Log in

Chemical Exposure of Synthetic Pyrethroid on Deltamethrin Under the Selection Pressure over the Generations: A Reproductive Potential Study of Anopheles stephensi

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biochemical synthetic pyrethroids, deltamethrin are presently used insecticides for the control of mosquito vector-borne diseases in worldwide. Mosquito re-emergence with diseases becoming a serious problem due to development of insecticide resistance. The comprehensive knowledge on the underlying mechanisms of resistance against deltamethrin is required for implementation of an efficient vector control programme. The assessment of the biological fitness of a mosquito strain exposed to insecticide pressure is extremely vital because it provides information on the development of resistance. In the present study, the adult stage of malaria vector, Anopheles stephensi, was designated for the study of deltamethrin resistance (F40 generations). The non-blood-fed, laboratory-reared females to sub-lethal doses of deltamethrin (0.004%, 0.005%, 0.007%, or 0.01%) exposed to every generation for up to F40. The adult mosquito susceptibility was performed by WHO standard method for evaluation. After 24 h, mortality was recorded in both treated and control groups. Therefore, the biological fitness characteristics such as feeding, fecundity, hatchability, egg retention, immature duration, adult emergence, and adult life span were studied to assess the exposed deltamethrin under selection pressure as compared to the unexposed (control) population. The laboratory selection of An. stephensi exposed deltamethrin over the generations were diminished its biological fitness. Information on biological fitness including reproductive potential of mosquito strain under selection pressure against deltamethrin is incredibly necessary because it would facilitate in resistance management. Baseline information gives in this experiment will guide for future studies on the susceptibilities of wild malaria mosquito populations in India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data and materials generated or analyzed during this study are included in this published article.

References

  1. WHO. (2014). Control of residual malaria parasite transmission. Technical Note WHO/HTM/GMP/MPAC/2014.5, pp 1–5.

  2. Baranitharan, M., Tamizhazhagan, V., & Kovendan, K. (2019). Medicinal plants as potent power for malaria control: Review. Entomology and Applied Science Letters, 5(1), 28–44.

    Google Scholar 

  3. WHO. (2017). Global Malaria Programme (GMP) - World Malaria Report, pp. 1–160.

  4. Kovendan, K., Chandramohan, B., Govindarajan, M., Jebanesan, A., Kamalakannan, S., Vincent, S., & Benelli, G. (2018). Orchids as sources of novel nanoinsecticides? Efficacy of Bacillus sphaericus and Zeuxine gracilis-fabricated silver nanoparticles against dengue, malaria and filariasis mosquito vectors. Journal of Cluster Science, 29, 345–357.

    Article  CAS  Google Scholar 

  5. Sanil, D., Shetty, V., & Shetty, N. J. (2014). Differential expression of glutathione s-transferase enzyme in different life stages of various insecticide-resistant strains of Anopheles stephensi: A malaria vector. Journal of Vector Borne Diseases, 51, 97–105.

    CAS  PubMed  Google Scholar 

  6. Pimnon, S., & Bhumiratana, A. (2018). Adaptation of Anopheles vectors to anthropogenic malaria-associated rubber plantations and indoor residual spraying: Establishing population dynamics and insecticide susceptibility”. Canadian Journal of Infectious Diseases and Medical Microbiology, 2018, 17.

    Article  Google Scholar 

  7. Sanil, D., & Shetty, N. J. (2012). The effect of sub-lethal exposure to temephos and propoxur on reproductive fitness and its influence on circadian rhythms of pupation and adult emergence in Anopheles stephensi Liston-a malaria vector. Parasitology Research, 111, 423–432.

    Article  PubMed  Google Scholar 

  8. Baranitharan, M., Krishnappa, K., Elumalai, K., Pandiyan, J., Gokulakrishnan, J., Kovendan, K., & Tamizhazhagan, V. (2020). Citrus limetta (Risso) - borne compound as novel mosquitocides: Effectiveness against medical pest and acute toxicity on non-target fauna. South African Journal of Botany, 128, 218–224.

    Article  CAS  Google Scholar 

  9. Karunamoorthi, K., & Sabesan, S. (2013). Insecticide resistance in insect vectors of disease with special reference to mosquitoes: A potential threat to global public health. Health Scope, 2, 4–18.

