Log in

Facile preparation of particle-free hybrid amine silver ink with synergistic effect for low-resistivity flexible films

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Amine ligand, as one of the essential components of the Ag–amine complex, is necessary to reduce the sintering temperature and time of conductive inks. Herein, we report the facile preparation of hybrid amine conductive silver ink, mainly composed of silver oxalate–hybrid amine complex and methanol–acetone solvent. The synergistic effect of long-chain and short-chain amines enhances the uniformity of silver nanoparticles in the silver film. A uniformly conductive silver film is obtained by spin-coating as-prepared ink on the polyimide film, followed by thermal sintering. Then, the influence of butylamine content and sintering parameters on the physical properties and microstructure of silver film is systematically investigated. The resistivity of silver films, sintered at 170 °C for only 20 min, is found to be 6.71 μΩ·cm, which is four times higher than bulk silver. In addition, silver films after bending and adhesion test exhibit low resistivity and excellent adhesion. These results indicate that the hybrid amine conductive silver ink can provide promising opportunities for fabricating highly conductive flexible printed electronics at low temperatures in short times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Nayak, L, Mohanty, S, Nayak, SK, Ramadoss, A, “A Review on Inkjet Printing of Nanoparticle Inks for Flexible Electronics.” J. Mater. Chem. C, 7 8771–8795 (2019)

    Article  CAS  Google Scholar 

  2. Ibrahim, N, Akindoyo JO, Mariatti, M, “Recent Development in Silver-Based Ink for Flexible Electronics.” J. Sci. Adv. Mater. Dev., 7 (2022)

  3. Kamyshny, A, Magdassi, S, “Conductive Nanomaterials for Printed Electronics.” Small, 10 3515–3535 (2014)

    Article  CAS  Google Scholar 

  4. Rao, VK, Venkata Abhinav, RK, Karthik, PS, Surya Prakash, S, “Conductive Silver Inks and Their Applications in Printed and Flexible Electronics.” RSC Adv., 5 77760–77790 (2015)

  5. Zhou, W, Yu, Y, Bai, S, Hu, A, “Laser Direct Writing of Waterproof Sensors Inside Flexible Substrates for Wearable Electronics.” Opt. Laser Technol., 135 (2021)

  6. Zhong, T, **, N, Yuan, W, Zhou, C, Gu, W, Cui, Z, “Printable Stretchable Silver Ink and Application to Printed RFID Tags for Wearable Electronics.” Materials (Basel), 12 (2019)

  7. Soomro, AM, Jabbar, F, Ali, M, Lee, J-W, Mun, SW, Choi, KH, “All-Range Flexible and Biocompatible Humidity Sensor Based on Poly Lactic Glycolic Acid (PLGA) and Its Application in Human Breathing for Wearable Health Monitoring.” J. Mater. Sci. Mater. Electron., 30 9455–9465 (2019)

    Article  CAS  Google Scholar 

  8. Ibrahim, N, Mustapha, M, “Electrical Conductivity of Silver Conductive Ink Synthesized Using Chemical Reduction Method.” In: 3rd International Postgraduate Conference on Materials, Minerals & Polymer (Mamip) 2019 (2020)

  9. Li, D, Lai, WY, Zhang, YZ, Huang, W, “Printable Transparent Conductive Films for Flexible Electronics.” Adv. Mater., 30 (2018)

  10. Oliveira, AEF, Pereira, AC, de Resende, MAC, Ferreira, LF, “Synthesis of a Silver Nanoparticle Ink for Fabrication of Reference Electrodes.” Talanta Open, 5 (2022)

  11. Cummins, G, Desmulliez, MPY, “Inkjet Printing of Conductive Materials—A Review.” Circuit World, 38 193–213 (2012)

    Article  CAS  Google Scholar 

  12. Jang, S, Seo, Y, Choi, J, Kim, T, Cho, J, Kim, S, Kim, D, “Sintering of Inkjet Printed Copper Nanoparticles for Flexible Electronics.” Scr. Mater., 62 258–261 (2010)

