Log in

Continuous dynamic recrystallization nucleation mechanism and annealing twin evolution with respect to grain growth in a nickel-based superalloy

镍基高温合金的连续动态再结晶形核机制和退火孪晶演变与晶粒生长的关系

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The hot compression deformation behavior of a nickel-based superalloy was characterized by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) techniques. The main microstructure characteristics of the studied superalloy after hot compression deformation featured the development of subgrains, dynamic recrystallization (DRX) nuclei, DRX grain growth, and annealing twins. Considering the approximate orientation between deformed grains and the dynamic recrystallization results, we concluded that the continuous dynamic recrystallization (CDRX) nucleation mechanism characterized by subgrain bonding and rotation played a major role at low temperatures and high strain rate in addition to twinning-assisted recrystallization nucleation. The presence of MC and γ′ phase precipitated phases at low temperatures (900 and 1000 °C) facilitated the nucleation of DRX but hindered the growth of recrystallization. Grain growth at high deformation temperatures depended on the mutual annexation of grains induced by high-angle grain boundary migration, which consumed part of the annealing twins, and only a few annealing twins remained stable after orientation deflection.

摘要

采用电子背散射衍射(EBSD)和透射电子显微镜(TEM)技术对镍基高温合金热压缩变形行为进行 了表征。所研究的高温合金在热压缩变形后的主要组织特征是亚晶粒、动态再结晶(DRX)核、DRX晶 粒生长和退火孪晶的发展。考虑到变形晶粒之间的**似取向和动态再结晶结果,在低温和高应变率 下,除了孪晶辅助再结晶形核外,以亚晶粒结合和旋转为特征的连续动态再结晶(CDRX)形核机制也起 着主要作用。MC和γ′析出相在低温(900 和1000 ℃)时促进了DRX的形核,但阻碍了再结晶的生长。 高变形温度下的晶粒生长依赖于大角度晶界迁移引起的晶粒相互吞并,这消耗了部分退火孪晶,只有 少数退火孪晶在取向偏转后保持稳定。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. WU Rong-hai, YUE Zhu-feng, WANG Meng. Effect of initial γ/γ′ microstructure on creep of single crystal nickel-based superalloys: A phase-field simulation incorporating dislocation dynamics [J]. Journal of Alloys and Compounds, 2019, 779: 326–334. DOI: https://doi.org/10.1016/j.jallcom.2018.11.166.

    Article  Google Scholar 

  2. LIN Yong-cheng, WU **an-yang, CHEN **ao-min, et al. EBSD study of a hot deformed nickel-based superalloy [J]. Journal of Alloys and Compounds, 2015, 640: 101–113. DOI: https://doi.org/10.1016/j.jallcom.2015.04.008.

    Article  Google Scholar 

  3. JIA Zhi, GAO Ze-xi, JI **-**, et al. Study of the dynamic recrystallization process of the Inconel625 alloy at a high strain rate [J]. Materials (Basel, Switzerland), 2019, 12(3): 510. DOI: https://doi.org/10.3390/ma12030510.

    Article  Google Scholar 

  4. ANTONOV S, DETROIS M, HELMINK R C, et al. Precipitate phase stability and compositional dependence on alloying additions in γ-γ′-δ-η] Ni-base superalloys [J]. Journal of Alloys and Compounds, 2015, 626: 76–86. DOI: https://doi.org/10.1016/j.jallcom.2014.11.155.

    Article  Google Scholar 

  5. WEN Dong-xu, LIN Yong-cheng, LI **n-he, et al. Hot deformation characteristics and dislocation substructure evolution of a nickel-base alloy considering effects of S phase [J]. Journal of Alloys and Compounds, 2018, 764: 1008–1020. DOI: https://doi.org/10.1016/j.jallcom.2018.06.146.

    Article  Google Scholar 

  6. DETROIS M, ANTONOV S, TIN S, et al. Hot deformation behavior and flow stress modeling of a Ni-based superalloy [J]. Materials Characterization, 2019, 157: 109915. DOI: https://doi.org/10.1016/j.matchar.2019.109915.

