Log in

Discontinuous dynamic recrystallization of TiNb alloys: Experiment and cellular automaton simulation

基于实验和元胞自动机模拟的 TiNb 合金非连续动态再结晶研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

TiNb alloys are widely used in the field of cryogenic superconductivity because of their excellent plasticity, machinability and superconductivity. As a common softening behavior in the process of material processing, dynamic recrystallization (DRX) has a considerable effect on the microstructure and the properties of material. The discontinuous dynamic recrystallization (DDRX) behavior of TiNb alloys during hot compression has been studied by combining experiment with cellular automaton (CA) simulation in this paper. It can be found that CA model can effectively predict DDRX behavior of TiNb alloy. The mean grain size and the volume fraction for DDRX of TiNb alloys increase with increasing deformation temperature, but they decrease with increasing strain rate. Furthermore, the serrated grain boundaries and the nucleation points of recrystallized grains in the deformed TiNb samples are in accordance with the characteristics of grain boundary bulging mechanism. In addition, the random orientation effect of DDRX grains is helpful to weaken the intensity of deformation texture in TiNb alloys.

摘要

TiNb 合金因其良好的塑性、 机械加工性能和超导电性而被广泛应用于低温超导领域. 动态再结晶作为材料加工过程中常见的软化行为, 对材料的组织和性能有重要的影响. 将实验与元胞自动机模拟相结合, 研究了 TiNb 合金在热压缩过程中的非连续动态再结晶行为. 元胞自动机模拟可以较为准确地预测 TiNb 合金的非连续动态再结晶行为. 再结晶晶粒的**均尺寸和体积分数随着变形温度的升高而增大, 随着应变速率的升高而减小. TiNb 合金变形试样中的锯齿状晶界和再结晶晶粒形核位置符合晶界弓出机制特征. 此外, 非连续动态再结晶晶粒的随机取向效应有助于减弱 TiNb 合金中变形织构的**度.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. BANNO N. Low-temperature superconductors: Nb3Sn, Nb3Al, and NbTi [J]. Superconductivity, 2023, 6: 100047. DOI: https://doi.org/10.1016/j.supcon.2023.100047.

    Article  Google Scholar 

  2. WANG Qing-xiang, CUI Guo-dong, CHEN Hui. Effect of the Ta addition on densification and mechanical properties of NbTi alloys prepared by SPS [J]. Journal of Alloys and Compounds, 2021, 868: 159106. DOI: https://doi.org/10.1016/j.jallcom.2021.159106.

    Article  Google Scholar 

  3. YU Hao, QIU Ying, YOUNG M L. Influence of Ni4Ti3 precipitate on pseudoelasticity of austenitic NiTi shape memory alloys deformed at high strain rate [J]. Materials Science and Engineering A, 2021, 804: 140753. DOI: https://doi.org/10.1016/j.msea.2021.140753.

    Article  Google Scholar 

  4. SON H W, LEE J C, CHO C H, et al. Effect of Mg content on the dislocation characteristics and discontinuous dynamic recrystallization during the hot deformation of Al-Mg alloy [J]. Journal of Alloys and Compounds, 2021, 887: 161397.DOI: https://doi.org/10.1016/j.jallcom.2021.161397.

    Article  Google Scholar 

  5. WANG Yan-jiang, JIA Zhi, GAO Ze-xi, et al. Continuous dynamic recrystallization nucleation mechanism and annealing twin evolution with respect to grain growth in a nickel-based superalloy [J]. Journal of Central South University, 2023, 30(1): 49–60. DOI: https://doi.org/10.1007/s11771-022-5215-2.

    Article  Google Scholar 

  6. ZHAO Ming-jie, HUANG Liang, ZENG Rong, et al. In-situ observations and modeling of metadynamic recrystallization in 300M steel [J]. Materials Characterization, 2020, 159: 109997. DOI: https://doi.org/10.1016/j.matchar.2019.109997.

    Article  Google Scholar 

  7. HUANG K, LOGÉ R E. A review of dynamic recrystallization phenomena in metallic materials [J]. Materials & Design, 2016, 111: 548–574. DOI: https://doi.org/10.1016/j.matdes.2016.09.012.

