Log in

2D-based optimization of closed die forging using the variable gutter technique and response surface methodology

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In this paper, a new method of simultaneous die and preform optimization is proposed for closed die forging of nearly plane-strain components with complex geometry along their axes. In this method, using two-dimensional finite element simulations and the response surface method, optimal values for the width and thickness of the flash land and the amount of additional material in each of the main sections are obtained. Accordingly, using the variable gutter technique, the preform and dies are designed based on the optimization goal. To investigate the usefulness of the method in three optimization approaches, including the minimum forging force, the minimum excess material, and a balance between the forging force and the excess material, the values of forging load, waste material, die stress, deformation, heat distribution, material flow, and die wear were determined numerically and compared to the conventional method. The results showed that the presented method can save up to 60% in forging force and up to 51.5% in excess material compared to the conventional method. It can also minimize die wear by up to 74% and die stress by up to 50%. Finally, the numerical results showed that a balanced mode between the minimum forging load and the minimum excessive materials can be chosen as the most appropriate selection for practical purposes.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All the data is presented in the manuscript.

References

  1. Gronostajski, Z., Pater, Z., Madej, L., Gontarz, A., Lisiecki, L., Łukaszek-Sołek, A., Ziółkiewicz, S.: Recent development trends in metal forming. Arch. Civil Mech. Eng. 19(3), 898–941 (2019). https://doi.org/10.1016/j.acme.2019.04.005

    Article  Google Scholar 

  2. Hosseini-Ara, R., Yavari, P.: A new criterion for preform design of H-shaped hot die forging based on shape complexity factor. Int.J. Mater. Form. 11(2), 233–238 (2018). https://doi.org/10.1007/s12289-017-1345-8

    Article  Google Scholar 

  3. Knust, J., Podszus, F., Stonis, M., Behrens, B.A., Overmeyer, L., Ullmann, G.: Preform optimization for hot forging processes using genetic algorithms. Int. J. Adv. Manuf. Technol. 89, 1623–1634 (2017). https://doi.org/10.1007/s00170-016-9209-9

    Article  Google Scholar 

  4. Knust, J., Stonis, M., Behrens, B.A.: Preform optimization for hot forging processes using an adaptive amount of flash based on the cross section shape complexity. Prod. Eng. Res. Devel. 10, 587–598 (2016). https://doi.org/10.1007/s11740-016-0702-7

    Article  Google Scholar 

  5. Kampen, D., Richter, J., Blohm, T., Knust, J., Langner, J., Stonis, M., Behrens, B.A.: Design of a genetic algorithm to preform optimization for hot forging processes. Int. J. Mater. Form. 13, 77–89 (2020). https://doi.org/10.1007/s12289-019-01469-4

    Article  Google Scholar 

  6. Meng, F.X., Cai, Z.Y., Chen, Q.M.: Multi-objective optimization of preforming operation in near-net shape forming of complex forging. Int. J. Adv. Manuf. Technol. 105, 4359–4371 (2019). https://doi.org/10.1007/s00170-019-04539-8

    Article  Google Scholar 

  7. Guan, Y., Bai, X., Liu, M., Song, L., Zhao, G.: Preform design in forging process of complex parts by using quasi-equipotential field and response surface methods. Int. J. Adv. Manuf. Technol. 79, 21–29 (2015). https://doi.org/10.1007/s00170-014-6775-6

    Article  Google Scholar 

  8. Ke, W.E.I., Mei, Z.H.A.N., **aoguang, F.A.N., He, Y.A.N.G., Pengfei, G.A.O., Miao, M.E.N.G.: Unequal-thickness billet optimization in transitional region during isothermal local loading forming of Ti-alloy rib-web component using response surface method. Chin. J. Aeronaut. 31(4), 845–859 (2018). https://doi.org/10.1016/j.cja.2017.07.005

