Log in

An In Silico-Based Investigation on Anisotropic Hyperelastic Constitutive Models for Soft Biological Tissues

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

We review twelve invariant and dispersion-type anisotropic hyperelastic constitutive models for soft biological tissues based on their fitting performance to various experimental data. To this end, we used a hybrid multi-objective optimization procedure along with a genetic algorithm to generate the initial guesses followed by a gradient-based search algorithm. The constitutive models are then fit to a set of uniaxial and biaxial tension experiments conducted on tissues with different histology. For the in silico investigation, experiments conducted on human aneurysmatic abdominal aorta, linea alba, and rectus sheath tissues are utilized. Accordingly, the models are ranked with respect to an objective normalized quality of fit metric. Finally, a detailed discussion is carried out on the fitting performance of the models. This work provides a valuable quantitative comparison of various anisotropic hyperelastic models, the findings of which can aid researchers in selecting the most suitable constitutive model for their particular analysis. The investigation reveals superior fitting performance of dispersion-type anisotropic constitutive formulations over invariant formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. In the subsequent treatment, the biological tissues will be assumed to behave perfectly incompressible.

  2. It is not common to use second invariant \(I_2\) in modeling isotropic response of soft biological tissues. For this, we omitted the stress terms resulting from dependency of free-energy function on \(I_2\) .

  3. Herein, \(M_{ji}\) and \(m_{ji}\) corresponds to the i\(\text {th}\) components of the fiber orientation vectors \({\varvec{ M }}_i\).

  4. Dispersion-type anisotropic models may as well include invariant terms for the description of isotropic matrix. Here, we focus on the representation of the anisotropic response dominated by the collagen fiber distribution.

  5. Graessel et al. [37] define three layers: ventral, medial, and a thin layer on the dorsal part of linea alba where the collagen distribution is irregular. We follow the description of Levillain et al. [67] omitting the thin layer consisting of irregular collagen fibers on the dorsal surface.

  6. Herein, the term transverse refers to the medial-lateral orientation of the abdominal wall, whereas the longitudinal axis refers to the cranio-caudal axis.

References

  1. Alastrué V, Martinez M, Doblaré M, Menzel A (2009) Anisotropic micro-sphere-based finite elasticity applied to blood vessel modelling. J Mech Phys Solids 57(1):178–203

    Article  MATH  Google Scholar 

  2. Alastrué V, Sáez P, Martínez M, Doblaré M (2010) On the use of the Bingham statistical distribution in microsphere-based constitutive models for arterial tissue. Mech Res Commun 37(8):700–706

    Article  MATH  Google Scholar 

  3. Ateshian GA (2007) Anisotropy of fibrous tissues in relation to the distribution of tensed and buckled fibers. J Biomech Eng 129:240–249

    Article  Google Scholar 

  4. Ateshian GA, Rajan V, Chahine NO, Canal CE, Hung CT (2009) Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng 131(6):061003

    Article  Google Scholar 

  5. Axer H, Keyserlingk DG, Prescher A (2001) Collagen fibers in linea alba and rectus sheaths: I. General scheme and morphological aspects. J Surg Res 96(1):127–134

    Article  Google Scholar 

  6. Axer H, Keyserlingk DG, Prescher A (2001) Collagen fibers in linea alba and rectus sheaths: II. Variability and biomechanical aspects. J Surg Res 96(2):239–245

    Article  Google Scholar 

  7. Balzani D, Neff P, Schröder J, Holzapfel GA (2006) A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int J Solids Struct 43(20):6052–6070

    Article  MathSciNet  MATH  Google Scholar 

  8. Beatty MF (1987) Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues-with examples. Appl Mech Rev 40(12):1699

    Article  Google Scholar 

  9. Bhattarai A, Kowalczyk W, Tran TN (2021) A literature review on large intestinal hyperelastic constitutive modeling. Clin Biomech 88:105445

    Article  Google Scholar 

  10. Billiar KL, Sacks MS (2000) Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp-part i: experimental results. J Biomech Eng 122(1):23–30

    Article  Google Scholar 

  11. Budday S, Sommer G, Birkl C, Langkammer C, Haybaeck J, Kohnert J, Bauer M, Paulsen F, Steinmann P, Kuhl E et al (2017) Mechanical characterization of human brain tissue. Acta Biomater 48:319–340