    Article  Google Scholar 

  10. Singh, R. K., Dhiman, R. C., Mittal, P. K., & Das, M. K. (2010). Susceptibility of malaria vectors to insecticides in Gumla district, Jharkhand state, India. Journal of Vector Borne Diseases, 47, 116–118.

    CAS  PubMed  Google Scholar 

  11. Shi, L., Hu, H., Ma, K., Zhou, D., Yu, J., Zhong, D., Fang, F., Chang, X., Hu, S., Zou, F., & Wang, W. (2015). Development of resistance to pyrethroid in Culex pipiens pallens population under different insecticide selection pressures. PLOS Neglected Tropical Diseases, 9, e0003928.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dash, A. P., Raghavendra, K., & Pillai, M. K. K. (2007). Resurrection of DDT: A critical appraisal. Indian Journal of Medical Research, 126, 1–4.

    CAS  PubMed  Google Scholar 

  13. Singh, K.V., & Bansal, S.K. (2007). Map** of insecticide resistance in vectors of malaria in Rajasthan. Annual report 2007, Available online: http://www.dmrcjodhpur.org/AR0708/p1-6.pdf

  14. Mohammed, B. R., Abdulsalam, Y. M., & Deeni, Y. Y. (2015). Insecticide resistance to Anopheles spp. mosquitoes (Diptera: Culicidae) in Nigeria: A review. International Journal of Mosquito Research, 2, 56–63.

    Google Scholar 

  15. Campanhola, C., McCutchen, B. F., Baehrecke, E. H., & Plapp, F. W. (1991). Biological constraints associated with resistance to pyrethroids in the tobacco bud worm (Lepidoptera: Noctuidae). Journal of Economic Entomology, 84, 1404–1411.

    Article  CAS  Google Scholar 

  16. Ferrari, J. A., & Georghiou, G. R. (1981). Effects of insecticidal selection and treatment on reproductive potential of resistant, susceptible, and heterozygous strains of the southern house mosquito. Journal of Economic Entomology, 74, 323–327.

    Article  CAS  Google Scholar 

  17. Amin, A. M., & White, G. B. (1984). Relative fitness of organophosphate-resistant and susceptible strains of Culex quinquefasciatus Say (Diptera: Culicidae). Bulletin of Entomological Research, 74, 591–598.

    Article  Google Scholar 

  18. Bonning, B. C., & Hemingway, J. (1991). Identification of reduced fitness associated with an insecticide resistance gene in Culex pipiens by microtitre plate tests. Medical and Veterinary Entomology, 5, 377–380.

    Article  CAS  PubMed  Google Scholar 

  19. Arnaud, L., Brostaux, Y., Assie, L. K., Gaspar, C., & Haubruge, E. (2002). Increased fecundity of malathion-specific resistant beetles in absence of insecticide pressure. Heredity, 89, 425–429.

    Article  CAS  PubMed  Google Scholar 

  20. Okoye, P. N., Brooke, B. D., Hunt, R. H., & Coetzee, M. (2007). Relative developmental and reproductive fitness associated with pyrethroid resistance in the major southern African malaria vector, Anopheles funestus. Bulletin of Entomological Research, 97, 599–605.

    Article  CAS  PubMed  Google Scholar 

  21. Tabbabi, A., & Daaboub, J. (2018). Fitness cost in field Anopheles labranchiae populations associated with resistance to the insecticide deltamethrin. Medical and Veterinary Entomology, 62, 107–111.

    Google Scholar 

  22. Desneux, N., Wajnberg, E., Fauvergue, X., Privet, S., & Kaiser, L. (2004). Sub-lethal effects of a neurotoxic insecticide on the oviposition behavior and the patch-time allocation in two aphid parasitoids, Diaeretiella rapae and Aphidius matricariae. Entomologia Experimentalis et Applicata, 112, 227–235.

    Article  CAS  Google Scholar 

  23. Kamalakannan, S., Kovendan, K., Balachandar, V., Gopi Naik, K., & Chauhan, A. (2021). Sources of potential fungi generated biogenic nanoparticles for the control of diseases transmitting mosquitoes: A review. Letters in Applied NanoBioScience, 11, 3523–3536.