    Article  CAS  Google Scholar 

  13. Ermak, O, Zenou, M, Toker, GB, Ankri, J, Shacham-Diamand, Y, Kotler, Z, “Rapid Laser Sintering of Metal Nano-Particles Inks.” Nanotechnology, 27 385201 (2016)

    Article  Google Scholar 

  14. Hong, H, Jiang, L, Tu, H, Hu, J, Moon, K-S, Yan, X, Wong, C-P, “Rational Design and Evaluation of UV Curable Nano-Silver Ink Applied in Highly Conductive Textile-Based Electrodes and Flexible Silver-Zinc Batteries.” J. Mater. Sci. Technol., 101 294–307 (2022)

    Article  CAS  Google Scholar 

  15. Liu, X, Li, D, Fukutani, H, Trudeau, P, Khoun, L, Mozenson, O, Sampson, KL, Gallerneault, M, Paquet, C, Lacelle, T, Deore, B, Ferrand, O, Ferrigno, J, Malenfant, PRL, Kell, A.J, “UV-Sinterable Silver Oxalate‐Based Molecular Inks and Their Application for In-Mold Electronics.” Adv. Electron. Mater., 7 (2021)

  16. Wang, N, Liu, Y, Guo, W, **, C, Mei, L, Peng, P, “Low-Temperature Sintering of Silver Patterns on Polyimide Substrate Printed with Particle-Free Ink.” Nanotechnology, 31 305301 (2020)

    Article  CAS  Google Scholar 

  17. Yang, W, Hermerschmidt, F, Mathies, F, List-Kratochvil, EJW, “Comparing Low-Temperature Thermal and Plasma Sintering Processes of a Tailored Silver Particle-Free Ink.” J. Mater. Sci.: Mater. Electron., 32 6312–6322 (2021)

    CAS  Google Scholar 

  18. Cai, Y, Yao, X, Piao, X, Zhang, Z, Nie, E, Sun, Z, “Inkjet Printing of Particle-Free Silver Conductive Ink with Low Sintering Temperature on Flexible Substrates.” Chem. Phys. Lett. 737 (2019)

  19. Yang, W, List-Kratochvil, EJW, Wang, C, “Metal Particle-Free Inks for Printed Flexible Electronics.” J. Mater. Chem. C, 7 15098–15117 (2019)

    Article  CAS  Google Scholar 

  20. Bei, Y, Cheng, H, Zu, M, “Research Status and Prospects of Particle-Free Silver Conductive Ink.” IOP Conf. Series: Mater. Sci. Engi., 394 (2018)

  21. Gu, Y, Wu, A, Federici, JF, “Comparison of Thermal Decomposition and Chemical Reduction of Particle-Free Silver Ink for Inkjet Printing.” Thin Solid Films, 636 397–402 (2017)

    Article  CAS  Google Scholar 

  22. Chen, J-J, Zhang, J, Wang, Y, Guo, Y-L, Feng, Z-S, “A particle-Free Silver Precursor Ink Useful for Inkjet Printing to Fabricate Highly Conductive Patterns.” J. Mater. Chem. C, 4 10494–10499 (2016)

    Article  CAS  Google Scholar 

  23. Nie, X, Wang, H, Zou, J, “Inkjet Printing of Silver Citrate Conductive Ink on PET Substrate.” Appl. Surf. Sci., 261 554–560 (2012)

    Article  CAS  Google Scholar 

  24. Ipekci, HH, Gozutok, Z, Celik, N, Serdar Onses, M, Uzunoglu, A, “Ink-jet Printing of Particle-Free Silver Inks on Fabrics with a Superhydrophobic Protection Layer for Fabrication of Robust Electrochemical Sensors.” Microchem. J. 164 (2021)

  25. Yang, W, Mathies, F, Unger, EL, Hermerschmidt, F, List-Kratochvil, EJW, “One-Pot Synthesis of a Stable and Cost-Effective Silver Particle-Free Ink for Inkjet-Printed Flexible Electronics.” J. Mater. Chem. C, 8 16443–16451 (2020)

