Log in

Experimental Optimization of Blended Powder Semisolid Forming Parameters for Production of 316L Stainless Steel Nanocomposites Reinforced with Al2O3np

  • Powder-based Functional Materials for Extreme Environments: Processing and Characterization
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Taguchi method was employed to investigate the influence of blended powder semisolid forming (BPSF) factors on the porosity and hardness of 316L matrix nanocomposites. These factors included the particle size (316L and Al2O3), Al2O3 weight fraction, and blending time. 316L/Al2O3 powders were added to ethanol solution and subjected to ultrasonic homogenization. Subsequently, the powders were blended using a planetary ball mill. Cold compaction was performed under 800 MPa pressure. Semisolid sintering process was conducted in 1440°C. Powder morphology, microstructure, and phase formation were investigated. The particle size of the matrix and mechanical blending time have the greatest impact on the porosity, while the reinforcing particle size and weight fraction of reinforcing material have the least influence on the porosity. As for hardness, the matrix particle size was identified as the most significant factor, followed by the reinforcing weight fraction and mechanical blending time. The reinforcing particle size exhibited the least effect on the hardness. Successful distribution and dispersion of nanoparticles within matrix were achieved in optimized samples. The results introduce BPSF as a promising method in develo** high performance 316L matrix nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.H. Bae, J.M. Yu, V.H. Dao, V. Lok, and K.B. Yoon, J. Mech. Sci. Technol. 35, 3803 https://doi.org/10.1007/s12206-021-2103-x (2021).

    Article  Google Scholar 

  2. M. Yasir, M. Danish, M. Mia, M.K. Gupta, and M. Sarikaya, Int. J. Adv. Manuf. Technol. 112, 1065 https://doi.org/10.1007/s00170-020-06413-4 (2021).

    Article  Google Scholar 

  3. A. Dudek, and R. Włodarczyk, Mater. Sci. Forum 706–709, 643 https://doi.org/10.4028/www.scientific.net/MSF.706-709.643 (2012).

    Article  CAS  Google Scholar 

  4. Y. Zhong, Z. Zheng, J. Li, and C. Wang, Mater. Sci. Eng. A 820, 141539 https://doi.org/10.1016/j.msea.2021.141539 (2021).

    Article  CAS  Google Scholar 

  5. H.R. Ben Zine, Z.E. Horváth, K. Balázsi, and C. Balázsi, Coatings 13, 322 https://doi.org/10.3390/coatings13020322 (2023).

    Article  CAS  Google Scholar 

  6. T. Dudziak, R. Buzolin, E. Rzad, M. Wójcicki, F. Kateusz, S. Arneitz, and A. Polkowska, J. Mater. Eng. Perform. https://doi.org/10.1007/s11665-023-08321-6 (2023).

    Article  Google Scholar 

  7. B. AlMangour, Y.-K. Kim, D. Grzesiak, and K.-A. Lee, Compos. Part B Eng. 156, 51 https://doi.org/10.1016/j.compositesb.2018.07.050 (2019).

    Article  CAS  Google Scholar 

  8. B. AlMangour, M.-S. Baek, D. Grzesiak, and K.-A. Lee, Mater. Sci. Eng. A 712, 812 https://doi.org/10.1016/j.msea.2017.11.126 (2018).

    Article  CAS  Google Scholar 

  9. D. Tanprayoon, S. Srisawadi, Y. Sato, M. Tsukamoto, and T. Suga, Opt. Laser Technol. 129, 106238 https://doi.org/10.1016/j.optlastec.2020.106238 (2020).

    Article  CAS  Google Scholar 

  10. B. AlMangour, D. Grzesiak, and J.-M. Yang, J. Alloys Compd. 680, 480 https://doi.org/10.1016/j.jallcom.2016.04.156 (2016).

    Article  CAS  Google Scholar 

  11. A. Javdani, and A.H. Daei-Sorkhabi, Trans. Nonferr. Met. Soc. China 28, 1298 https://doi.org/10.1016/S1003-6326(18)64767-3 (2018).

    Article  CAS  Google Scholar 

  12. A. Javdani, V. Pouyafar, A. Ameli, and A.A. Volinsky, Mater. Des. 109, 57 https://doi.org/10.1016/j.matdes.2016.07.042 (2016).

    Article  CAS  Google Scholar 

  13. G. Li, H. Lu, X. Hu, F. Lin, X. Li, and Q. Zhu, Metals. https://doi.org/10.3390/met10020238 (2020).

    Article  Google Scholar 

  14. H. Hanizam, M.S. Salleh, M.Z. Omar, A.B. Sulong, and M.A.M. Arif, J. Alloys Compd. 836, 155378 https://doi.org/10.1016/j.jallcom.2020.155378 (2020).