    Article  Google Scholar 

  12. Cansız B, Dal H, Kaliske M (2017) Computational cardiology: a modified hill model to describe the electro-visco-elasticity of the myocardium. Comput Methods Appl Mech Eng 315:434–466

    Article  MathSciNet  MATH  Google Scholar 

  13. Cansız B, Dal H, Kaliske M (2018) Computational cardiology: the bidomain based modified hill model incorporating viscous effects for cardiac defibrillation. Comput Mech 62:253–271

    Article  MathSciNet  MATH  Google Scholar 

  14. Cansız FBC, Dal H, Kaliske M (2015) An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment. Comput Methods Biomech Biomed Eng 18:1160–1172

    Article  Google Scholar 

  15. Chagnon G, Rebouah M, Favier D (2015) Hyperelastic energy densities for soft biological tissues: a review. J Elast 120(2):129–160

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ (2012) Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc 7(4):654–669

    Article  Google Scholar 

  17. Choi HS, Vito R (1990) Two-dimensional stress-strain relationship for canine pericardium. J Biomech Eng 112(2):153–159

    Article  Google Scholar 

  18. Chuong C, Fung Y (1983) Three-dimensional stress distribution in arteries. J Biomech Eng 105(3):268–274

    Article  Google Scholar 

  19. Cooney GM, Lake SP, Thompson DM, Castile RM, Winter DC, Simms CK (2016) Uniaxial and biaxial tensile stress-stretch response of human linea alba. J Mech Behav Biomed Mater 63:134–140

    Article  Google Scholar 

  20. Dal H, Açıkgöz K, Badienia Y (2021) On the performance of isotropic hyperelastic constitutive models for rubber-like materials: a state of the art review. Appl Mech Rev 73(2):020802

    Article  Google Scholar 

  21. Dal H, Göktepe S, Kuhl E, Kaliske M (2013) A fully implicit finite element method for bidomain models of cardiac electromechanics. Comput Methods Appl Mech Eng 253:323–336

    Article  MathSciNet  MATH  Google Scholar 

  22. Dal H, Gültekin O, Açıkgöz K (2020) An extended eight-chain model for hyperelastic and finite viscoelastic response of rubberlike materials: theory, experiments and numerical aspects. J Mech Phys Solids 145:104159

    Article  MathSciNet  Google Scholar 

  23. Demiray H, Vito R (1976) Large deformation analysis of soft biomaterials. Int J Eng Sci 14(9):789–793

    Article  MATH  Google Scholar 

  24. Driessen NJ, Bouten CV, Baaijens FP (2005) A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution. J Biomech Eng 127(3):494–503

    Article  Google Scholar 

  25. Durcan C, Hossain M, Chagnon G, Peric D, Bsiesy L, Karam G, Girard E (2022) Experimental investigations of the human oesophagus: anisotropic properties of the embalmed mucosa-submucosa layer under large deformation. Biomech Model Mechanobiol 21:1169–1186

    Article  Google Scholar 

  26. Durcan C, Hossain M, Chagnon G, Peric D, Bsiesy L, Karam G, Girard E (2022) Experimental investigations of the human oesophagus: anisotropic properties of the embalmed muscular layer under large deformation. Biomech Model Mechanobiol 21:1169–1186

    Article  Google Scholar 

  27. Egorov VI, Schastlivtsev IV, Prut EV, Baranov AO, Turusov RA (2002) Mechanical properties of the human gastrointestinal tract. J Biomech 35(10):1417–1425

    Article  Google Scholar 

  28. Ferrara A, Morganti S, Totaro P, Mazzola A, Auricchio F (2016) Human dilated ascending aorta: mechanical characterization via uniaxial tensile tests. J Mech Behav Biomed Mater 53:257–271

    Article  Google Scholar 

  29. Fung Y (1967) Elasticity of soft tissues in simple elongation. Am J Physiol-Legacy Content 213(6):1532–1544

    Article  Google Scholar 

  30. Fung Y, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol-Heart Circ Physiol 237(5):H620–H631

    Article  Google Scholar 

  31. Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New York

    Book  Google Scholar 

  32. Fung YC (1994) A first course in continuum mechanics for physical and biological engineers and scientists. Prentice Hall, Englewood Cliffs