    Article  Google Scholar 

  7. SANI S A, ARABI H, EBRAHIMI G R. Hot deformation behavior and DRX mechanism in a γ-γ/cobalt-based superalloy [J]. Materials Science and Engineering A, 2019, 764: 138165. DOI: https://doi.org/10.1016/j.msea.2019.138165.

    Article  Google Scholar 

  8. NING Yong-quan, YAO Ze-kun, LEI Ying-yi, et al. Hot deformation behavior of the post-cogging FGH4096 superalloy with fine equiaxed microstructure [J]. Materials Characterization, 2011, 62(9): 887–893. DOI: https://doi.org/10.1016/j.matchar.2011.06.004.

    Article  Google Scholar 

  9. SHI Zhao-xia, YAN **ao-feng, DUAN Chun-hua, et al. Effect of strain rate on hot deformation characteristics of GH690 superalloy [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(3): 538–550. DOI: https://doi.org/10.1016/S1003-6326(17)60082-7.

    Article  Google Scholar 

  10. CHEN Ming-song, ZOU Zong-huai, LIN Yong-cheng, et al. Hot deformation behaviors of a solution-treated Ni-based superalloy under constant and changed strain rates [J]. Vacuum, 2018, 155: 531–538. DOI: https://doi.org/10.1016/j.vacuum.2018.06.059.

    Article  Google Scholar 

  11. SAHITHYA K, BALASUNDAR I, PANT P, et al. Deformation behaviour of an as-cast nickel base superalloy during primary hot working above and below the gamma prime solvus [J]. Materials Science and Engineering A, 2019, 754: 521–534. DOI: https://doi.org/10.1016/j.msea.2019.03.083.

    Article  Google Scholar 

  12. GENG Pei-hao, QIN Guo-liang, ZHOU Jun, et al. Hot deformation behavior and constitutive model of GH4169 superalloy for linear friction welding process [J]. Journal of Manufacturing Processes, 2018, 32: 469–481. DOI: https://doi.org/10.1016/j.jmapro.2018.03.017.

    Article  Google Scholar 

  13. XU Zhao-hua, LI Miao-quan, LI Hong. Plastic flow behavior of superalloy GH696 during hot deformation [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(3): 712–721. DOI: https://doi.org/10.1016/S1003-6326(16)64161-4.

    Article  Google Scholar 

  14. LIU Fang-fang, CHEN Jia-yu, DONG Jian-xin, et al. The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy [J]. Materials Science and Engineering A, 2016, 651: 102–115. DOI: https://doi.org/10.1016/j.msea.2015.10.099.

    Article  Google Scholar 

  15. LIN Yong-cheng, DENG Jiao, JIANG Yu-qiang, et al. Hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy [J]. Materials & Design, 2014, 55: 949–957. DOI: https://doi.org/10.1016/j.matdes.2013.10.071.

    Article  Google Scholar 

  16. TAN Li-ming, HE Guo-ai, LI Yun-**, et al. Flow behaviors and microstructural evolutions of a novel high-Co powder metallurgy superalloy during hot working [J]. Journal of Materials Processing Technology, 2018, 262: 221–231. DOI: https://doi.org/10.1016/j.jmatprotec.2018.06.039.

    Article  Google Scholar 

  17. TAN Y B, MA Y H, ZHAO F. Hot deformation behavior and constitutive modeling of fine grained inconel 718 superalloy [J]. Journal of Alloys and Compounds, 2018, 741: 85–96. DOI: https://doi.org/10.1016/j.jallcom.2017.12.265.

    Article  Google Scholar 

  18. LIN Yong-cheng, WEN Dong-xu, DENG Jiao, et al. Constitutive models for high-temperature flow behaviors of a Ni-based superalloy [J]. Materials & Design, 2014, 59: 115–123. DOI: https://doi.org/10.1016/j.matdes.2014.02.041.