    Article  CAS  Google Scholar 

  15. G. Plata, J. Lozares, I. Hurtado, and Z. Azpilgain, Semisolid forging of steels: readiness from an industrial point of view, in Paper Presented at the AIP Conference Proceedings, Vitoria-Gasteiz, Spain (2019).

  16. J. Lozares, G. Plata, Z. Azpilgain, and G. Álvarez, Semisolid forming of 42CrMo4E steel grade, in Paper Presented at the AIP Conference Proceedings, Nantes, France (2016).

  17. G. Plata, J. Lozares, Z. Azpilgain, I. Hurtado, I. Loizaga, and Z. Idoyaga, Semisolid forming of S48C steel grade, in Paper Presented at the AIP Conference Proceedings, Dublin, Ireland (2017).

  18. G. Plata, J. Lozares, I. Hurtado, Z. Azpilgain, and Z. Idoyaga, Semisolid forming of 44MnSiV6 microalloyed steel, in Paper presented at the AIP Conference Proceedings, Palermo, Italy (2018).

  19. J. Lozares, G. Plata, I. Hurtado, Z. Azpilgain, and I. Loizaga, Solid State Phenom. 285, 411 https://doi.org/10.4028/www.scientific.net/SSP.285.411 (2019).

    Article  Google Scholar 

  20. P. Kapranos, Metals. https://doi.org/10.3390/met9121301 (2019).

    Article  Google Scholar 

  21. D. Marini, D. Cunningham, and J.R. Corney, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232, 650 https://doi.org/10.1177/0954405417708220 (2017).

    Article  Google Scholar 

  22. N.H. Husain, A.H. Ahmad, and M.M. Rashidi, IOP Conf. Ser. Mater. Sci. Eng. 257, 012053 https://doi.org/10.1088/1757-899X/257/1/012053 (2017).

    Article  Google Scholar 

  23. X. Luo, C. Fang, Z. Fan, B. Huang, and J. Yang, Mater. Res. Express 6, 076528 https://doi.org/10.1088/2053-1591/ab14b0 (2019).

    Article  ADS  CAS  Google Scholar 

  24. X. Luo, M. Wu, C. Fang, and B. Huang, JOM 71, 4349 https://doi.org/10.1007/s11837-019-03419-6 (2019).

    Article  ADS  Google Scholar 

  25. S.-J. Luo, Trans. Nonferr. Met. Soc. China 10, 304 (2000).

    CAS  Google Scholar 

  26. S.-J.L. Yuansheng Cheng, and Z.-M. Du, Trans. Nonferr. Met. Soc. China 15, 1062 (2005).

    Google Scholar 

  27. S. Luo, Y. Cheng, and P. Wang, Trans. Nonferr. Met. Soc. China 16, 772 https://doi.org/10.1016/S1003-6326(06)60324-5 (2006).

    Article  CAS  Google Scholar 

  28. R.W. Hamilton, Z. Zhu, R.J. Dashwood, and P.D. Lee, Compos. Part A Appl. Sci. Manuf. 34, 333 https://doi.org/10.1016/S1359-835X(03)00030-7 (2003).

    Article  CAS  Google Scholar 

  29. Y. Wu, Development of Novel Semisolid Powder Processing for Micromanufacturing, Master thesis, IOWA State University, Ames (2009).

  30. Y. Wu, Fabrication of Metal Matrix Composite by Semi-solid Powder Processing, Doctoral thesis, IOWA State University, Ames (2011).

  31. M. Bastwros, G.-Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, and X. Wang, Compos. Part B Eng. 60, 111 https://doi.org/10.1016/j.compositesb.2013.12.043 (2014).

    Article  CAS  Google Scholar 

  32. Y. Mao, C. Cai, J. Zhang, Y. Heng, K. Feng, D. Cai, and Q. Wei, J. Mater. Res. Technol. 22, 2720 https://doi.org/10.1016/j.jmrt.2022.12.096 (2023).

    Article  CAS  Google Scholar 

  33. S. Shin, H. Park, B. Park, S.-B. Lee, S.-K. Lee, Y. Kim, S. Cho, and I. Jo, Appl. Sci. https://doi.org/10.3390/app11030952 (2021).

    Article  PubMed  Google Scholar 

  34. M. Malaki, W. Xu, A.K. Kasar, P.L. Menezes, H. Dieringa, R.S. Varma, and M. Gupta, Metals. https://doi.org/10.3390/met9030330 (2019).

    Article  Google Scholar 

  35. C. Suryanarayana, Mater. Res. Lett. 10, 619 https://doi.org/10.1080/21663831.2022.2075243 (2022).

    Article  CAS  Google Scholar 

  36. Z. Zhao, J. Li, P. Bai, H. Qu, M. Liang, H. Liao, L. Wu, P. Huo, H. Liu, and J. Zhang, Metals. https://doi.org/10.3390/met9020267 (2019).

