Article  CAS  PubMed  Google Scholar 

  • Peterlik, M. (2012). Vitamin D insufficiency and chronic diseases: hype and reality. Food Funct 3, 784–794.

    Article  CAS  PubMed  Google Scholar 

  • Pluske, J.R., Turpin, D.L., and Kim, J.C. (2018). Gastrointestinal tract (gut) health in the young pig. anim Nutr 4, 187–196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pu, Y., Li, S., **ong, H., Zhang, X., Wang, Y., and Du, H. (2018). Iron promotes intestinal development in neonatal piglets. Nutrients 10, 726.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ran, C., Li, Y., Ma, X., **e, Y., **e, M., Zhang, Y., Zhou, W., Yang, Y., Zhang, Z., Zhou, L., et al. (2021). Interactions between commensal bacteria and viral infection: insights for viral disease control in farmed animals. Sci China Life Sci 64, 1437–1448.

    Article  PubMed  Google Scholar 

  • Ren, W., Yu, B., Yu, J., Zheng, P., Huang, Z., Luo, J., Mao, X., He, J., Yan, H., Wu, J., et al. (2022). Lower abundance of Bacteroides and metabolic dysfunction are highly associated with the post–weaning diarrhea in piglets. Sci China Life Sci 65, 2062–2075.

    Article  CAS  PubMed  Google Scholar 

  • Renukaradhya, G.J., Manickam, C., Khatri, M., Rauf, A., Li, X., Tsuji, M., Rajashekara, G., and Dwivedi, V. (2011). Functional invariant NKT cells in pig lungs regulate the airway hyperreactivity: a potential animal model. J Clin Immunol 31, 228–239.

    Article  CAS  PubMed  Google Scholar 

  • Rhouma, M., Fairbrother, J.M., Beaudry, F., and Letellier, A. (2017). Post weaning diarrhea in pigs: risk factors and non–colistin–based control strategies. Acta Vet Scand 59, 1–9.

    Article  Google Scholar 

  • Roepstorff, A., Mejer, H., Nejsum, P., and Thamsborg, S.M. (2011). Helminth parasites in pigs: new challenges in pig production and current research highlights. Vet Parasitol 180, 72–81.

    Article  CAS  PubMed  Google Scholar 

  • Roselli, M., Finamore, A., Garaguso, I., Britti, M.S., and Mengheri, E. (2003). Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 133, 4077–4082.

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz, E., Maywald, M., Hilgers, R.D., Brieger, A., Clarner, T., Kipp, M., Plümäkers, B., Meyer, S., Schwerdtle, T., and Rink, L. (2016). Induction of regulatory T cells in Th1–/Th17–driven experimental autoimmune encephalomyelitis by zinc administration. J Nutr Biochem 29, 116–123.

    Article  CAS  PubMed  Google Scholar 

  • Roy, M., Kiremidjian–Schumacher, L., Wishe, H.I., Cohen, M.W., and Stotzky, G. (1993). Selenium supplementation enhances the expression of interleukin 2 receptor subunits and internalization of interleukin 2. Exp Biol Med 202, 295–301.

    Article  CAS  Google Scholar 

  • Saalmüller, A., and Bryant, J. (1994). Characteristics of porcine T lymphocytes and T–cell lines. Vet Immunol Immunopathol 43, 45–52.

    Article  PubMed  Google Scholar 

  • Saalmüller, A., Hirt, W., and Reddehase, M.J. (1990). Porcine γ/δ T lymphocyte subsets differing in their propensity to home to lymphoid tissue. Eur J Immunol 20, 2343–2346.

    Article  PubMed  Google Scholar 

  • Saalmüller, A., Weiland, F., and Reddehase, M.J. (1991). Resting porcine T lymphocytes expressing class II major histocompatibility antigen. Immunobiology 183, 102–114.

    Article  PubMed  Google Scholar 

  • Saalmüller, A., Werner, T., and Fachinger, V. (2002). T-helper cells from naive to committed. Vet Immunol Immunopathol 87, 137–145.

    Article  PubMed  Google Scholar 

  • Salles, M.W.S., Perez-Casal, J., Willson, P., and Middleton, D.M. (2002). Changes in the leucocyte subpopulations of the palatine tonsillar crypt epithelium of pigs in response to Streptococcus suis type 2 infection. Vet Immunol Immunopathol 87, 51–63.