    Google Scholar 

  33. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35

    Article  Google Scholar 

  34. Gent AN (1996) A new constitutive relation for rubber. Rubber Chem Technol 69(1):59–61

    Article  MathSciNet  Google Scholar 

  35. Ghaemi H, Behdinan K, Spence A (2009) In vitro technique in estimation of passive mechanical properties of bovine heart: Part i. Experimental techniques and data. Med Eng Phys 31(1):76–82

    Article  Google Scholar 

  36. Girard E, Chagnon G, Gremen E, Calvez M, Masri C, Boutonnat J, Trilling B, Nottelet B (2019) Biomechanical behaviour of human bile duct wall and impact of cadaveric preservation processes. J Mech Behav Biomed Mater 98:291–300

    Article  Google Scholar 

  37. Graessel D, Prescher A, Fitzek S, Keyserlingk DGV, Axer H (2005) Anisotropy of human linea alba: a biomechanical study. J Surg Res 124(1):118–125

    Article  Google Scholar 

  38. Groves RB, Coulman SA, Birchall JC, Evans SL (2013) An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. J Mech Behav Biomed Mater 18:167–180

    Article  Google Scholar 

  39. Gültekin O, Dal H, Holzapfel GA (2019) On the quasi-incompressible finite element analysis of anisotropic hyperelastic materials. Comput Mech 63(3):443–453

    Article  MathSciNet  MATH  Google Scholar 

  40. Gültekin O, Rodoplu B, Dal H (2020) A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues. Biomech Model Mechanobiol 19(6):2357–2373

    Article  Google Scholar 

  41. Hayashi K (1993) Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls. J Biomech Eng 115(4B):481–488

    Article  Google Scholar 

  42. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  43. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids 61(1):1–48

    MathSciNet  MATH  Google Scholar 

  44. Holzapfel GA, Gasser TC, Ogden RW (2004) Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. J Biomech Eng 126(2):264–275

    Article  Google Scholar 

  45. Holzapfel GA, Niestrawska JA, Ogden RW, Reinisch AJ, Schriefl AJ (2015) Modelling non-symmetric collagen fibre dispersion in arterial walls. J R Soc Interface 12(106):20150188

    Article  Google Scholar 

  46. Holzapfel GA, Ogden RW (2015) On the tension-compression switch in soft fibrous solids. Eur J Mech-A 49:561–569

    Article  MathSciNet  MATH  Google Scholar 

  47. Holzapfel GA, Ogden RW (2017) Comparison of two model frameworks for fiber dispersion in the elasticity of soft biological tissues. Eur J Mech-A 66:193–200

    Article  MathSciNet  MATH  Google Scholar 

  48. Holzapfel GA, Ogden RW, Sherifova S (2019) On fibre dispersion modelling of soft biological tissues: a review. Proc R Soc A 475(2224):20180736

    Article  MathSciNet  MATH  Google Scholar 

  49. Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol-Heart Circ Physiol 289(5):H2048–H2058

    Article  Google Scholar 

  50. Holzapfel GA, Weizsäcker HW (1998) Biomechanical behavior of the arterial wall and its numerical characterization. Comput Biol Med 28(4):377–392

    Article  Google Scholar 

  51. Horgan CO, Saccomandi G (2005) A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids. J Mech Phys Solids 53(9):1985–2015

    Article  MathSciNet  MATH  Google Scholar 

  52. Hossain M, Amin AFMS, Kabir N (2015) Eight-chain and full-network models and their modified versions for rubber hyperelasticity: a comparative study. J Mech Behav Mater 24(1–2):11–24

    Article  Google Scholar 

  53. Hossain M, Steinmann P (2013) More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study. J Mech Behav Mater 22(1–2):27–50

    Article  Google Scholar 

  54. Hossain M, Vu DK, Steinmann P (2012) Experimental study and numerical modelling of vhb 4910 polymer. Comput Mater Sci 59:65–74

    Article  Google Scholar 

  55. Humphrey J, Yin F (1987) On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function. J Biomech Eng 109(4):298–304