    Article  Google Scholar 

  9. Mirahmadi, S.J., Hamedi, M.: Flash gap optimization in precision blade forging. Int. J. Mech. Eng. Robot. Res. 6(3), 200–205 (2017). https://doi.org/10.18178/ijmerr.6.3.200-205

    Article  Google Scholar 

  10. Pandya, V.A., George, P.M.: Preform optimization for the anchor shackle during closed die forging process on one ton hammer. Mater. Today 47, 3256–3262 (2021). https://doi.org/10.1016/j.matpr.2021.06.450

    Article  Google Scholar 

  11. Ding, T., Wei, K., Yang, C., Tang, H.: Robust optimization of consistency in filling of rib-grooves for titanium alloy multi-rib eigenstructure. Int. J. Adv. Manuf. Technol. (2023). https://doi.org/10.1007/s00170-023-11379-0

    Article  Google Scholar 

  12. Sedighi, M., Pourbashiri, M.: Variable gutter technique as a novel method to reduce waste material in closed die-forging process. J. Mech. Sci. Technol. 28, 5129–5134 (2014). https://doi.org/10.1007/s12206-014-1135-x

    Article  Google Scholar 

  13. Hu, C., Zeng, F., Zhao, Z., Guo, Z.: Process optimization for design of duplex universal joint fork using unequal thickness flash. Int. J. Precis. Eng. Manuf. 16, 2517–2527 (2015). https://doi.org/10.1007/s12541-015-0323-7

    Article  Google Scholar 

  14. Pourbashiri, M., Sedighi, M.: Investigating the effect of variable gutter technique as a novel method on vertical flow of material in closed die forging processes. J. Mech. Sci. Technol. 30, 1851–1857 (2016). https://doi.org/10.1007/s12206-016-0342-z

    Article  Google Scholar 

  15. Langner, J., Stonis, M., Behrens, B.A.: Investigation of a moveable flash gap in hot forging. J. Mater. Process. Technol. 231, 199–208 (2016). https://doi.org/10.1016/j.jmatprotec.2015.12.019

    Article  Google Scholar 

  16. Liu, Y., Wang, J., Wang, D.: Numerical optimization on hot forging process of connecting rods based on RSA with experimental verification. Int. J. Adv. Manuf. Technol. 90, 3129–3135 (2017). https://doi.org/10.1007/s00170-016-9635-8

    Article  Google Scholar 

  17. Kabataş, B., Livatyali, H., Temiztaş, B.A.: Process optimization for hot forging of difficult parts by computer experiments and response surface analysis. J. Adv. Manuf. Eng. 3(2), 33–45 (2023)

    Google Scholar 

  18. Zhang, Y., Cao, S., Huang, M., Yan, Y., Deng, Q., Li, S., **a, J., Deng, L., **, J., Chen, T., Yang, J.: Research and application of precision forging forming process for flat thin flash of automobile disc steering knuckle. Procedia Manuf. 50, 32–36 (2020). https://doi.org/10.1016/j.promfg.2020.08.007

    Article  Google Scholar 

  19. Altan, T., Ngaile, G., Shen, G. (Eds.): Cold and hot forging: fundamentals and applications (Vol. 1). ASM international (2004)

  20. DIN 15401: Lifting hooks for lifting appliances, single hooks, unmachined parts (1982)

  21. Sleeckx, E., Kruth, J.P.: Review of flash design rules for closed-die forgings. J. Mater. Process. Technol. 31(1–2), 119–134 (1992). https://doi.org/10.1016/0924-0136(92)90013-I

    Article  Google Scholar 

  22. Shahriari, D., Sadeghi, M. H., Cheraghzadeh, M., & Taghipour, M.: Flash design optimization in blade forging using FEM method. In: AIP Conference Proceedings (Vol. 908, No. 1, pp. 1035–1040). American Institute of Physics (2007) https://doi.org/10.1063/1.2740947

  23. Samolyk, G., Pater, Z.: Application of the slip-line field method to the analysis of die cavity filling. J. Mater. Process. Technol. 153, 729–735 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.092