    Article  Google Scholar 

  24. Singh, K. R. P., Patterson, R. S., La Brecque, G. C., & Razdan, R. K. (1975). Mass rearing of Culex pipiens fatigans Wied. Journal of Communicable Diseases, 7(1), 31–53.

    Google Scholar 

  25. Christophers, S. R. (1933). The fauna of British India, including Ceylon and Burma. Diptera. IV. Family Culicidae. Tribe Anophelini (p. 371). Taylor & Francis.

  26. Priyalakshmi, B. L., Rajashree, B. H., Ghosh, C., & Shetty, N. J. (1999). Effect of Fenitrothion, Deltamethrin and Cypermethrin on reproductive potential and longevity of life cycle in Anopheles stephensi Liston, a malaria mosquito. Journal of Parasitic Diseases, 23, 125–128.

    Google Scholar 

  27. Zoh, M. G., Tutagata, J., Fodjo, B. K., Mouhamadou, C. S., Sadia, C. G., McBeath, J., Schmitt, F., Horstmann, S., David, J. P., & Reynaud, S. (2022). Exposure of Anopheles gambiae larvae to a sub-lethal dose of an agrochemical mixture induces tolerance to adulticides used in vector control management. Aquatic Toxicology, 248, 106181.

    Article  CAS  PubMed  Google Scholar 

  28. Rodriguez, M. M., Bisset, J. A., & Fernandez, D. (2007). Levels of insecticide resistance and resistance mechanisms in Aedes aegypti from some Latin American countries. Journal of the American Mosquito Control Association, 23, 420–429.

    Article  CAS  PubMed  Google Scholar 

  29. Kumar, S., Gupta, L., Han, Y. S., & Barillas-Mury, C. (2004). Inducible peroxidases mediate nitration of Anopheles midgut cells undergoing apoptosis in response to Plasmodium invasion. Journal of Biological Chemistry, 279, 53475–53482.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar, S., Thomas, A., Sahgal, A., Verma, A., Samuel, T., & Pillai, M. K. K. (2002). Effect of the synergist, piperonyl butoxide, on the development of deltamethrin resistance in yellow fever mosquito, Aedes aegypti L. (Diptera: Culicidae). Archives of Insect Biochemistry and Physiology, 50, 1–8.

    Article  CAS  PubMed  Google Scholar 

  31. Chakravorthy, B. C., & Kalyanasundaram, M. (1992). Selection of permethrin resistance in the malaria vector Anopheles stephensi. Indian Journal of Malariology, 29, 161–165.

    CAS  PubMed  Google Scholar 

  32. Chareonviriyaphap, T., Rongnoparut, P., & Juntarumporn, P. (2002). Selection for pyrethroid resistance in a colony of Anopheles minimus species A, malaria vector in Thailand. Journal of Vector Ecology, 27, 222–229.

    PubMed  Google Scholar 

  33. Mittal, P. K., Adak, T., Singh, O. P., Raghavendra, K., & Subbarao, S. K. (2002). Reduced susceptibility to deltamethrin in Anopheles culicifacies sensu lato, in Ramnathapuram district, Tamil Nadu-Selection of a pyrethroid-resistant strain. Cursos e Congresos da Universidade de Santiago de Compostela, 82, 185–188.

    CAS  Google Scholar 

  34. Paeporn, P., Komalamisra, N., Deesin, V., Rongsriyam, Y., Eshita, Y., & Thongrungkiat, S. (2003). Temephos resistance in two forms of Aedes aegypti and its significance for the resistance mechanism. Southeast Asian Journal of Tropical Medicine and Public Health, 34, 786–792.

    CAS  PubMed  Google Scholar 

  35. Gayathri, V., & Murthy, P. B. (2006). Reduced susceptibility to deltamethrin and kdr mutation in Anopheles stephensi Liston, a malaria vector in India. Journal of the American Mosquito Control Association, 22, 678–688.

    Article  CAS  PubMed  Google Scholar 

  36. Enayati, A., Hanafi-Bojd, A. A., Sedaghat, M. M., Zaim, M., & Hemingway, J. (2020). Evolution of insecticide resistance and its mechanisms in Anopheles stephensi in the WHO Eastern Mediterranean Region. Malaria Journal, 19, 1–12.