    Article  Google Scholar 

  56. Humphrey JD (1995) Mechanics of the arterial wall: review and directions. Crit Rev Biomed Eng 23(1–2):1–162

    Article  Google Scholar 

  57. Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York

    Book  Google Scholar 

  58. Humphrey JD, Strumpf RK, Yin FCP (1990) Determination of a constitutive relation for passive myocardium: I. A new functional form. J Biomech Eng 112(3):333–339

    Article  Google Scholar 

  59. Kadapa C, Hossain M (2022) A linearised consistent mixed displacement-pressure formulation for hyperelasticity. Mech Adv Mater Struct 29(2):267–284

    Article  Google Scholar 

  60. Kalra A, Lowe A, Al-Jumaily A (2016) Mechanical behaviour of skin: a review. J Mater Sci Eng 5(4):1000254

    Google Scholar 

  61. Kas'yanov V, Rachev A (1980) Deformation of blood vessels upon stretching, internal pressure, and torsion. Mech Compos Mater 16(1):76–80

    Article  Google Scholar 

  62. Kemper AR, Santago AC, Stitzel JD, Sparks JL, Duma SM (2012) Biomechanical response of human spleen in tensile loading. J Biomech 45(2):348–355

    Article  Google Scholar 

  63. Lanir Y (1979) A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J Biomech 12(6):423–436

    Article  Google Scholar 

  64. Lanir Y (1983) Constitutive equations for fibrous connective tissues. J Biomech 16(1):1–12

    Article  Google Scholar 

  65. Lanir Y (1987) Biorheology and fluid flux in swelling tissues. II. Analysis of unconfined compressive response of transversely isotropic cartilage disc. Biorheology 24(2):189–205

    Article  Google Scholar 

  66. Latorre M, Montáns FJ (2016) On the tension-compression switch of the gasser-ogden-holzapfel model: analysis and a new pre-integrated proposal. J Mech Behav Biomed Mater 57:175–189

    Article  Google Scholar 

  67. Levillain A, Orhant M, Turquier F, Hoc T (2016) Contribution of collagen and elastin fibers to the mechanical behavior of an abdominal connective tissue. J Mech Behav Biomed Mater 61:308–317

    Article  Google Scholar 

  68. Li K, Ogden RW, Holzapfel GA (2018) A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues. J R Soc Interface 15(138):20170766

    Article  Google Scholar 

  69. Martins P, Peña E, Jorge RN, Santos A, Santos L, Mascarenhas T, Calvo B (2012) Mechanical characterization and constitutive modelling of the damage process in rectus sheath. J Mech Behav Biomed Mater 8:111–122

    Article  Google Scholar 

  70. May-Newman K, Yin F (1998) A constitutive law for mitral valve tissue. J Biomech Eng 120:38–47

    Article  Google Scholar 

  71. Meek KM, Blamires T, Elliott GF, Gyi TJ, Nave C (1987) The organisation of collagen fibrils in the human corneal stroma: a synchrotron x-ray diffraction study. Curr Eye Res 6(7):841–846

    Article  Google Scholar 

  72. Mehnert M, Hossain M, Steinmann P (2021) A comprehensive thermo-electro-viscoelastic characterization of electro-active polymers—part i: experimental investigations. J Mech Phys Solids 157:104603

    Article  Google Scholar 

  73. Mehnert M, Hossain M, Steinmann P (2021) A comprehensive thermo-electro-viscoelastic characterization of electro-active polymers—part ii: continuum modeling approach. J Mech Phys Solids 157:104625

    Article  Google Scholar 

  74. Melnik AV, Borja Da Rocha H, Goriely A (2015) On the modeling of fiber dispersion in fiber-reinforced elastic materials. Int J Non-Linear Mech 75:92–106

    Article  Google Scholar 

  75. Mihai LA, Chin L, Janmey PA, Goriely A (2015) A comparison of hyperelastic constitutive models applicable to brain and fat tissues. J R Soc Interface 12(110):20150486

    Article  Google Scholar 

  76. Murphy J (2013) Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur J Mech-A 42:90–96

    Article  MathSciNet  MATH  Google Scholar 

  77. Myers K, Socrate S, Paskaleva A, House M (2010) A study of the anisotropy and tension/compression behavior of human cervical tissue. J Biomech Eng 132(2):021003