    Article  Google Scholar 

  24. Lin, Y.C., Chen, M.S., Zhang, J.: Modeling of flow stress of 42CrMo steel under hot compression. Mater. Sci. Eng. A 499(1–2), 88–92 (2009). https://doi.org/10.1016/j.msea.2007.11.119

    Article  Google Scholar 

  25. Luo, S., Yao, J., Zou, G., Li, J., Jiang, J., Yu, F.: Influence of forging velocity on temperature and phase transformation characteristics of forged Ti-6Al-4V aeroengine drum. Int. J. Adv. Manuf. Technol. 110, 3101–3111 (2020). https://doi.org/10.1007/s00170-020-06084-1

    Article  Google Scholar 

  26. Luo, S., Zhu, D., Hua, L., Qian, D., Yan, S.: Numerical analysis of die wear characteristics in hot forging of titanium alloy turbine blade. Int. J. Mech. Sci. 123, 260–270 (2017). https://doi.org/10.1016/j.ijmecsci.2017.02.013

    Article  Google Scholar 

  27. Simufact forming 13. 0 manual: (2016)

  28. Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M.: Response surface methodology: Process and product optimization using designed experiments. Wiley, Nashville (2016)

    Google Scholar 

  29. Politis, D.J., Politis, N.J., Lin, J., Dean, T.A.: A review of force reduction methods in precision forging axisymmetric shapes. Int. J. Adv. Manuf. Technol. 97, 2809–2833 (2018). https://doi.org/10.1007/s00170-018-2151-2

    Article  Google Scholar 

  30. Chen, F., Cui, Z., Chen, J.: Prediction of microstructural evolution during hot forging. Manuf. Rev. 1, 6 (2014). https://doi.org/10.1051/mfreview/2014006

    Article  Google Scholar 

  31. Łukaszek-Sołek, A., Krawczyk, J., Śleboda, T., Grelowski, J.: Optimization of the hot forging parameters for 4340 steel by processing maps. J. Market. Res. 8(3), 3281–3290 (2019). https://doi.org/10.1016/j.jmrt.2019.05.018

    Article  Google Scholar 

  32. Buchmayr, B., Elser, J.: High temperature friction and wear testing for closed-die steel and aluminium forgings. Key Eng. Mater. 767, 204–211 (2018). https://doi.org/10.4028/www.scientific.net/KEM.767.204

    Article  Google Scholar 

  33. Yu, Y., Zottis, J., Wolfgarten, M., Hirt, G.: Investigation of applying protective sheet metal die covers for hot forging dies on a cross-forging geometry. Int. J. Adv. Manuf. Technol. 102, 999–1007 (2019). https://doi.org/10.1007/s00170-018-03250-4

    Article  Google Scholar 

  34. Buchmayr, B.: Damage, lifetime, and repair of forging dies. Berg Huettenmaenn Monatsh 162, 88–93 (2017). https://doi.org/10.1007/s00501-016-0566-3

    Article  Google Scholar 

  35. Chander, S., Chawla, V.: Failure of hot forging dies–an updated perspective. Mater. Today Proceed. 4(2), 1147–1157 (2017). https://doi.org/10.1016/j.matpr.2017.01.131

    Article  Google Scholar 

Download references

Funding

The preparation of this manuscript was not supported by any grant or funding.

Author information

Authors and Affiliations

Authors

Contributions

Hamed Sheikhbahaee designed the research strategy and performed computer modeling and simulation. S. Javid Mirahmadi conducted data analysis and manuscript editing.

Corresponding author

Correspondence to Hamed Sheikhbahaee.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest that are relevant to the content of this article.

Ethical approval

The authors declare that there are no ethical issues involved in this research.

Consent to participate

The authors declare that they all consent to participate in this research.

Consent to publish

The authors declare that they all consent to publish the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhbahaee, H., Mirahmadi, S.J. 2D-based optimization of closed die forging using the variable gutter technique and response surface methodology. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01842-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01842-x

Keywords

Navigation