    Article  Google Scholar 

  37. O.O. Salman, A. Funk, A. Waske, J. Eckert, and S. Scudino, Technologies. https://doi.org/10.3390/technologies6010025 (2018).

    Article  Google Scholar 

  38. B.P. Behera, Synthesis of Nano-structured Stainless Steel Powder by Mechanical Alloying and Characterization, Bachelor thesis, National institute of technology of India, Pourkela (2013).

  39. A. Safia, S. Saida, and S.O. Joan Joseph, in Applications of Calorimetry in a Wide Context. ed. by E. Amal Ali (IntechOpen, Rijeka, 2013), p. 2.

    Google Scholar 

  40. D. Sumanth Kumar, B. Jai Kumar, and H.M. Mahesh, in Synthesis of Inorganic Nanomaterials. ed. by S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, and S. Thomas (Woodhead Publishing, Sawston, 2018), pp. 59–88.

    Chapter  Google Scholar 

  41. H. Ghayour, M. Abdellahi, and M. Bahmanpour, Powder Technol. 291, 7 https://doi.org/10.1016/j.powtec.2015.12.004 (2016).

    Article  CAS  Google Scholar 

  42. X. Li, H.J. Willy, S. Chang, W. Lu, T.S. Herng, and J. Ding, Mater. Des. 145, 1 https://doi.org/10.1016/j.matdes.2018.02.050 (2018).

    Article  CAS  Google Scholar 

  43. H.Ö. Gülsoy, T. Baykara, and S. Özbek, Powder Metall. 54, 360 https://doi.org/10.1179/003258910X12678035166692 (2011).

    Article  ADS  Google Scholar 

  44. T.P.S. Mahathanabodee, S. Raadnui, R. Tongsri, and N. Sombatsompop, Microstructure, Physical Properties and Wear Behavior of SS316L/h-BN Composites, in Paper Presented at the 8th Asian-Australasian Conference on Composites Materials, Kuala Lumpur, Malaysia (2012).

  45. M.F. Imbaby, and K. Jiang, Acta Mater. 57, 4751 https://doi.org/10.1016/j.actamat.2009.06.034 (2009).

    Article  ADS  CAS  Google Scholar 

  46. M. Khakbiz, A. Simchi, and R. Bagheri, Powder Metall. 48, 144 https://doi.org/10.1179/003258905X37747 (2005).

    Article  ADS  CAS  Google Scholar 

  47. B. Li, B. Qian, Y. Xu, Z. Liu, J. Zhang, and F. Xuan, Mater. Sci. Eng. A 745, 495 https://doi.org/10.1016/j.msea.2019.01.008 (2019).

    Article  CAS  Google Scholar 

  48. K. Park, D. Kim, K. Kim, S. Cho, K. Takagi, and H. Kwon, Materials (Basel) 12, 1473 https://doi.org/10.3390/ma12091473 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. W. Zhai, W. Zhou, S.M.L. Nai, and J. Wei, J. Mater. Sci. Technol. 47, 162 https://doi.org/10.1016/j.jmst.2020.02.019 (2020).

    Article  CAS  Google Scholar 

  50. S. Zhao, X. Shen, J. Yang, W. Teng, and Y. Wang, Opt. Laser Technol. 103, 239 https://doi.org/10.1016/j.optlastec.2018.01.005 (2018).

    Article  ADS  CAS  Google Scholar 

  51. A.V. Radhamani, H.C. Lau, M. Kamaraj, and S. Ramakrishna, Tribol. Int. 152, 106524 https://doi.org/10.1016/j.triboint.2020.106524 (2020).

    Article  CAS  Google Scholar 

  52. T.Y. Ansell, T. Hanneman, A. Gonzalez-Perez, C. Park, and A. Nieto, Part. Sci. Technol. 39, 981 https://doi.org/10.1080/02726351.2021.1876192 (2021).

    Article  CAS  Google Scholar 

  53. O.O. Edosa, F.K. Tekweme, and K. Gupta, Eng. Appl. Sci. Res. 49, 433 (2021).

    Google Scholar 

  54. A. Saxena, K.K. Saxena, V.K. Jain, S.K. Rajput, and B.N. Pathak, Mater. Today Proc. https://doi.org/10.1016/j.matpr.2023.02.227 (2023).

    Article  Google Scholar 

  55. S.R. Kandala, K. Balani, and A. Upadhyaya, High Temp. Mater. Process. 38, 792 https://doi.org/10.1515/htmp-2019-0032 (2019).