    Article  Google Scholar 

  19. NING Yong-quan, YAO Ze-kun, YANG Zheng, et al. Flow behavior and hot workability of FGH4096 superalloys with different initial microstructures by using advanced processing maps [J]. Materials Science and Engineering A, 2012, 531: 91–97. DOI: https://doi.org/10.1016/j.msea.2011.10.039.

    Article  Google Scholar 

  20. ZHANG Chi, ZHANG Li-wen, SHEN Wen-fei, et al. The processing map and microstructure evolution of Ni-Cr-Mo-based C276 superalloy during hot compression [J]. Journal of Alloys and Compounds, 2017, 728: 1269–1278. DOI: https://doi.org/10.1016/j.jallcom.2017.09.107.

    Article  Google Scholar 

  21. WANG L, LIU F, CHENG J J, et al. Hot deformation characteristics and processing map analysis for Nickel-based corrosion resistant alloy [J]. Journal of Alloys and Compounds, 2015, 623: 69–78. DOI: https://doi.org/10.1016/j.jallcom.2014.10.034.

    Article  Google Scholar 

  22. SHI Zhao-xia, YAN **ao-feng, DUAN Chun-hua, et al. Hot deformation behavior of GH4945 superalloy using constitutive equation and processing map [J]. Journal of Iron and Steel Research, International, 2017, 24(6): 625–633. DOI: https://doi.org/10.1016/S1006-706X(17)30094-8.

    Article  Google Scholar 

  23. JIANG He, DONG Jian-xin, ZHANG Mai-cang, et al. Hot deformation characteristics of Alloy 617B nickel-based superalloy: A study using processing map [J]. Journal of Alloys and Compounds, 2015, 647: 338–350. DOI: https://doi.org/10.1016/j.jallcom.2015.05.192.

    Article  Google Scholar 

  24. NING Yong-quan, YAO Ze-kun, LIANG **n-min, et al. Flow behavior and constitutive model for Ni-20.0Cr-2.5Ti-1.5Nb-1.0Al superalloy compressed below γ′ -transus temperature [J]. Materials Science and Engineering A, 2012, 551: 7–12. DOI: https://doi.org/10.1016/j.msea.2012.04.042.

    Article  Google Scholar 

  25. KONG Yong-hua, CHANG Peng-peng, LI Qian, et al. Hot deformation characteristics and processing map of nickelbased C276 superalloy [J]. Journal of Alloys and Compounds, 2015, 622: 738–744. DOI: https://doi.org/10.1016/j.jallcom.2014.10.118.

    Article  Google Scholar 

  26. JIA Zhi, GAO Ze-xi, JI **-**, et al. Evolution of twin boundaries and contribution to dynamic recrystallization and grain growth of inconel 625 [J]. Advanced Engineering Materials, 2019, 21(9): 1900426. DOI: https://doi.org/10.1002/adem.201900426.

    Article  Google Scholar 

  27. JIA Zhi, SUN Xuan, JI **-**, et al. Hot deformation behavior and dynamic recrystallization nucleation mechanisms of inconel 625 during hot compressive deformation [J]. Advanced Engineering Materials, 2021, 23(3): 2001048. DOI: https://doi.org/10.1002/adem.202001048.

    Article  Google Scholar 

  28. LI **g, ZHAO Zhan-yong, BAI Pei-kang, et al. Microstructural evolution and mechanical properties of IN718 alloy fabricated by selective laser melting following different heat treatments [J]. Journal of Alloys and Compounds, 2019, 772: 861–870. DOI: https://doi.org/10.1016/j.jallcom.2018.09.200.

    Article  Google Scholar 

  29. XIE Bing-chao, YU Hao, SHENG Tao, et al. DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′ sub-/super-solvus temperatures [J]. Journal of Alloys and Compounds, 2019, 803: 16–29. DOI: https://doi.org/10.1016/j.jallcom.2019.06.202.

    Article  Google Scholar 

  30. KUNZE K, ETTER T, GRÄSSLIN J, et al. Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM) [J]. Materials Science and Engineering A, 2015, 620: 213–222. DOI: https://doi.org/10.1016/j.msea.2014.10.003.