    Article  Google Scholar 

  8. LI Jian-lin, ZHOU Ge, HAN **-ke, et al. Dynamic recrystallization behavior of single-phase BCC structure AlFeCoNiMo0.2 high-entropy alloy [J]. Journal of Materials Research and Technology, 2023, 23: 4376–4384. DOI: https://doi.org/10.1016/j.jmrt.2023.02.074.

    Article  Google Scholar 

  9. HEIDARZADEH A, ZAVAŠNIK J, SHABADI R, et al. Dynamic recrystallization’s role in strength-ductility tradeoff in polycrystalline Fe-Cr-Ni stainless steels produced by laser powder bed fusion [J]. Materials Science and Engineering A, 2021, 814: 141214. DOI: https://doi.org/10.1016/j.msea.2021.141214.

    Article  Google Scholar 

  10. CHOP ARD B, DROZ M. Cellular automata modeling of physical system [M]. Cambridge: Cambridge University Press, 1998.

    Book  Google Scholar 

  11. ARUN BABU K, PRITHIV T S, GUPTA A, et al. Modeling and simulation of dynamic recrystallization in super austenitic stainless steel employing combined cellular automaton, artificial neural network and finite element method [J]. Computational Materials Science, 2021, 195: 110482. DOI: https://doi.org/10.1016/j.commatsci.2021.110482.

    Article  Google Scholar 

  12. SITKO M, MADEJ L. The role of the cellular automata cell size and time step length in the microstructure evolution model—The static recrystallization case study [J]. Journal of Computational Science, 2021, 54: 101437. DOI: https://doi.org/10.1016/j.jocs.2021.101437.

    Article  Google Scholar 

  13. JIA Chun-ni, ZHENG Cheng-wu, LI Dian-zhong. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel [J]. Journal of Materials Science & Technology, 2020, 47: 1–9. DOI: https://doi.org/10.1016/j.jmst.2020.02.002.

    Article  Google Scholar 

  14. GUISO S, DI CAPRIO D, de LAMARE J, et al. Intergranular corrosion: Comparison between experiments and cellular automata [J]. Corrosion Science, 2020, 177: 108953. DOI: https://doi.org/10.1016/j.corsci.2020.108953.

    Article  Google Scholar 

  15. LIU Lei, WU Yun-xin, AHMAD A S. A novel simulation of continuous dynamic recrystallization process for 2219 aluminium alloy using cellular automata technique [J]. Materials Science and Engineering A, 2021, 815: 141256. DOI: https://doi.org/10.1016/j.msea.2021.141256.

    Article  Google Scholar 

  16. ZHANG Fu-xiang, LIU Dong, YANG Yan-hui, et al. Investigation on the influences of δ phase on the dynamic recrystallization of Inconel 718 through a modified cellular automaton model [J]. Journal of Alloys and Compounds, 2020, 830: 154590. DOI: https://doi.org/10.1016/j.jallcom.2020.154590.

    Article  Google Scholar 

  17. XU **ang, ZHANG Jun, OUTEIRO J, et al. Multiscale simulation of grain refinement induced by dynamic recrystallization of Ti6Al4V alloy during high speed machining [J]. Journal of Materials Processing Technology, 2020, 286: 116834. DOI: https://doi.org/10.1016/j.jmatprotec.2020.116834.

    Article  Google Scholar 

  18. MECKING H, KOCKS U F. Kinetics of flow and strain-hardening [J]. Acta Metallurgica, 1981, 29(11): 1865–1875. DOI: https://doi.org/10.1016/0001-6160(81)90112-7.

    Article  Google Scholar 

  19. KOCKS U F, MECKING H. Physics and phenomenology of strain hardening: The FCC case [J]. Progress in Materials Science, 2003, 48(3): 171–273. DOI: https://doi.org/10.1016/S0079-6425(02)00003-8.

    Article  Google Scholar 

  20. ZHOU Feng, CHENG Jun-sheng, DAI Yin-ming, et al. Numerical simulation of mold shape’ s influence on NbTi cold-pressing superconducting joint [J]. Physica C: Superconductivity, 2014, 498: 9–13. DOI: https://doi.org/10.1016/j.physc.2013.12.005.