    Article  Google Scholar 

  37. Namias, A., Jobe, N. B., Paaijmans, K. P., & Huijben, S. (2021). The need for practical insecticide-resistance guidelines to effectively inform mosquito-borne disease control programs. eLife, 10, e65655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Song, A., **feng, L., Wende, Z., Zhen, Z., **xuan, Li., Zhen**, Y., Wing-Leung, W., Kun, Z., Min, C., & Panpan, W. (2023). Novel matrine derivatives as potential larvicidal agents against Aedes albopictus: Synthesis, biological evaluation, and mechanistic analysis. Molecules, 28, 1–18.

    Google Scholar 

  39. Dekker, T., Ignell, R., Ghebru, M., Glinwood, R., & Hopkins, R. (2011). Identification of mosquito repellent odours from Ocimum forskolei. Parasites & Vectors, 4, 1–7.

    Article  Google Scholar 

  40. Cohnstaedt, L. W., & Allan, S. A. (2011). Effects of sub-lethal pyrethroid exposure on the host seeking behavior of female mosquitoes. Journal of Vector Ecology, 36, 395–403.

    Article  PubMed  Google Scholar 

  41. Lissenden, N., Kont, M. D., Essandoh, J., Ismail, H. M., Churcher, T. S., Lambert, B., Lenhart, A., McCall, P. J., Moyes, C. L., Paine, M. J., & Praulins, G. (2021). Review and meta-analysis of the evidence for choosing between specific pyrethroids for programmatic purposes. Insects, 12, 826.

    Article  PubMed  PubMed Central  Google Scholar 

  42. N’Guessan, R., Darriet, F., Doannio, J. M., Chandre, F., & Carnevale, P. (2001). Olyset net efficacy against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus after 3 years field use in Cote d’voire. Medical Vet Entomology, 15, 97–104.

    Article  Google Scholar 

  43. Liu, W., Todd, R. G., & Gerberg, E. J. (1986). Effect of three pyrethroids on blood feeding and fecundity of Aedes aegypti. Journal of the American Mosquito Control Association, 2, 310–313.

    CAS  PubMed  Google Scholar 

  44. Lim, M. P. (1995). A study on physiological factors of mosquitoes in relation to the effects of exposure to mosquito coils. M.Sc dissertation, University Sains Malaysia (p. 114).

  45. Yap H. H., Lim, M. P., Chong, N. L., & Lee, C. Y. (1996). Efficacy and sub-lethal effects of mosquito coils on Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). In K. B. Wildey (Ed.), Proceeding of the 2nd international conference on insect pests in the urban environment (pp. 177–184). Heriot-Watt University, Edinburgh, Scotland.

  46. Kovendan, K., Murugan, K., Kamalakannan, S., & Vincent, S. (2011). Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Parasitology Research, 109, 1251–1257.

    Article  PubMed  Google Scholar 

  47. Kuppusamy, C., & Murugan, K. (2011). Adult mortality and blood feeding behavioral effects of α-amyrin acetate, a novel bioactive compound on in vivo exposed females of Anopheles stephensi Liston. (Diptera: Culicidae). Parasitology Research, 110, 2117–2124.

    Google Scholar 

  48. Wang, J., Lu, S., Chen, R., & Wang, L. (1998). Relative fitness of three organophosphate-resistant strains of Culex pipiens pallens (Diptera: Culicidae). Journal of Medical Entomology, 35, 716–719.

    Article  CAS  PubMed  Google Scholar 

  49. Lloyd, J. E. (1979). Mating behaviour and natural selection. The Florida Entomologist, 62, 17–34.

    Article  Google Scholar 

  50. Teshome, A., Erko, B., Golassa, L., Yohannes, G., Irish, S. R., Zohdy, S., Yoshimizu, M., & Dugassa, S. (2023). Resistance of Anopheles stephensi to selected insecticides used for indoor residual spraying and long-lasting insecticidal nets in Ethiopia. Malaria Journal, 22, 218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sutherland, D. J., Beam, F. D., & Gupta, A. P. (1967). The effects of mosquitoes of sub-lethal exposure to insecticides. I. DDT, dieldrin, malathion and the basal follicles of Aedes aegypti (L.). Mosquito News, 27, 316–323.