    Article  Google Scholar 

  78. Niestrawska JA, Viertler C, Regitnig P, Cohnert TU, Sommer G, Holzapfel GA (2016) Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: experimental analysis and modelling. J R Soc Interface 13(124):20160620

    Article  Google Scholar 

  79. Ogden RW, Saccomandi G (2007) Introducing mesoscopic information into constitutive equations for arterial walls. Biomech Model Mechanobiol 6(5):333–344

    Article  Google Scholar 

  80. Pai S, Ledoux WR (2010) The compressive mechanical properties of diabetic and non-diabetic plantar soft tissue. J Biomech 43(9):1754–1760

    Article  Google Scholar 

  81. Pandolfi A, Vasta M (2012) Fiber distributed hyperelastic modeling of biological tissues. Mech Mater 44:151–162

    Article  Google Scholar 

  82. Sacks MS (2003) Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng 125(2):280–287

    Article  Google Scholar 

  83. Schriefl AJ, Wolinski H, Regitnig P, Kohlwein SD, Holzapfel GA (2013) An automated approach for three-dimensional quantification of fibrillar structures in optically cleared soft biological tissues. J R Soc Interface 10(80):20120760

    Article  Google Scholar 

  84. Schriefl AJ, Zeindlinger G, Pierce DM, Regitnig P, Holzapfel GA (2012) Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J R Soc Interface 9(71):1275–1286

    Article  Google Scholar 

  85. Sommer G, Sherifova S, Oberwalder PJ, Dapunt OE, Ursomanno PA, DeAnda A, Griffith BE, Holzapfel GA (2016) Mechanical strength of aneurysmatic and dissected human thoracic aortas at different shear loading modes. J Biomech 49(12):2374–2382

    Article  Google Scholar 

  86. Steinmann P, Hossain M, Possart G (2012) Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for treloar’s data. Arch Appl Mech 82(9):1183–1217

    Article  MATH  Google Scholar 

  87. Takamizawa K, Hayashi K (1987) Strain energy density function and uniform strain hypothesis for arterial mechanics. J Biomech 20(1):7–17

    Article  Google Scholar 

  88. Tong P, Fung YC (1976) The stress-strain relationship for the skin. J Biomech 9(10):649–657

    Article  Google Scholar 

  89. Treloar L (1943) The elasticity of a network of long-chain molecules. I. Trans Faraday Soc 39:36–41

    Article  Google Scholar 

  90. Untaroiu CD, Lu YC, Siripurapu SK, Kemper AR (2015) Modeling the biomechanical and injury response of human liver parenchyma under tensile loading. J Mech Behav Biomed Mater 41:280–291

    Article  Google Scholar 

  91. Vaishnav RN, Young JT, Patel DJ (1973) Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment. Circ Res 32(5):577–583

    Article  Google Scholar 

  92. Vignali E, Gasparotti E, Capellini K, Fanni BM, Landini L, Positano V, Celi S (2021) Modeling biomechanical interaction between soft tissue and soft robotic instruments: importance of constitutive anisotropic hyperelastic formulations. Int J Robot Res 40(1):224–235

    Article  Google Scholar 

  93. Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135(1–2):107–128

    Article  MATH  Google Scholar 

  94. Wex C, Arndt S, Stoll A, Bruns C, Kupriyanova Y (2015) Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: a review. Biomed Eng 60(6):577–592

    Article  Google Scholar 

  95. Zulliger MA, Fridez P, Hayashi K, Stergiopulos N (2004) A strain energy function for arteries accounting for wall composition and structure. J Biomech 37(7):989–1000

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüsnü Dal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Root mean square error (RMSE) can be used as an alternative quality of fit metric to compare the performance of models (Tables 3, 4, 5, 6 and 7). RSME for uniaxial dataset of Cooney et al. [19], and Martins et al. [69] is

$$\begin{aligned} \begin{array}{rl} \text {RMSE} =&\sqrt{\frac{\sum \nolimits _{i=1}^{n_{UT_1}} \left( P_{11}^{UT_1}(\lambda _i) - P_{11}^{exp, UT_1}(\lambda _i)\right) ^2}{n_{UT_1}}} + \sqrt{\frac{\sum \nolimits _{i=1}^{n_{UT_2}} \left( P_{22}^{UT_2}(\lambda _i) - P_{22}^{exp, UT_2}(\lambda _i)\right) ^2}{n_{UT_2}}}\,. \end{array} \end{aligned}$$
(101)