    Article  Google Scholar 

  21. DING R, GUO Z X. Microstructural evolution of a Ti-6Al-4V alloy during β-phase processing: Experimental and simulative investigations [J]. Materials Science and Engineering A, 2004, 365(1–2): 172–179. DOI: https://doi.org/10.1016/j.msea.2003.09.024.

    Article  Google Scholar 

  22. DING R, GUO Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization [J]. Acta Materialia, 2001, 49(16): 3163–3175. DOI: https://doi.org/10.1016/S1359-6454(01)00233-6.

    Article  Google Scholar 

  23. PARK J, ROUT M, MIN K M, et al. A fully coupled crystal plasticity-cellular automata model for predicting thermomechanical response with dynamic recrystallization in AISI 304LN stainless steel [J]. Mechanics of Materials, 2022, 167: 104248. DOI: https://doi.org/10.1016/j.mechmat.2022.104248.

    Article  Google Scholar 

  24. BARARPOUR S M, JAMSHIDI AVAL H, JAMAATI R. Cellular automaton modeling of dynamic recrystallization in Al-Mg alloy coating fabricated using the friction surfacing process [J]. Surface and Coatings Technology, 2021, 407: 126784. DOI: https://doi.org/10.1016/j.surfcoat.2020.126784.

    Article  Google Scholar 

  25. FROST H J, ASHBY M F. Deformation-mechanism maps: the plasticity and creep of metals and ceramics [M]. Oxford: Pergamon Press, 1982.

    Google Scholar 

  26. PONTAU A E, LAZARUS D. Diffusion of titanium and niobium in bcc Ti-Nb alloys [J]. Physical Review B, 1979, 19(8): 4027–4037. DOI: https://doi.org/10.1103/physrevb.19.4027.

    Article  Google Scholar 

  27. SUN Dong, JIANG Shu-yong, YAN Bing-yao, et al. Mechanical behaviour and microstructural evolution of Ti-37 at.% Nb alloy subjected to hot compression deformation [J]. Journal of Alloys and Compounds, 2020, 834: 155010. DOI: https://doi.org/10.1016/j.jallcom.2020.155010.

    Article  Google Scholar 

  28. SAKAI T K, BELYAKOV A, KAIBYSHEV R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Progress in Materials Science, 2014, 60: 130–207. DOI: https://doi.org/10.1016/j.pmatsci.2013.09.002.

    Article  Google Scholar 

  29. ZHANG Hong-ming, WANG **g, CHEN Qiang, et al. Study of dynamic recrystallization behavior of T2 copper in hot working conditions by experiments and cellular automaton method [J]. Journal of Alloys and Compounds, 2019, 784: 1071–1083. DOI: https://doi.org/10.1016/j.jallcom.2019.01.132.

    Article  Google Scholar 

  30. XIE Bing-chao, ZHANG Bao-yun, NING Yong-quan, et al. Mechanisms of DRX nucleation with grain boundary bulging and subgrain rotation during the hot working of nickel-based superalloys with columnar grains [J]. Journal of Alloys and Compounds, 2019, 786: 636–647. DOI: https://doi.org/10.1016/j.jallcom.2019.01.334.

    Article  Google Scholar 

  31. YANG Qing-bo, WANG **n-zhu, LI Xu, et al. Hot deformation behavior and microstructure of AA2195 alloy under plane strain compression [J]. Materials Characterization, 2017, 131: 500–507. DOI: https://doi.org/10.1016/j.matchar.2017.06.001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SUN Dong wrote the draft of the manuscript. JIANG Shu-yong edited the draft of the manuscript. ZHANG Yan-qiu established the CA models. YAN Bing-yao and FENG Hao analyzed the experimental results.

Corresponding author

Correspondence to Shu-yong Jiang  (江树勇).

Ethics declarations

SUN Dong, JIANG Shu-yong, ZHANG Yan-qiu, YAN Bing-yao and FENG Hao declare that they have no conflict of interest.

Additional information

Foundation item: Project(52275363) supported by the National Natural Science Foundation of China; Project(202203021212242) supported by the Fundamental Research Program of Shanxi Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Jiang, Sy., Zhang, Yq. et al. Discontinuous dynamic recrystallization of TiNb alloys: Experiment and cellular automaton simulation. J. Cent. South Univ. 30, 2890–2905 (2023). https://doi.org/10.1007/s11771-023-5430-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5430-5

Key words

关键词

Navigation