    Article  CAS  PubMed  Google Scholar 

  • Sarradell, J., Andrada, M., Ramírez, A.S., Fernández, A., Gómez-Villamandos, J.C., Jover, A., Lorenzo, H., Herráez, P., and Rodríguez, F. (2003). A morphologic and immunohistochemical study of the bronchus-associated lymphoid tissue of pigs naturally infected with Mycoplasma hyopneumoniae. Vet Pathol 40, 395–404.

    Article  CAS  PubMed  Google Scholar 

  • Schäfer, A., Hühr, J., Schwaiger, T., Dorhoi, A., Mettenleiter, T.C., Blome, S., Schröder, C., and Blohm, U. (2019). Porcine invariant natural killer T cells: functional profiling and dynamics in steady state and viral infections. Front Immunol 10, 1380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schäfer, A., Zani, L., Pikalo, J., Hühr, J., Sehl, J., Mettenleiter, T.C., Breithaupt, A., Blome, S., and Blohm, U. (2021). T-cell responses in domestic pigs and wild boar upon infection with the moderately virulent African swine fever virus strain ‘Estonia2014’. Transbound Emerg Dis 68, 2733–2749.

    Article  PubMed  Google Scholar 

  • Scharek, L., Guth, J., Reiter, K., Weyrauch, K.D., Taras, D., Schwerk, P., Schierack, P., Schmidt, M.F.G., Wieler, L.H., and Tedin, K. (2005). Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Vet Immunol Immunopathol 105, 151–161.

    Article  CAS  PubMed  Google Scholar 

  • Sinkora, J., Rehakova, Z., Sinkora, M., Cukrowska, B., and Tlaskalova-Hogenova, H. (2002). Early development ofimmune system in pigs. Vet Immunol Immunopathol 87, 301–306.

    Article  CAS  PubMed  Google Scholar 

  • Sinkora, M., and Butler, J.E. (2009). The ontogeny of the porcine immune system. Dev Comp Immunol 33, 273–283.

    Article  CAS  PubMed  Google Scholar 

  • Sinkora, M., Butler, J.E., Holtmeier, W., and Sinkorova, J. (2005). Lymphocyte development in fetal piglets: facts and surprises. Vet Immunol Immunopathol 108, 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Šinkora, M., Šinkora J., Rehakova, Z., and Butler, J.E. (2000). Early ontogeny of thymocytes in pigs: sequential colonization of the thymus by T cell progenitors. J Immunol 165, 1832–1839.

    Article  PubMed  Google Scholar 

  • Smith, J.C. (1987). Methods of trace element research. In: Walter, M., ed. Trace Elements in Human and Animal Nutrition (Fifth Edition). San Diego: Academic Press. 21–56.

    Chapter  Google Scholar 

  • Song, R., Wang, Y., Zheng, Q., Yao, J., Cao, C., Wang, Y., and Zhao, J. (2022). One-step base editing in multiple genes by direct embryo injection for pig trait improvement. Sci China Life Sci 65, 739–752.

    Article  CAS  PubMed  Google Scholar 

  • Stas, M.R., Koch, M., Stadler, M., Sawyer, S., Sassu, E.L., Mair, K.H., Saalmüller, A., Gerner, W., and Ladinig, A. (2020). NK and T Cell differentiation at the maternal-fetal interface in sows during late gestation. Front Immunol 11, 582065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova, K., and Sinkora, M. (2013). Porcine γδ T lymphocytes can be categorized into two functionally and developmentally distinct subsets according to expression of CD2 and level of TCR. J Immunol 190, 2111–2120.

    Article  CAS  PubMed  Google Scholar 

  • Summerfield, A., Rziha, H.J., and Saalmüller, A. (1996). Functional characterization of porcine CD4+CD8+ extrathymic T lymphocytes. Cell Immunol 168, 291–296.

    Article  CAS  PubMed  Google Scholar 

  • Sun, S.C. (2017). The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol 17, 545–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suthanthiran, M., Anderson, M.E., Sharma, V.K., and Meister, A. (1990). Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci USA 87, 3343–3347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, N., Suzuki, S., Millar, D.G., Unno, M., Hara, H., Calzascia, T., Yamasaki, S., Yokosuka, T., Chen, N.J., Elford, A.R., et al. (2006). A critical role for the innate immune signaling molecule IRAK-4 in T cell activation. Science 311, 1927–1932.

    Article  CAS  PubMed  Google Scholar 

  • Svoboda, M., Drabek, J., Krejci, J., Rehakova, Z., and Faldyna, M. (2004). Impairment of the peripheral lymphoid compartment in iron-deficient piglets. J Vet Med Ser B 51, 231–237.