Similarly, for the equibiaxial loading case, RMSE for the dataset of Niestrawska et al. [78] is

$$\begin{aligned} \begin{array}{rl} \text {RMSE} =&\sqrt{\frac{\sum \nolimits _{i=1}^{n_{ET}} \left( P_{11}^{ET}(\lambda _i) - P_{11}^{exp, ET}(\lambda _i)\right) ^2}{n_{ET}}} + \sqrt{\frac{\sum \nolimits _{i=1}^{n_{ET}} \left( P_{22}^{ET}(\lambda _i) - P_{22}^{exp, ET}(\lambda _i)\right) ^2}{n_{ET}}}\,. \end{array} \end{aligned}$$
(102)

Another quality of fit metric is the coefficient of determination (\(R^2\)). \(R^2\) for uniaxial dataset of Cooney et al. [19], and Martins et al. [69] is

$$\begin{aligned} \begin{array}{rl} R^2 =&0.5 \left[ 1 - \frac{\sum \nolimits _{i=1}^{n_{UT_1}} \left( P_{11}^{UT_1}(\lambda _i) - P_{11}^{exp, UT_1}(\lambda _i)\right) ^2}{\sum \nolimits _{i=1}^{n_{UT_1}} \left( P_{11}^{UT_1}(\lambda _i) - \text {mean}(P_{11}^{exp, UT_1}(\lambda _i))\right) ^2}\right] + 0.5 \left[ 1 - \frac{\sum \nolimits _{i=1}^{n_{UT_2}} \left( P_{22}^{UT_2}(\lambda _i) - P_{22}^{exp, UT_2}(\lambda _i)\right) ^2}{\sum \nolimits _{i=1}^{n_{UT_2}} \left( P_{22}^{UT_2}(\lambda _i) - \text {mean}(P_{22}^{exp, UT_2}(\lambda _i))\right) ^2}\right] \,. \end{array} \end{aligned}$$
(103)

Similarly, for equibiaxial loading case, \(R^2\) for the fitting of dataset of Niestrawska et al. [78] is

$$\begin{aligned} \begin{array}{rl} R^2 =&0.5 \left[ 1 - \frac{\sum \nolimits _{i=1}^{n_{ET}} \left( P_{11}^{ET}(\lambda _i) - P_{11}^{exp, ET}(\lambda _i)\right) ^2}{\sum \nolimits _{i=1}^{n_{ET}} \left( P_{11}^{ET}(\lambda _i) - \text {mean}(P_{11}^{exp, ET}(\lambda _i))\right) ^2}\right] + 0.5 \left[ 1 - \frac{\sum \nolimits _{i=1}^{n_{ET}} \left( P_{22}^{ET}(\lambda _i) - P_{22}^{exp, ET}(\lambda _i)\right) ^2}{\sum \nolimits _{i=1}^{n_{ET}} \left( P_{22}^{ET}(\lambda _i) - \text {mean}(P_{22}^{exp, ET}(\lambda _i))\right) ^2}\right] \,. \end{array} \end{aligned}$$
(104)
Table 3 Models sorted according to the root mean square error to the equibiaxial dataset of AAA tissue [78], uniaxial dataset of the linea alba [19] and uniaxial dataset of the rectus sheath [69]
Table 4 Models sorted according to the coefficient of determination to the equibiaxial dataset of AAA tissue [78], uniaxial dataset of the linea alba [19] and uniaxial dataset of the rectus sheath [69]
Table 5 Identified parameters and error bounds based on AAA tissue dataset
Table 6 Identified parameters and error bounds based on LA tissue dataset
Table 7 Identified parameters and error bounds based on RS tissue dataset

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dal, H., Açan, A.K., Durcan, C. et al. An In Silico-Based Investigation on Anisotropic Hyperelastic Constitutive Models for Soft Biological Tissues. Arch Computat Methods Eng 30, 4601–4632 (2023). https://doi.org/10.1007/s11831-023-09956-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09956-3

Navigation