Log in

Facile synthesis of monodisperse silver nanoparticles for screen printing conductive inks

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Monodisperse silver nanoparticles with high concentration are successful synthesized by a modified polyol process under a relatively low mass ratio of PVP to AgNO3. The obtained silver nanoparticles with excellent stability and dispersity possess a mean diameter of about 118 nm and the yield reach to 80 wt%. Then, using the as-prepared silver nanoparticles as filler together with other additives, conductive inks were formulated. This kind of conductive ink could be screen-printed on polyimide substrates to obtain a series of electrical conductive circuits. A relatively low resistivity of 8.3 × 10− 6 Ω·cm which was only five times larger than that of bulk silver was achieved under sintering at 220 °C for 30 min under air atmosphere. Meanwhile, the electrical conductive circuits kept outstanding mechanical performance. So this silver nanoparticles filled electrical conductive inks has the potential applications in flexible wearable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, U.S. Schubert, Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20, 8446–8453 (2010)

    Article  Google Scholar 

  2. R. Guo, Y. Yu, Z. **e, X. Liu, X. Zhou, Y. Gao, Z. Liu, F. Zhou, Y. Yang, Z. Zheng, Matrix- assisted catalytic printing for the fabrication of multiscale, flexible, foldable, and stretchable metal conductors. Adv. Mater. 25, 3343–3350 (2013)

    Article  Google Scholar 

  3. C.P. Yu, J. Zhang, Z. Li, W. Tian, L.J. Wang, J. Luo, Q.L. Li, X.D. Fan, Y.G. Yao, Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Compos. Part A 98, (25–31) (2017)

    Article  Google Scholar 

  4. J. Luo, Z. Cheng, C. Li, L. Wang, C. Yu, Y. Zhao, M. Chen, Q.W. Li, Y.G. Yao, Electrically conductive adhesives based on thermoplastic polyurethane filled with silver flakes and carbon nanotubes. Compos. Sci. Technol. 129, 191–197, (2016)

    Article  Google Scholar 

  5. C.W. Li, X.K. Gong, L. Tang, K. Zhang, J. Luo, L. Ling, J. Pu, T.T. Li, M.X. Li, Y.G. Yao, Electrical property enhancement of electrically conductive adhesives through Ag-coated-Cu surface treatment by terephthalaldehyde and iodine. J. Mater. Chem. C 3, 6178–6184 (2015)

    Article  Google Scholar 

  6. C.W. Li, Q.L. Li, L.Y. Cheng, T.T. Li, H.F. Lu, L. Tang, K. Zhang, E. Songfeng, J. Zhang, Z. Li, Y.G. Yao, Conductivity enhancement of polymer composites using high-temperature short-time treated silver fillers. Compos. Part A 100, 64–70 2017

    Article  Google Scholar 

  7. J. Zhang, X.N. Wang, C.P. Yu, Q.L. Li, Z. Li, C.W. Li, H.F. Lu, Q.C. Zhang, J.X. Zhao, M. Hu, Y.G. Yao, A facile method to prepare flexible boron nitride/poly(vinylalcohol) composites with enhanced thermal conductivity. Compos. Sci. Technol. 149, 41–47 (2017)

    Article  Google Scholar 

  8. C.K. Frederik, J. Mikkel, N. Kion, H. Ole, A. Jan, D.N. Torben, F. Jan, L. Kaj, K. Jette, Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. C 93, 394–412 (2009)

    Article  Google Scholar 

  9. Z. Zhang, X. Zhang, Z. **n, M. Deng, Y. Wen, Y. Song, Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology 22, 425601 (2011)

    Article  Google Scholar 

  10. D.G. Yu, Formation of colloidal silver nanoparticles stabilized by Na+-poly (γ-glutamic acid)-silver nitrate complex via chemical reduction process. Colloids Surf. B 59, 171–178 (2007)

    Article  Google Scholar 

  11. Y.C. Liu, L.H. Lin, New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochem. Commun. 6, 1163–1168 (2004)

    Article  Google Scholar 

  12. S. KeKi, J. Torok, G. Deak, et al, Silver nanoparticles by PAMAM-assisted photochemical reduction of Ag+. J. Colloid. Interf. Sci. 229, 550–553 (2000)

    Article  Google Scholar 

  13. C.H. Bae, S.H. Nam, S.M. Park, Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. Appl. Surf. Sci. 197, 628–634 (2002)