    CAS  Google Scholar 

  52. Gaaboub, I. A. (1976). Observations on the basal follicle numbers developed per female of two strains of Aedes aegypti after being fed on hosts with different levels of microfilariae of Brugia pahangi. Journal of Invertebrate Pathology, 28, 203–207.

    Article  CAS  PubMed  Google Scholar 

  53. Cutler, G. C. (2013). Insects, insecticides and hormesis: Evidence and considerations for study. Dose Response, 11, 154–177.

    Article  CAS  PubMed  Google Scholar 

  54. Guedes, R. N. C., & Cutler, G. C. (2014). Insecticide-induced hormesis and arthropod pest management. Pest Management Science, 70, 690–697.

    Article  CAS  PubMed  Google Scholar 

  55. Kumar, S., & Pillai, M. K. K. (2010). Reproductive disadvantage in an Indian strain of malarial vector, Anopheles stephensi Liston on selections with deltamethrin/synergized deltamethrin. Acta Entomol Sinica, 53, 1111–1118.

    Google Scholar 

  56. Li, X., Ma, L., Sun, L., & Zhu, C. (2002). Biotic characteristics in the deltamethrin-susceptible and resistant strains of Culex pipiens pallens (Diptera: Culicidae) in China. Applied Entomology and Zoology, 37, 305–308.

    Article  Google Scholar 

  57. De Coursey, J. D., Webster, A. P., & Leopold, R. S. (1953). Studies on the effect of insecticide on the oviposition of Anopheles quadrimaculatus Say. Annals of the Entomological Society of America, 46, 359–365.

    Article  Google Scholar 

  58. Duncan, J. (1963). Post-treatment effects of sub-lethal doses of dieldrin on the mosquito Aedes aegypti L. Annals of Applied Biology, 52, 1–6.

    Article  Google Scholar 

  59. Verma, K. V. S. (1986). Deterrent effect of synthetic pyrethroids on the oviposition of mosquitoes. Cursos e Congresos da Universidade de Santiago de Compostela, 55, 373–375.

    CAS  Google Scholar 

  60. Robert, L. L., & Olson, J. K. (1989). Effects of sub-lethal dosages of insecticides on Culex quinquefasciatus. Journal of the American Mosquito Control Association, 5, 239–246.

    CAS  PubMed  Google Scholar 

  61. Reyes-Villanueva, F., Juarez-Eguia, M., & Flores-Leal, A. (1990). Effects of sub-lethal dosages of abate upon adult fecundity and longevity of Aedes aegypti. Journal of the American Mosquito Control Association, 6, 739–741.

    CAS  PubMed  Google Scholar 

  62. Rowland, M. (1991). Behavior and fitness of gamma-hch dieldrin resistant and susceptible female Anopheles gambiae and Anopheles stephensi mosquitos in the absence of insecticide. Medical and Veterinary Entomology, 5, 193–206.

    Article  CAS  PubMed  Google Scholar 

  63. Rao, D. E. G., & Shetty, N. J. (1992). Effect of insecticide resistance on reproductive potential in Anopheles stephensi Liston, a malaria mosquito. International Journal of Occupational and Environmental Health, 1, 48–52.

    Google Scholar 

  64. Mohapatra, R., Ranjit, M. R., & Dash, A. P. (1999). Evaluation of cyfluthrin and fenfluthrin for their insecticidal activity against three vector mosquitoes. Journal of Communicable Diseases, 31, 91–99.

    CAS  PubMed  Google Scholar 

  65. Zin, T., & Shetty, N. J. (2008). Sub-lethal effect of bifenthrin and neem on fecundity, hatchability and sex ratio of Anopheles stephenesi Liston, a malaria mosquito. Pestology, 32, 39–44.

    CAS  Google Scholar 

  66. Minn, Z., & Shetty, N. (2008). Toxicological effect of malathion and alphamethrin on reproductive potential in Aedes aegypti, a yellow fever mosquito. Pestology, 32, 39–43.

    CAS  Google Scholar 

  67. Packer, M. J., & Corbet, P. S. (1989). Size variation and reproductive success of female Aedes punctor (Diptera: Culicidae). Ecological Entomology, 14, 297–309.