    Article  CAS  Google Scholar 

  • Svoboda, M., Ficek, R., and Drábek, J. (2008). Efficacy of organic selenium from Se-enriched yeast on selenium transfer from sows to piglets. Acta Vet Brno 77, 515–521.

    Article  CAS  Google Scholar 

  • Tang, H., Xu, M., Shi, F., Ye, G., Lv, C., Luo, J., Zhao, L., and Li, Y. (2018). Effects and mechanism of nano-copper exposure on hepatic cytochrome P450 enzymes in rats. Int J Mol Sci 19, 2140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang, W., Wu, J., **, S., He, L., Lin, Q., Luo, F., He, X., Feng, Y., He, B., Bing, P., et al. (2020). Glutamate and aspartate alleviate testicular/epididymal oxidative stress by supporting antioxidant enzymes and immune defense systems in boars. Sci China Life Sci 63, 116–124.

    Article  CAS  PubMed  Google Scholar 

  • Tas, S.W., Remans, P.H., Reedquist, K.A., and Tak, P.P. (2005). Signal transduction pathways and transcription factors as therapeutic targets in inflammatory disease: towards innovative antirheumatic therapy. Curr Pharm Des 11, 581–611.

    Article  CAS  PubMed  Google Scholar 

  • Thielke, K.H., Hoffmann-Moujahid, A., Weisser, C., Waldkirch, E., Pabst, R., Holtmeier, W., and Rothkötter, H. (2003). Proliferating intestinal γ/δ T cells recirculate rapidly and are a major source of the γ/δ T cell pool in the peripheral blood. Eur J Immunol 33, 1649–1656.

    Article  CAS  PubMed  Google Scholar 

  • Thierry, A., Robin, A., Giraud, S., Minouflet, S., Barra, A., Bridoux, F., Hauet, T., Touchard, G., Herbelin, A., and Gombert, J.M. (2012). Identification of invariant natural killer T cells in porcine peripheral blood. Vet Immunol Immunopathol 149, 272–279.

    Article  CAS  PubMed  Google Scholar 

  • Thomas Johnson, W., and Dufault, S.N. (1991). Copper deficiency alters protein kinase C mediation of thrombin-induced dense granule secretion from rat platelets. J Nutr Biochem 2, 663–670.

    Article  Google Scholar 

  • Trebichavský, I., Tlaskalová, H., Cukrowska, B., Šplíchal, I., Sinkora, J., Øeháková, Z., Šinkora, M., Pospíšil, R., Kováøù, F., Charley, B., et al. (1996). Early ontogeny of immune cells and their functions in the fetal pig. Vet Immunol Immunopathol 54, 75–81.

    Article  PubMed  Google Scholar 

  • Van Kaer, L., Postoak, J.L., Song, W., and Wu, L. (2022). Innate and innate-like effector lymphocytes in health and disease. J Immunol 209, 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Vanoaica, L., Richman, L., Jaworski, M., Darshan, D., Luther, S.A., and Kühn, L.C. (2014). Conditional deletion of ferritin h in mice reduces B and T lymphocyte populations. PLoS ONE 9, e89270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vega-López, M.A., Arenas-Contreras, G., Bailey, M., González-Pozos, S., Stokes, C.R., Ortega, M.G., and Mondragón-Flores, R. (2001). Development of lntraepithelial cells in the porcine small intestine. Dev Immunol 8, 147–158.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma, S., Hoffmann, F.K.W., Kumar, M., Huang, Z., Roe, K., Nguyen-Wu, E., Hashimoto, A.S., and Hoffmann, P.R. (2011). Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J Immunol 186, 2127–2137.

    Article  CAS  PubMed  Google Scholar 

  • Vinton, C., Klatt, N.R., Harris, L.D., Briant, J.A., Sanders-Beer, B.E., Herbert, R., Woodward, R., Silvestri, G., Pandrea, I., Apetrei, C., et al. (2011). CD4-like immunological function by CD4 T cells in multiple natural hosts of simian immunodeficiency virus. J Virol 85, 8702–8708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagstrom, E.A., Yoon, K.J., and Zimmerman, J.J. (2000). Immune components in porcine mammary secretions. Viral Immunol 13, 383–397.