    Article  Google Scholar 

  14. R. Harpeness, A. Gedanken, Microwave synthesis of core-shell gold/palladium bimetallic nanoparticles. Langmuir 20, 3431–3434 (2004)

    Article  Google Scholar 

  15. D. Kim, S. Jeong, J. Moon, Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17(16), (2006)

  16. Y. Sun, Y.N. **a, Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002)

    Article  Google Scholar 

  17. R. He, X.F. Qian, J. Yin, Z.K. Zhu, Preparation of polychrome silver nanoparticles in different solvents. J. Mater. Chem. 16, 3783–3786 (2002)

    Article  Google Scholar 

  18. B.K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J.S. Kim, Synthesis and size control of monodisperse copper nanoparticles by polyol method. J. Colloid Interface Sci. 311, 417–424 (2007)

    Article  Google Scholar 

  19. J. Sun, Y. **g, Y. Jia, M. Tillard, C. Belin, Mechanism of preparing ultrafine copper powder by polyol process. Mater. Lett 59, 3933–3936 (2005)

    Article  Google Scholar 

  20. M. Rycenga, C.M. Cobley, J. Zeng, W.Y. Li, C.H. Moran, etc, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011)

    Article  Google Scholar 

  21. T. Zhao, R. Sun, S. Yu, Z. Zhang, L. Zhou, H. Huang, R. Du, Size-controlled preparation of silver nanoparticles by a modified polyol method. Colloids. Surf. A 366, 197–202 (2010)

    Article  Google Scholar 

  22. K.S. Chou, Y.C. Chang, L.H. Chiu, Studies on the continuous precipitation of silver nanoparticles. Ind. Eng. Chem. Res. 51, 4905–4910 (2012)

    Article  Google Scholar 

  23. A.P. Dino, E.J. Ghassan, P. Nasser, Application of screen printing in the fabrication of organic light-emitting devices. Adv. Mater. 12, 1249–1252 (2000)

    Article  Google Scholar 

  24. L. Dearden, P.J. Smith, D.Y. Shin, N. Reis, B. Derby, P. O’Brien, A low curing temperature silver ink for use in ink-jet printing and subsequent production of conductive tracks. Macromol. Rapid Commun. 26, 315–318 (2005)

    Article  Google Scholar 

  25. P. Jolke, E.H. Chris, W.M.D.L. Antonius, S.S. Ulrich, One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology (2009). doi:10.1088/0957-4484/20/16/165303

    Google Scholar 

  26. Z. Zhang, B. Zhao, L. Hu, PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J. Solid State Chem. 121, 105–110 (1996)

    Article  Google Scholar 

  27. F. Bonet, K. Tekaia-Elhsissen, K.V. Sarathy, Study of interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process. Bull. Mater. Sci. 23, 165–168 (2000)

    Article  Google Scholar 

  28. O. Sosa, C. Noguez, R.G. Barrera, Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 107, 6269–6267 (2003)

    Article  Google Scholar 

  29. Özmetin, M. Copur, A. Yartasi, M.M. Kocakerim, Kinetic investigation of reaction between metallic silver and nitric acid solutions in the range 7.22–14.44 M. Chem. Eng. Technol. 23, 4641–4645 (1998)

    Google Scholar 

  30. >Y.G. Wiley, Y. Sun, Y. **a, Synthesis of silver nanostructures with controlled shapes and properties. Acc. Chem. Res. 40, 1067–1076 (2007)

    Article  Google Scholar 

  31. J. Kim, S.H. Jeong, J.H. Moon, Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnogy. 17, 4019–4024 (2006)

    Article  Google Scholar 

  32. B. Wiley, Y. Sun, B. Mayers, Y. **a, Shape-controlled synthesis of metal nanostructures: the case of silver. Chem. Eur. J. 11, 431–435 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (21571186), Guangdong Provincial Key Laboratory (2014B030301014) Youth Innovation Promotion Association (2017411), Guangdong TeZhi plan youth talent of science and technology (2014TQ01C102), Shenzhen science & Technology Program (JSGG20160229155249762 and JSGG20150512145714246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liang, X., Zhao, T. et al. Facile synthesis of monodisperse silver nanoparticles for screen printing conductive inks. J Mater Sci: Mater Electron 28, 16939–16947 (2017). https://doi.org/10.1007/s10854-017-7614-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7614-y

Navigation