    Article  Google Scholar 

  68. Chadee, D. D., & Beier, J. C. (1996). Natural variation in blood-feeding kinetics of four mosquito vectors. Journal of Vector Ecology, 21, 150–155.

    Google Scholar 

  69. Xue, R. D., Ali, A., & Barnard, D. R. (2005). Effects of forced egg-retention in Aedes albopictus on adult survival and reproduction following application of DEETas an oviposition deterrent. Journal of Vector Ecology, 30, 45–48.

    PubMed  Google Scholar 

  70. Ohashi, K., Nakada, K., Ishiwatari, T., Miyaguchi, J. I., Shono, Y., Lucas, J. R., & Mito, N. (2012). Efficacy of pyriproxyfen-treated nets in sterilizing and shortening the longevity of Anopheles gambiae (Diptera: Culicidae). Journal of Medical Entomology, 49, 1052–1058.

    Article  CAS  PubMed  Google Scholar 

  71. Maddrell, S. H. P. (1972). Reynolds, S.E. Release of hormones in insects after poisoning with insecticides. Nature, 236, 404–406.

    Article  CAS  PubMed  Google Scholar 

  72. Lee, C. Y. (2000). Sub-lethal effects of insecticides on longevity, fecundity and behaviour of insect pests: A review. Journal of Biosciences, 11, 107–112.

    Google Scholar 

  73. Spencer, M., Blaustein, L., & Cohen, J. E. (2002). Oviposition habitat selection by mosquitoes (Culiseta longiareolata) and consequences for population size. Ecology, 83, 669–679.

    Article  Google Scholar 

  74. Reisen, W. K., Milby, M. M., & Bock, M. E. (1984). The effects of immature stress on selected events in the life history of Culex tarsalis. Mosquito News, 44, 385–395.

    Google Scholar 

  75. Clements, A. N. (1992). The biology of mosquitoes: Development, nutrition and reproduction (p. 536). Chapman and Hall. 

  76. Rodcharoen, J., & Mulla, S. M. (1997). Biological fitness of Culex quinquefasciatus (Diptera: Culicidae) susceptible and resistant to Bacillus sphaericus. Journal of Medical Entomology, 34, 5–10.

    Article  CAS  PubMed  Google Scholar 

  77. Olayemi, I. K., Maduegbuna, E. N., Ukubuiwe, A. C., & Chukwuemeka, V. I. (2012). Laboratory studies on developmental responses of the filarial vector mosquito, Culex pipiens (Diptera: Culicidae), to urea fertilizer. Journal of Medical Sciences, 12, 175–181.

    Article  Google Scholar 

  78. Olayemi, I. K., Akpan, B., Ejima, I. A. A., Ukubuiwe, A. C., & Olorunfemi, O. J. (2014). Influence of rice-farming herbicide (2, 4-dichlorophenoxyl acetic acid) on the development of Culex pipiens (Diptera: Culicidae), a major swamp-breeding mosquito vector of filariasis. Advance in Agriculture and Biology, 1, 131–134.

    Article  Google Scholar 

  79. Gunasekaran, K., Vijayakumar, T., & Kalyanasundaram, M. (2009). Larvicidal and emergence inhibitory activities of Neem Azal T/S 1.2 percent EC against vectors of malaria, filariasis & dengue. Indian Journal of Medical Research, 130, 138–145.

    CAS  PubMed  Google Scholar 

  80. Mordue, L. A. J., Morgan, E. D., & Nisbet, A. J. (2005). In L. I. Gilbert, K. Iatrou, & S. S. Gill (Eds.), Comprehensive molecular insect science (Vol. 6, pp. 117–135), Elsevier.

  81. Invest, J. F., & Lucas, J. R. (2008). Pyriproxyfen as a mosquito larvicide. In W. H. Robinson & D. Bajomi (Eds.), Proceedings of the 6th International Conference on Urban Pests (ICUP), Budapest, Hungary (pp. 239–245).

  82. Mahyoub, J. A. (2013). Evaluation of the IGRs Alsystin and Pyriproxyfen as well as the plant extract jojoba oil against the mosquito Aedes aegypti. Journal of Pure and Applied Microbiology, 7, 3225–3229.