    Article  CAS  PubMed  Google Scholar 

  • Wei, H., Zhang, W.J., LeBoeuf, R., and Frei, B. (2014). Copper induces— and copper chelation by tetrathiomolybdate inhibits—endothelial activation in vitro. Redox Rep 19, 40–48.

    Article  CAS  PubMed  Google Scholar 

  • Wellinghausen, N., Martin, M., and Rink, L. (1997). Zinc inhibits interleukin-1-dependent T cell stimulation. Eur J Immunol 27, 2529–2535.

    Article  CAS  PubMed  Google Scholar 

  • Wiarda, J.E., Trachsel, J.M., Bond, Z.F., Byrne, K.A., Gabler, N.K., and Loving, C.L. (2020). Intraepithelial T cells diverge by intestinal location as pigs age. Front Immunol 11, 1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, M., Jiang, Q., Nazmi, A., Yin, J., and Yang, G. (2022). Swine unconventional T cells. Dev Comp Immunol 128, 104330.

    Article  CAS  PubMed  Google Scholar 

  • **ao, X., Li, K., Ma, X., Liu, B., He, X., Yang, S., Wang, W., Jiang, B., and Cai, J. (2019a). Mucosal-associated invariant T cells expressing the TRAV1-TRAJ33 chain are present in pigs. Front Immunol 10, 2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ao, X., Liu, B., Ma, X., Yang, S., and Cai, J. (2019b). Molecular cloning and characterization of the pig MHC class I-related MR1 gene. Dev Comp Immunol 96, 58–67.

    Article  CAS  PubMed  Google Scholar 

  • **ong, X., Tan, B., Song, M., Ji, P., Kim, K., Yin, Y., and Liu, Y. (2019). Nutritional intervention for the intestinal development and health of weaned pigs. Front Vet Sci 6, 46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, G., Artiaga, B.L., Lewis, S.T., and Driver, J.P. (2017). Characterizing porcine invariant natural killer T cells: a comparative study with NK cells and T cells. Dev Comp Immunol 76, 343–351.

    Article  CAS  PubMed  Google Scholar 

  • Yang, H., and Parkhouse, R.M.E. (1996). Phenotypic classification of porcine lymphocyte subpopulations in blood and lymphoid tissues. Immunology 89, 76–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, W.C., and Schultz, R.D. (1986). Ontogeny of natural killer cell activity and antibody dependent cell mediated cytotoxicity in pigs. Dev Comp Immunol 10, 405–418.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Wang, H., Kouadir, M., Song, H., and Shi, F. (2019). Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 10, 128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan, C., Zhang, P., Liu, P., Li, Y., Li, J., Zhang, E., **, Y., and Yang, Q. (2022). A novel pathway for porcine epidemic diarrhea virus transmission from sows to neonatal piglets mediated by colostrum. J Virol 96, e0047722.

    Article  PubMed  Google Scholar 

  • Zhao, H., Wang, Y., Shao, Y., Liu, J., Wang, S., and **ng, M. (2018). Oxidative stress-induced skeletal muscle injury involves in NF-κB/p53-activated immunosuppression and apoptosis response in copper (II) or/and arsenite-exposed chicken. Chemosphere 210, 76–84.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, D., Liwinski, T., and Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Res 30, 492–506.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y., Zhou, Z., Huang, T., Zhang, Z., Li, W., Ling, Z., Jiang, T., Yang, J., Yang, S., ** and analysis of a spatiotemporal H3K27ac and gene expression spectrum in pigs. Sci China Life Sci 65, 1517–1534.

    Article  CAS  PubMed  Google Scholar 

  • Zuckermann, F.A., and Gaskins, H.R. (1996). Distribution of porcine CD4/CD8 double-positive T lymphocytes in mucosa-associated lymphoid tissues. Immunology 87, 493–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32172755, 32130099), the National Key Research and Development Program of China (2021YFD1300401), Huxiang Young Talent Support Program (2020RC3052), Hunan Key Research and Development Plan (2022NK2023), Guangxi Key Research and Development Plan (GuikeAB22035039), China Agriculture Research System of MOF and MARA (CARS-35), Changchun Academy Science and Technology Innovation Cooperation Project (21SH19), Tian** Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-CXRC-038)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liuqin He, Di Liu or Tiejun Li.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**, S., He, L., Yang, C. et al. Crosstalk between trace elements and T-cell immunity during early-life health in pigs. Sci. China Life Sci. 66, 1994–2005 (2023). https://doi.org/10.1007/s11427-022-2339-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2339-0

Navigation