Log in

Multi-objective optimization basing modified Taguchi method to arrive the optimal die design for CGP of AZ31 magnesium alloy

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Magnesium alloy is one of lightweight structural metals possessing low density and excellent corrosion resistance, which has limited applications due to cold plastic processing ability. Material properties can be improved through constrained groove pressing (CGP) process. Corrugated dies are designed to examine the deformation of AZ31 Mg alloy samples. To minimize numerical simulations, Taguchi’s L9 OA (orthogonal array) has been adopted for the grooved die dimensions such as groove angle, groove width and coefficient of friction. Elasto-plastic finite element analysis is carried out implementing a simple and reliable multi-objective optimization basing modified Taguchi approach for obtaining the optimal die geometry. Reduction in total deformation and increase in the equivalent stress as well as elastic strain of AZ31 sheet was possible with 50° groove angle, 3 mm groove width and 0.1 friction coefficient. Hence the proposed die design can be suitable for multiple CGP passes with improved deformation homogeneity in the pressed sheet. H13 steel is used as die material to perform simulations using ANSYS workbench.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pouraliakbar, H., Jandaghi, M.R., Heidarzadeh, A., Jandaghi, M.M.: Constrained groove pressing, cold-rolling, and post-deformation isothermal annealing: consequences of their synergy on material behavior. Mater. Chem. Phys. 206, 85–93 (2018). https://doi.org/10.1016/j.matchemphys.2017.12.010

    Article  Google Scholar 

  2. Thuy, P.T., Hue, D.T.H., Ngung, D.M., Quang, P.: A study on microstructure and mechanical properties of AZ31 magnesium alloy after constrained groove pressing. IOP Conf. Ser. Mater. Sci. Eng. 611, 012005 (2019). https://doi.org/10.1088/1757-899X/611/1/012005

    Article  Google Scholar 

  3. Brandão, P., Infante, V., Deus, A.M.: Thermo-mechanical modeling of a high pressure turbine blade of an airplane turbine engine. Procedia Struct. Integr. 1, 189–196 (2016). https://doi.org/10.1016/j.prostr.2016.02.026

    Article  Google Scholar 

  4. Nazari, F., Honarpisheh, M.: Analytical and experimental investigation of deformation in constrained groove pressing process. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233(11), 3751–3759 (2019). https://doi.org/10.1177/0954406218809738

    Article  Google Scholar 

  5. Mwita, W.M., Akinlabi, E.T.: Numerical prediction of tensile yield strength and microhardness of Ti6Al4V alloy processed by constrained bending and straightening severe plastic deformation. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab39a9

    Article  Google Scholar 

  6. Moskvichev, E., Kozulin, A., Krasnoveikin, V., Skripnyak, V.: Numerical simulation of deformation behavior of aluminum alloy sheets under processing by groove pressing method. MATEC Web Conf. 143, 01011 (2018). https://doi.org/10.1051/matecconf/201814301011

    Article  Google Scholar 

  7. Solhjoet, N., Varposhty, A.R., Mokhtarian, H., Manian, A.: A comparative study to evaluate the efficiency of RCS and CGP processes. Indian J. Sci. Res. 1(2), 563–572 (2014)

    Google Scholar 

  8. Mwita, W.M., Akinlabi, E.T., Sanusi, K.O.: Performance and prospects of severe plastic deformation for effective biomedical titanium alloys. J. Mod. Mater. 5(1), 8–23 (2018). https://doi.org/10.21467/jmm.5.1.8-23

    Article  Google Scholar 

  9. Xue, K.M., Liu, M., Yan, S.L., Wang, Z., Hua, Y.L., Li, P.: Synergic improvement of plasticity and strength of Al–Zn–Mg–Cu alloy by grain refinement and precipitates redistribution using cyclic extrusion compression. Adv. Eng. Mater. 20(8), 1–9 (2018). https://doi.org/10.1002/adem.201800140