    CAS  Google Scholar 

  83. Sihunincha, M., Zamora-Perea, E., Orellana-Rios, W., Stancil, J. D., Lopez-Sifuentes, V., & Vidal-Ore, C. (2005). Potential use of pyriproxyfen for control of Aedes aegypti (Diptera: Culicidae) in Iquitos, Peru. Journal of Medical Entomology, 42, 620–630.

    Article  Google Scholar 

  84. Yapabandara, A. M., & Curtis, C. F. (2004). Control of vectors and incidence of malaria in an irrigated settlement scheme in Sri Lanka by using the insect growth regulator Pyriproxyfen. Journal of the American Mosquito Control Association, 20, 395–400.

    CAS  PubMed  Google Scholar 

  85. Ansari, M. A., Razdan, R. K., & Sreehari, U. (2005). Laboratory and field evaluation of Hilmilin against mosquitoes. Journal of the American Mosquito Control Association, 21, 432–436.

    Article  CAS  PubMed  Google Scholar 

  86. Mulla, M. S. (1995). The future of insect growth regulators in vector control. Journal of the American Mosquito Control Association, 1, 269–273.

    Google Scholar 

  87. Gillies, M. T., & De Meillon, B. (1998). The Anophelinae of Africa South of the Sahara. South African Institute for Medical Research, 54, 1343.

    Google Scholar 

  88. Christiansen-Jucht, C. D., Parham, P. E., Saddler, A., Koella, J. C., & Basanez, M. G. (2015). Larval and adult environmental temperatures influence the adult reproductive traits of Anopheles gambiae ss. Parasites & Vectors, 8, 456.

    Article  Google Scholar 

  89. Waldock, J., Chandra, N. L., Lelieveld, J., Proestos, Y., Michael, E., Christophides, G., & Parham, P. E. (2013). The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology. Pathogens and Global Health, 107, 224–241.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Martins, A. J., Ribeiro, C. D. M., Bellinato, D. F., Peixoto, A. A., & Valle, D. (2012). Effect of insecticide resistance on development, longevity and reproduction of field or laboratory selected Aedes aegypti populations. PLoS ONE, 7, e31889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Protopopoff, N., Bortel, W. V., Speybroeck, N., Geertruyden, J. P. V., Baza, D., D’Alessandro, U., & Coosemans, M. (2009). Ranking malaria risk factors to guide malaria control efforts in African highlands. PLoS ONE, 4, e8022.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kovendan, K., Fabiola, M., Jebanesan, A., & Rajaganesh, R. (2024). Green synthesis of Malvastrum coromandelianum fabricated AgNPs: Anti-dengue and mosquitocidal studies. Inorganic Chemistry Communications, 161, 112067.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the authorities of Annamalai University. The authors are grateful to Dr. A. Subramaniyan, Professor and Head, Department of Zoology for the laboratory facilities provided.

Funding

The authors are thankful to University Grants Commission (UGC), Government of India, New Delhi under the scheme of Dr. D.S. Kothari Post Doctoral Fellowship (DSKPDF), (BL/19–20/0208) for providing financial support for the present work.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Palani Aarumugam is the prime investigator who worked in the project. Writing—methodology and formal analysis. He helped in collection and rearing of mosquitoes and assisted in statistical analyses. Dr. Kalimuthu Kovendan has supervised conceptualization, designing, writing—original draft preparation, review, editing, scientific investigation and project administration. Dr. Siva Kamalakannan have evaluated scientific review and consultation. Dr. Arulsamy Jebanesan have evaluated for standard formal analysis and scientific consultation. List of the authors have fully read and agreed to prepare the manuscript.

Corresponding author

Correspondence to Kalimuthu Kovendan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Informed consent was obtained from all individual participants included in this study.

Consent for publication

The participants have given their consent to submit this manuscript in this esteemed journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aarumugam, P., Kovendan, K., Kamalakannan, S. et al. Chemical Exposure of Synthetic Pyrethroid on Deltamethrin Under the Selection Pressure over the Generations: A Reproductive Potential Study of Anopheles stephensi. Appl Biochem Biotechnol (2024). https://doi.org/10.1007/s12010-024-04911-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-024-04911-9

Keywords

Navigation