Log in

Experimental Investigation with Optimization of Spot Welding Parameters on Stainless Steel AISI 304

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Opposition spot welding is a welding technique utilizing the standard of non-fusible terminal obstruction welding, where the temperature increases to obtain the dissolving point of the metal, added to a high mechanical strain. Two cathodes of copper not intertwined pack the sheets of metal to be welded against one another and afterward make them go through by an exceptionally impressive current. Our work is separated into two sections. A trial part and a second part on which we will make an improvement of the exploratory outcomes by the design of experiment, to study and see the impact of the boundaries of opposition spot welding, such as current power, welding time, and sheet thickness. In this inquiry, we have quantified and prioritized these last parameters, as well as highlighted their interactions, with the goal of improving the database and making the system more efficient. In addition, the validation of the output responses was carried out in connection with the ultimate strength of the spot welding parameters in order to evaluate the performance of welded joints in terms of their resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Code or Data Availability

Not applicable.

References

  1. J. Hirsch and T. Al-Samman, Acta Mater. 61(3), 818 (2013).

    Article  Google Scholar 

  2. J. Hirsch, Trans. Nonferrous Met. Soc. China 24, 1995 (2014).

    Article  Google Scholar 

  3. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. Smet, and A. Haszler, Mater. Sci. Eng. A 280, 37 (2000).

    Article  Google Scholar 

  4. A. Slimane, B. Bouchouicha, M. Benguediab, and S.A. Slimane, J. Mater. Res. Technol. 4(2), 217 (2015).

    Article  Google Scholar 

  5. A. Slimane, B. Bouchouicha, M. Benguediab, and S.A. Slimane, Trans. Indian Inst. Metals 68, 465 (2015).

    Article  Google Scholar 

  6. A.R. Jahandideh, M. Hamedi, S.A. Mansourzadeh, and A. Rahi, Sci. Technol. Weld. Join. 16(8), 669 (2011).

    Article  Google Scholar 

  7. V. Ra**ikanth, K. Mukherjee, S. GhoshChowdhury, A. Schiebahn, A. Harms, and W. Bleck, Sci. Technol. Weld. Join. 18(6), 485 (2013).

    Article  Google Scholar 

  8. L. Boriwal, M.M. Mahapatra, and P. Biswas, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 226, 664 (2012).

    Article  Google Scholar 

  9. H. Oikawa and T. Saitoh, Weld. Int. 13(5), 349 (2010).

    Article  Google Scholar 

  10. E. Tolf and J. Hedegård, Weld. World 52(3), 43 (2008).

    Article  Google Scholar 

  11. H.L. Lin, T. Chou, C.P. Chou, H.L. Lin, T. Chou, and C.P. Chou, Exp. Tech. 31(5), 30 (2007). https://doi.org/10.1111/j.1747-1567.2007.00186.x.

    Article  Google Scholar 

  12. S. Dancette, D. Fabrègue, V. Massardier, J. Merlin, T. Dupuy, and M. Bouzekri, Eng. Fract. Mech. 78, 2259 (2011).

    Article  Google Scholar 

  13. L. Han, M. Thornton, D. Boomer, and M. Shergold, J. Mater. Process. Technol. 210, 1076 (2010).

    Article  Google Scholar 

  14. K. Zhang, L. Wu, C. Tan, Y. Sun, B. Chen, and X. Song, J. Mater. Process. Tech. 271, 23 (2019).

    Article  Google Scholar 

  15. D. Özyörek, Mater. Des. 29, 597 (2008).

    Article  Google Scholar 

  16. S. Aslanlar, A. Ogur, U. Ozsarac, E. Ilhan, and Z. Demir, Mater. Des. 28, 2 (2007).

    Article  Google Scholar 

  17. A.M. Pereira, J.M. Ferreira, A. Loureiro, J.D.M. Costa, and P.J. Bártolo, Mater. Des. 31, 2454 (2010).

    Article  Google Scholar 

  18. W. Zhang, D. Sun, L. Han, and D. Liu, Mater. Des. 57, 186 (2014).

    Article  Google Scholar 

  19. P. Zhang, J. **e, Y.X. Wang, and J.Q. Chen, Sci. Technol. Weld. Join. 16(7), 567 (2011).

    Article  Google Scholar 

  20. A.V. Prokhorov, Weld. Int. 2016, 313 (2016).

    Google Scholar 

  21. J. Wang, H.P. Wang, F. Lu, B.E. Carlson, and D.R. Sigler, Int. J. Heat Mass Transf. 89, 1061 (2015).

    Article  Google Scholar 

  22. D. Kianersi, A. Mostafaei, and A.A. Amadeh, Mater. Des. 2014, 251 (2014).

    Article  Google Scholar 

  23. S.A. Dahmane, A. Megueni, A. Azzedine, A. Slimane, and A. Lousdad, Int. J. Eng. Res. Africa 44, 135 (2019).

    Article  Google Scholar 

  24. M. Hamedi and M. Atashparva, Weld World 61, 269 (2017).

    Article  Google Scholar 

  25. B. Kaddour, B. Bouchouicha, M. Benguediab, and A. Slimane, Int. J. Interact. Des. Manuf. 12(2), 409 (2018).

    Article  Google Scholar 

  26. S.A. Dahmane, A. Slimane, M. Chaib, M. Kadem, L. Nehari, S.A. Slimane, and A. Azzedine, J. Braz. Soc. Mech. Sci. Eng. 45(2), 119 (2023).

    Article  Google Scholar 

  27. M. Chaib, A. Megueni, A. Ziadi, M. Guagliano, and F.J.V. Belzunce, Int. J. Mater. Prod. Technol. 53(3–4), 298 (2016).

    Article  Google Scholar 

  28. M. Chaib, A. Slimane, S.A. Slimane, A. Ziadi, and B. Bouchouicha, Fratturaed Integrità Strutturale 15(57), 169 (2021).

    Article  Google Scholar 

  29. A. Slimane, S. Slimane, S. Kebdani, M. Chaib, S. Dahmane, B. Bouchouicha, N. Sardi, and S. Adjim, J. Interact. Des. Manuf. 13(2), 521 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out at the Laboratory of Structures and Solids Mechanics. Extend my sincere thanks to all members participating in the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Slimane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This content of this paper has been prepared in compliance with the ethics rules of the authors’ home institutions and Springer.

Consent for Publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 303 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebbal, H., Chaib, M., Slimane, A. et al. Experimental Investigation with Optimization of Spot Welding Parameters on Stainless Steel AISI 304. JOM 75, 4993–5002 (2023). https://doi.org/10.1007/s11837-023-06136-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06136-3

Navigation