    Article  Google Scholar 

  10. Hoseini-Athar, M.M., Mahmudi, R., Prasath Babu, R., Hedström, P.: Microstructural evolution and superplastic behavior of a fine-grained Mg–Gd alloy processed by constrained groove pressing. Mater. Sci. Eng. A 754, 390–399 (2019). https://doi.org/10.1016/j.msea.2019.03.082

    Article  Google Scholar 

  11. Yogesha, K.K., Kumar, N., Joshi, A., Jayaganthan, R., Nath, S.K.: A comparative study on tensile and fracture behavior of Al–Mg alloy processed through cryorolling and cryo groove rolling. Metallogr. Microstruct. Anal. 5(3), 251–263 (2016). https://doi.org/10.1007/s13632-016-0282-0

    Article  Google Scholar 

  12. Muni Tanuja, A., Kumar, A., Nageswara Rao, B.: Review on the application of CGP to improve AZ31 Mg alloy properties. In: Applications of Computational Methods in Manufacturing and Product Design. Lecture Notes in Mechanical Engineering. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-0296-3_21

  13. Sunil, B.R., Kumar, A.A., SampathKumar, T.S., Chakkingal, U.: Role of biomineralization on the degradation of fine grained AZ31 magnesium alloy processed by groove pressing. Mater. Sci. Eng. C 33(3), 1607–1615 (2013). https://doi.org/10.1016/j.msec.2012.12.095

    Article  Google Scholar 

  14. Fong, K.S., Tan, M.J., Ng, F.L., Danno, A., Chua, B.W.: Microstructure stability of a fine-grained AZ31 magnesium alloy processed by constrained groove pressing during isothermal annealing. J. Manuf. Sci. Eng. 139(8), 081007 (2017). https://doi.org/10.1115/1.4036529

    Article  Google Scholar 

  15. Liu, K., Chen, X.-G.: Development of Al–Mn–Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening. Mater. Des. 84(5), 340–350 (2015). https://doi.org/10.1016/j.matdes.2015.06.140

    Article  Google Scholar 

  16. Thangapandian, N., Prabu, S.B., Padmanabhan, K.A.: Effects of die profile on grainrefinement in Al-Mg alloy processed by repetitive corrugation and straightening. Mater. Sci. Eng. A 649, 229–238 (2016). https://doi.org/10.1016/j.msea.2015.09.051

    Article  Google Scholar 

  17. Moradpour, M., Khodabakhshi, F., Eskandari, H.: Microstructure–mechanical property relationship in an Al–Mg alloy processed by constrained groove pressing-cross route. Mater. Sci. Technol. 34(8), 1003–1017 (2018). https://doi.org/10.1080/02670836.2017.1416906

    Article  Google Scholar 

  18. Sajadi, A., Djavanroodi, F., Borhani, M.: Experimental and numerical investigation of groove pressed UFG pure aluminum. Int. J. Adv. Des. Manuf. Technol. 5(2), 1–5 (2012)

    Google Scholar 

  19. Wang, Z., Guan, Y., Wang, T., Zhang, Q., Wei, X., Fang, X., Zhu, G., Gao, S.: Microstructure and mechanical properties of AZ31 magnesium alloy sheets processed by constrained groove pressing. Mater. Sci. Eng. A 745, 450–459 (2019). https://doi.org/10.1016/j.msea.2019.01.006

    Article  Google Scholar 

  20. Lee, J.W., Park, J.J.: Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement. J. Mater. Process. Technol. 130–131, 208–213 (2002). https://doi.org/10.1016/S0924-0136(02)00722-7

    Article  Google Scholar 

  21. Thuy, P.T., Hue, D.T.H., Ngung, D.M., Quang, P.: A study on microstructure and mechanical properties of AZ31 magnesium alloy after constrained groove pressing. In: IOP Conference Series: Materials Science and Engineering, Volume 611, 2019 International Conference on Advanced Material Research and Processing Technology (AMRPT2019) 19–21 July 2019, Wuhan, China. https://doi.org/10.1088/1757-899X/611/1/012005