    Article  CAS  Google Scholar 

  26. Mou, Y, Cheng, H, Wang, H, Sun, Q, Liu, J, Peng, Y, Chen, M, “Facile Preparation of Stable Reactive Silver Ink for highly Conductive and Flexible Electrodes.” Appl. Surf. Sci., 475 75–82 (2019)

    Article  CAS  Google Scholar 

  27. Krawczyk, KK, Groten, J, Glushko, O, Krivec, M, Frühwirth, M, Schulz, G, Wolf, C, Hartmann, D, Moser, M, Cordill, MJ, Stadlober, B, Griesser, T, “Self-Reducing Silver Ink on Polyurethane Elastomers for the Manufacture of Thin and Highly Stretchable Electrical Circuits.” Chem. Mater., 33 2742–2755 (2021)

    Article  CAS  Google Scholar 

  28. Xu, W, Wang, T, “Synergetic Effect of Blended Alkylamines for Copper Complex Ink to Form Conductive Copper Films.” Langmuir, 33 82–90 (2017)

    Article  CAS  Google Scholar 

  29. Yang, W, Wang, C, Arrighi, V, “Effects of Amine Types on the Properties of Silver Oxalate Ink and the Associated Film Morphology.” J. Mater. Sci. Mater. Electron., 29 20895–20906 (2018)

    Article  CAS  Google Scholar 

  30. Cha, DK, Kloss, AA, Tikanen, AC, Fawcett, WR, “Solvent-Induced Frequency Shifts in the Infrared Spectrum of Acetone in Organic Solvents.” Phys. Chem. Chem. Phys. 1 (1999)

  31. Dong, Y, Li, X, Liu, S, Zhu, Q, Zhang, M, Li, J-G, Sun, X, “Optimizing Formulations of Silver Organic Decomposition Ink for Producing Highly-Conductive Features on Flexible Substrates: The Case Study of Amines.” Thin Solid Films, 616 635–642 (2016)

    Article  CAS  Google Scholar 

  32. Han, P, Wang, H, “The Gravity Effect on Spin Coating Glucose Thin Film.” IOP Conf. Sci.: Mater. Sci. Eng., 137 (2016)

  33. Kiremitler, NB, Esidir, A, Gozutok, Z, Ozdemir, AT, Onses, MS, “Rapid Fabrication of High-Performance Transparent Electrodes by Electrospinning of Reactive Silver Ink Containing Nanofibers.” J. Ind. Eng. Chem., 95 109–119 (2021)

    Article  CAS  Google Scholar 

  34. Paquet, C, Lacelle, T, Liu, X, Deore, B, Kell, AJ, Lafreniere, S, Malenfant, PRL, “The Role of Amine Ligands in Governing Film Morphology and Electrical Properties of Copper Films Derived from Copper Formate-Based Molecular Inks.” Nanoscale, 10 6911–6921 (2018)

    Article  CAS  Google Scholar 

  35. Wu, B, Huang, H, Yang, J, Zheng, N, Fu, G, “Selective Hydrogenation of Alpha, Beta-Unsaturated Aldehydes Catalyzed by Amine-Capped Platinum-Cobalt Nanocrystals.” Angew. Chem. Int. Ed. Engl., 51 3440–3443 (2012)

    Article  CAS  Google Scholar 

  36. Ouyang, R, Liu, JX, Li, WX, “Atomistic Theory of Ostwald Ripening and Disintegration of Supported Metal Particles Under Reaction Conditions.” J. Am. Chem. Soc., 135 1760–1771 (2013)

    Article  CAS  Google Scholar 

  37. Andersson Trojer, M, Movahedi, A, Blanck, H, Nydén, M, “Imidazole and Triazole Coordination Chemistry for Antifouling Coatings.” J. Chem. 1–23 (2013)

  38. Pruchnik, FP, Duraj, SA, “Organometallic Chemistry of the Transition Elements, Ökonomische probleme des Übergangs vom Sozialismus zum Kommunismus.” (1990)

  39. “Structure and Properties of Coordination Compounds.”

