Log in

Morse–Bott functions and the Lusternik–Schnirelmann category

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

Lusternik–Schnirelmann category of a manifold gives a lower bound of the number of critical points of a differentiable map on it. The purpose of this paper is to show how to construct cone-decompositions of manifolds by using functions of class C 1 and their gradient flows, where cone-decompositions are used to give an upper bound for the Lusternik–Schnirelmann category which is a homotopy invariant of a topological space. In particular, the Morse–Bott functions on the Stiefel manifolds considered by Frankel (1965) are effectively used to construct the conedecompositions of Stiefel manifolds and symmetric Riemannian spaces to determine their Lusternik–Schnirelmann categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik-Schnirelmann Category. Mathematical Surveys and Monographs 103, American Mathematical Society, Providence, RI, 2003.

  2. T. Frankel, Critical submanifolds of the classical groups and Stiefel manifolds. In: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton University Press, Princeton, NJ, 1965, 37–53.

  3. Ganea T.: Lusternik-Schnirelmann category and strong category. Illinois J. Math. 11, 417–427 (1967)

    MathSciNet  MATH  Google Scholar 

  4. A. Gómez-Tato, E. Macías-Virgós and M. J. Pereira-Sáez, Trace map, Cayley transform and LS category of Lie groups, Preprint, ar**v 0907.0751v1.

  5. Hu S.-T.: Theory of Retracts. Wayne State University Press, Detroit (1965)

    MATH  Google Scholar 

  6. N. Iwase and M. Mimura, L-S categories of simply-connected compact simple Lie groups of low rank. In: Categorical Decomposition Techniques in Algebraic Topology (Isle of Skye, 2001), Progr. Math. 215, Birkhäuser, Basel, 2004, 199–212.

  7. H. Kadzisa, Cone-decompositions of the complex Stiefel manifolds by using Morse-Bott functions. Preprint (in Japanese).

  8. Kadzisa H.: Cone-decompositions of the unitary groups. Topology Appl. 153, 1383–1398 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Kadzisa, Cone-decompositions of the special unitary groups. Bull. Belg. Math. Soc. Simon Stevin, to appear

  10. Kadzisa H., Mimura M.: Cartan models and cellular decompositions of symmetric Riemannian spaces. Topology Appl. 156, 348–364 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Kadzisa and M. Mimura, Cone-decompositions of Stiefel manifolds and weighted real traces. Preprint.

  12. Miller H.: Stable splittings of Stiefel manifolds. Topology 24, 411–419 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Milnor, Morse Theory. Annals of Mathematics Studies 51, Princeton University Press, Princeton, NJ, 1963.

  14. Mimura M., Sugata K.: On the Lusternik-Schnirelmann category of symmetric spaces of classical type. Geom. Topol. Monogr. 13, 323–334 (2008)

    Article  MathSciNet  Google Scholar 

  15. M. Mimura and H. Toda, Topology of Lie Groups, I, II. Translations of Mathematical Monographs 91, American Mathematical Society, Providence, RI, 1991.

  16. Nishimoto T.: On the Lusternik-Schnirelmann category of Stiefel manifolds. Topology Appl. 154, 1956–1960 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schweitzer P.A.: Secondary cohomology operations induced by the diagonal map**. Topology 3, 337–355 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Singhof W.: On the Lusternik-Schnirelmann category of Lie groups. II. Math. Z. 151, 143–148 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. N. E. Steenrod, Cohomology Operations. Lectures by N. E. Steenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies 50, Princeton University Press, Princeton, NJ, 1962.

  20. Veselov A., Dynnikov I.: Integrable gradient flows and Morse theory. St. Petersburg Math. J. 8, 429–446 (1997)

    MathSciNet  Google Scholar 

  21. G. W. Whitehead, Elements of Homotopy Theory. Graduate Texts in Mathematics 61, Springer-Verlag, New York, 1978.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kadzisa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadzisa, H., Mimura, M. Morse–Bott functions and the Lusternik–Schnirelmann category. J. Fixed Point Theory Appl. 10, 63–85 (2011). https://doi.org/10.1007/s11784-010-0041-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-010-0041-9

Mathematics Subject Classification (2010)

Keywords

Navigation