    Article  ADS  CAS  Google Scholar 

  56. S. Ali, A.M. Abdul Rani, R. Ahmad Mufti, S.W. Ahmed, Z. Baig, S. Hastuty, M.A. Razak, and A.A. Abdu Aliyu, Processes 38, 381 https://doi.org/10.3390/pr8030297 (2020).

    Article  CAS  Google Scholar 

  57. K.V.V. Nagaraju, S. Kumaran, and T. Srinivasa Rao, Mater. Today Proc. 27, 2066 https://doi.org/10.1016/j.matpr.2019.09.062 (2020).

    Article  CAS  Google Scholar 

  58. B. Kozub, M. Uthayakumar, and J. Kazior, Materials. https://doi.org/10.3390/ma15103629 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. P. Li, T. Chen, S. Zhang, and R. Guan, Metals. https://doi.org/10.3390/met5020547 (2015).

    Article  Google Scholar 

  60. R. de Oro Calderon, C. Gierl-Mayer, and H. Danninger, Encycl. Mater. Met. Alloys 3, 481 (2022).

    Google Scholar 

  61. M.-H. Ku, L.-C. Tsao, Y.-J. Tsai, Z.-J. Lin, and M.-W. Wu, Materials. https://doi.org/10.3390/ma15165483 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. R. Bollina, In Situ Evaluation of Supersolidus Liquid Phase Sintering Phenomena of Stainless Steel 316L: Densification and Distortion, Doctoral thesis, The Pennsylvania State University, University Park, PA (2005).

  63. P.J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design (McGraw-Hill, New York, 1996), p329.

    Google Scholar 

  64. B.P. Nanda, and A. Satapathy, IOP Conf. Ser. Mater. Sci. Eng. 178, 012012 https://doi.org/10.1088/1757-899X/178/1/012012 (2017).

    Article  Google Scholar 

  65. F. Sánchez, A.M. Bolarín, P. Molera, J.E. Mendoza, and M. Ocampo, Rev. Latinoam. Metal. Mater. 23, 35 (2003).

    Google Scholar 

  66. Z. Razavi Hesabi, H.R. Hafizpour, and A. Simchi, Mater. Sci. Eng. A 454–455, 89 https://doi.org/10.1016/j.msea.2006.11.129 (2007).

    Article  CAS  Google Scholar 

  67. J.B. Fogagnolo, E.M. Ruiz-Navas, M.H. Robert, and J.M. Torralba, Mater. Sci. Eng. A 355, 50 https://doi.org/10.1016/S0921-5093(03)00057-1 (2003).

    Article  CAS  Google Scholar 

  68. U. Ulusoy, Minerals. https://doi.org/10.3390/min13010091 (2023).

    Article  Google Scholar 

  69. C.R. Dandekar, and Y.C. Shin, Compos. Sci. Technol. 71, 350 https://doi.org/10.1016/j.compscitech.2010.11.029 (2011).

    Article  CAS  Google Scholar 

  70. S.S. Panda, V. Singh, A. Upadhyaya, and D. Agrawal, Scr. Mater. 54, 2179 https://doi.org/10.1016/j.scriptamat.2006.02.034 (2006).

    Article  CAS  Google Scholar 

  71. N. Kurgan, Mater. Des. 52, 995 https://doi.org/10.1016/j.matdes.2013.06.035 (2013).

    Article  CAS  Google Scholar 

  72. M.A. Bevan, A. Ameri, D. East, D. Austin, A. Brown, P. Hazell, and J. Escobedo-Diaz, Mechanical properties and behavior of additive manufactured stainless steel 316L, in Paper Presented at the Characterization of Minerals, Metals, and Materials 2017, San Diego, California, USA (2017).

  73. A. Ataollahi Oshkour, S. Pramanik, M. Mehrali, Y.H. Yau, F. Tarlochan, and N.A. Abu Osman, J. Mech. Behav. Biomed. Mater. 49, 321 https://doi.org/10.1016/j.jmbbm.2015.05.020 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. A.K.M.A. Iqbal, and N. Amierah, IOP Conf. Ser. Mater. Sci. Eng. 226, 012168 https://doi.org/10.1088/1757-899X/226/1/012168 (2017).

    Article  Google Scholar 

  75. D.D.B. Goutam Dutta, Int. J. Emerg. Technol. Adv. Eng. 2, 121-123 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ahmadi Najafabadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 324 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javdani, A., Ahmadi Najafabadi, M. Experimental Optimization of Blended Powder Semisolid Forming Parameters for Production of 316L Stainless Steel Nanocomposites Reinforced with Al2O3np. JOM 76, 1245–1261 (2024). https://doi.org/10.1007/s11837-023-06282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06282-8

Navigation