  40. Dong, Y, Li, X, Liu, S, Zhu, Q, Li, J-G, Sun, X, “Facile Synthesis of High Silver Content MOD Ink by Using Silver Oxalate Precursor for Inkjet Printing Applications.” Thin Solid Films, 589 381–387 (2015)

    Article  CAS  Google Scholar 

  41. Zope, KR, Cormier, D, Williams, SA, “Reactive Silver Oxalate Ink Composition with Enhanced Curing Conditions for Flexible Substrates.” ACS Appl. Mater. Interfaces, 10 3830–3837 (2018)

    Article  CAS  Google Scholar 

  42. Shabanov, N, Chiolerio, A, Isaev, A, Amirov, A, Rabadanov, K, Akhmedov, A, Asvarov, A, “A Water-Soluble Ink Based on Diamine Silver(I) Carbonate, Ammonium Formate, and Polyols for Inkjet Printing of Conductive Patterns.” Eur. J. Inorg. Chem., 2019 178–182 (2019)

    Article  CAS  Google Scholar 

  43. Mou, Y, Zhang, Y, Cheng, H, Peng, Y, Chen, M, “Fabrication of Highly Conductive and Flexible Printed Electronics by Low Temperature Sintering Reactive Silver Ink.” Appl. Surf. Sci., 459 249–256 (2018)

    Article  CAS  Google Scholar 

  44. Wang, Y, Du, D, Zhou, Z, **e, H, Li, J, Zhao, Y, “Reactive Conductive Ink Capable of In Situ and Rapid Synthesis of Conductive Patterns Suitable for Inkjet Printing.” Molecules, 24 (2019)

  45. Manjunath, G, Pujar, P, Gupta, B, Gupta, D, Mandal, S, “Low-Temperature Reducible Particle-Free Screen-Printable Silver Ink for the Fabrication of High Conductive Electrodes.” J. Mater. Sci. Mater. Electron., 30 18647–18658 (2019)

    Article  CAS  Google Scholar 

  46. Zhou, Z, Walker, SB, LeMieux, M, Leu, PW, “Polymer-Embedded Silver Microgrids by Particle-Free Reactive Inks for Flexible High-Performance Transparent Conducting Electrodes.” ACS Appl. Electron. Mater., 3 2079–2086 (2021)

    Article  CAS  Google Scholar 

  47. Chen, Y, Wang, X, Zhang, B, Ma, W, Chen, W, “Facile Synthesis of Silver Malonate Conductive MOD Ink for Screen Printing.” J. Mater. Sci.: Mater. Electron., 32 22119–22128 (2021)

    CAS  Google Scholar 

  48. Jiang, H, Tang, C, Wang, Y, Mao, L, Sun, Q, Zhang, L, Song, H, Huang, F, Zuo, C, “Low Content and Low-Temperature Cured Silver Nanoparticles/Silver Ion Composite Ink for Flexible Electronic Applications with Robust Mechanical Performance.” Appl. Surf. Sci., 564 (2021)

  49. Kim, I, Lee, T-M, Kim, J, “A Study on the Electrical and Mechanical Properties of Printed Ag Thin Films for Flexible Device Application.” J. Alloys Compd., 596 158–163 (2014)

    Article  CAS  Google Scholar 

  50. Huang, Q, Zhu, Y, “Printing Conductive Nanomaterials for Flexible and Stretchable Electronics—A Review of Materials, Processes, and Applications.” Adv. Mater. Technol., 4 (2019)

Download references

Acknowledgments

This work was financially supported by the Major Science and Technology Project Fund of Yunnan Province (202002AB080001-1 & 202102AB080008 & 202101BC070001-017). The authors would like to thank the facility support of Analytical and Testing Center of Kunming University of Science and Technology for FTIR, XRD and SEM measurements.

Funding

The Applied Basic Research Key Project of Yunnan, 202102AB080008, Guoyou Gan, 202002AB080001-1, Guoyou Gan, 202001BC070001-017, Guoyou Gan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyou Gan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 414 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Gan, G., Fan, P. et al. Facile preparation of particle-free hybrid amine silver ink with synergistic effect for low-resistivity flexible films. J Coat Technol Res 20, 1845–1856 (2023). https://doi.org/10.1007/s11998-023-00781-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00781-8

Keywords

Navigation