  22. Guan, Y., Wang, Z.: Numerical and Experimental Study on Constrained Groove Pressing. InTech open, London (2017). https://doi.org/10.5772/intechopen.68504

    Book  Google Scholar 

  23. Saeidi Googarchin, H., Teimouri, B., Hashemi, R.: Analysis of constrained groove pressing and constrained groove pressing-cross route process on AA5052 sheet for automotive body structure applications. J. Automob. Eng. (2018). https://doi.org/10.1177/0954407018785734

    Article  Google Scholar 

  24. Kumar, S., Hariharan, K., Digavalli, R.: Hybrid optimization of die design in constrained groove pressing. Mater. Manuf. Process. 35(6), 687–699 (2020). https://doi.org/10.1080/10426914.2020.1729986

    Article  Google Scholar 

  25. Reda, R.: Constrained groove pressing (CGP): die design, material processing and mechanical characterization. Fluid Dyn. Mater. Process. FDMP 15(3), 171–185 (2019). https://doi.org/10.32604/fdmp.2019.03923

    Article  Google Scholar 

  26. Ross, P.J.: Taguchi Techniques for Quality Engineering. McGraw-Hill, Singapore (1989)

    Google Scholar 

  27. Sastry, K.S.S., Kumar, K.V.D.S.R.M., Priyanka, M., Ram, M.R., Nageswara Rao, B.: Application of Taguchi approach to seek optimum drilling parameters for woven fabric carbon fibre/epoxy laminates. MAYFEB J. Mech. Eng. 1, 29–37 (2017)

    Google Scholar 

  28. Singaravelu, J., Jeyakumar, D., Nageswara Rao, B.: Reliability and safety assessments on satellite separation process of a typical launch vehicle. J. Defense Model. Simul. 9(4), 369–382 (2012)

    Article  Google Scholar 

  29. Koneru, S., Srinath, A., Nageswara Rao, B.: Multiobjective optimization for the optimal heat pipe working parameters based on Taguchi’s design of experiments. Heat Transf. (2021). https://doi.org/10.1002/htj.22410

    Article  Google Scholar 

  30. Miladinovic, S., Velickovic, S., Loknath, D., Karthik, K., Nageswara Rao, B.: Parameters identification and minimization of safety coefficient for surface durability of internal planetary gear using the modified Taguchi approach. TEST Eng. Manag. 83, 25108–25116 (2020)

    Google Scholar 

  31. Satyanarayana, G., Narayana, K.L., Nageswara Rao, B.: Identification of optimum laser beam welding process parameters for E110 zirconium alloy butt joint based on Taguchi-CFD simulations. Lasers Manuf. Mater. Process. 5(2), 182–193 (2018)

    Article  Google Scholar 

  32. Rajyalakshmi, K., Nageswara Rao, B.: Expected range of the output response for the optimum input parameters utilizing the modified Taguchi approach. Multidiscip. Model. Mater. Struct. 15(2), 508–522 (2019). https://doi.org/10.1108/MMMS-05-2018-0088

    Article  Google Scholar 

  33. Rajyalakshmi, K., Nageswara Rao, B.: Modified Taguchi approach to trace the optimum GMAW process parameters on weld dilution for ST-37 steel plates. ASTM Int. J. Test. Eval. 47(4), 3209–3223 (2019)

    Google Scholar 

  34. Satyanarayana, G., Narayana, K.L., Nageswara Rao, B.: Optimal laser welding process parameters and expected weld bead profile for P92 steel. SN Appl. Sci. 1, 1291 (2019). https://doi.org/10.1007/s42452-019-1333-3

    Article  Google Scholar 

  35. Dharmendra, B.V., Kodali, S.P., Nageswara Rao, B.: A simple and reliable Taguchi approach for multi-objective optimization to identify optimal process parameters in nano-powder-mixed electrical discharge machining of INCONEL800 with copper electrode. HELIYON 5, e02326 (2019). https://doi.org/10.1016/j.heliyon.2019.e02326

    Article  Google Scholar 

  36. Dharmendra, B.V., Kodali, S.P., Nageswara Rao, B.: Multi-objective optimization for optimum abrasive water jet machining process parameters of Inconel718 adopting the Taguchi approach. Multidiscip. Model. Mater. Struct. 16(2), 306–321 (2020). https://doi.org/10.1108/MMMS-10-2018-0175

    Article  Google Scholar 

  37. Satyanarayana, G., Narayana, K.L., Nageswara Rao, B.: Incorporation of Taguchi approach with CFD simulations on laser welding of spacer grid fuel rod assembly. Mater. Sci. Eng. B 269, 115182 (2021). https://doi.org/10.1016/j.mseb.2021.115182

    Article  Google Scholar 

  38. Buddi, T., Singh, S.K., Nageswara Rao, B.: Optimum process parameters for plywood manufacturing using soya meal adhesive. Mater. Today Proc. 5, 18739–18744 (2018). https://doi.org/10.1016/j.matpr.2018.06.220

    Article  Google Scholar 

  39. Danthala, S., Srinivasa Rao, S., Nageswara Rao, B., Mannepalli, K.: Multi-objective optimization with modified Taguchi approach to specify optimal robot spray painting process parameters. Int. J. Nonlinear Anal. Appl. (IJNAA) 12(2), 1163–1174 (2021). https://doi.org/10.22075/ijnaa.2021.5193

    Article  Google Scholar 

  40. Sanjeevannavar, M.B., Banapurmath, N.R., Soudagar, M.E.M., Atgur, V., Hossain, N., Mujtaba, M.A., Yunus Khan, T.M., Nageswar Rao, B., Ismail, K.A., Elfasakhany, A.: Performance indicators for the optimal BTE of biodiesels with additives through engine testing by the Taguchi approach. Chemosphere 288, 132450 (2022). https://doi.org/10.1016/j.chemosphere.2021.132450

    Article  Google Scholar 

  41. Mohamed, M.A., Manurung, Y.H., Berhan, M.N.: Model development for mechanical properties and weld quality class of friction stir welding using multi-objective Taguchi method and response surface methodology. J. Mech. Sci. Technol. 29(6), 2323–2331 (2015). https://doi.org/10.1007/s12206-015-0527-x

    Article  Google Scholar 

  42. Tong, L.I., Su, C.T., Wang, C.H.: The optimization of multi-response problems in the Taguchi method. Int. J. Qual. Reliab. Manag. 14(4), 367–380 (1997). https://doi.org/10.1108/02656719710170639

    Article  Google Scholar 

  43. Antony, J.: Simultaneous optimization of multiple quality characteristics in manufacturing processes using Taguchi’s quality loss function. Int. J. Adv. Manuf. Technol. 17(2), 134–138 (2001). https://doi.org/10.1007/s001700170201

    Article  Google Scholar 

  44. Gaitonde, V.N., Karnik, S.R., Paulo Davim, J.: Multi performance optimization in turning of free-machining steel using Taguchi method and utility concept. J. Mater. Eng. Perform. 18, 231–236 (2009)

    Article  Google Scholar 

  45. Fedai, Y., Khraman, F., Akin, H.K., Basar, G.: Optimization of machining parameters in face milling using multi-objective Taguchi Technique. Tech. J. 12(2), 104–108 (2018). https://doi.org/10.31803/tg-20180201125123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muni Tanuja Anantha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anantha, M., Buddi, T. & Boggarapu, N. Multi-objective optimization basing modified Taguchi method to arrive the optimal die design for CGP of AZ31 magnesium alloy. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-022-01176-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-022-01176-6

Keywords

Navigation