    Article  Google Scholar 

  31. GAO Shuang, HOU Jie-shan, YANG Fei, et al. Effect of Ta on microstructural evolution and mechanical properties of a solid-solution strengthening cast Ni-based alloy during long-term thermal exposure at 700 °C [J]. Journal of Alloys and Compounds, 2017, 729: 903–913. DOI: https://doi.org/10.1016/j.jallcom.2017.09.194.

    Article  Google Scholar 

  32. LUO Yuan-xin, HENG Yu-qing, WANG Yong-qin, et al. Dynamic recrystallization behavior of TA15 titanium alloy under isothermal compression during hot deformation [J]. Advances in Materials Science and Engineering, 2014, 2014: 413143. DOI: https://doi.org/10.1155/2014/413143.

    Article  Google Scholar 

  33. HE Guo-ai, LIU Feng, HUANG Lan, et al. Microstructure evolutions and nucleation mechanisms of dynamic recrystallization of a powder metallurgy Ni-based superalloy during hot compression [J]. Materials Science and Engineering A, 2016, 677: 496–504. DOI: https://doi.org/10.1016/j.msea.2016.09.083.

    Article  Google Scholar 

  34. JIANG He, DONG Jian-xin, ZHANG Mai-cang, et al. Evolution of twins and substructures during low strain rate hot deformation and contribution to dynamic recrystallization in alloy 617B [J]. Materials Science and Engineering A, 2016, 649: 369–381. DOI: https://doi.org/10.1016/j.msea.2015.10.004.

    Article  Google Scholar 

  35. SINGH A R P, NAG S, CHATTOPADHYAY S, et al. Mechanisms related to different generations of γ′ precipitation during continuous cooling of a nickel base superalloy [J]. Acta Materialia, 2013, 61(1): 280–293. DOI: https://doi.org/10.1016/j.actamat.2012.09.058.

    Article  Google Scholar 

  36. TURI M L, WEATHERLY G, PURDY G. Grain boundary precipitation of γ in γ′ Ni3(Al, Ti) [J]. Materials Science and Engineering A, 1995, 192–193: 945–949. DOI: https://doi.org/10.1016/0921-5093(94)03325-0.

    Article  Google Scholar 

  37. LI Fu-lin, FU Rui, YIN Fa-jie, et al. Impact of γ′(Ni3(Al, Ti)) phase on dynamic recrystallization of a Ni-based disk superalloy during isothermal compression [J]. Journal of Alloys and Compounds, 2017, 693: 1076–1082. DOI: https://doi.org/10.1016/j.jallcom.2016.09.258.

    Article  Google Scholar 

  38. ZHU Qiang, CHENG Lu-kuan, WANG Chuan-jie, et al. Effect of S phase on size effect in microtensile deformation of a nickel-based superalloy [J]. Materials Science and Engineering A, 2019, 766: 138405. DOI: https://doi.org/10.1016/j.msea.2019.138405.

    Article  Google Scholar 

  39. YIN Bin, XIE Guang, LOU Lang-hong, et al. Abnormal increase of TCP phase during heat treatment in a Ni-based single crystal superalloy [J]. Scripta Materialia, 2019, 173: 1–4. DOI: https://doi.org/10.1016/j.scriptamat.2019.07.027.

    Article  Google Scholar 

  40. TANG Ling, LIANG **g-**g, CUI Chuan-yong, et al. Precipitation and phase transformation mechanism of additive manufactured Ni-Co base superalloy [J]. Materials Characterization, 2019, 151: 252–259. DOI: https://doi.org/10.1016/j.matchar.2019.03.015.

    Article  Google Scholar 

  41. GHICA C, SOLÍS C, MUNKE J, et al. HRTEM analysis of the high-temperature phases of the newly developed high-temperature Ni-base superalloy VDM 780 premium [J]. Journal of Alloys and Compounds, 2020, 814: 152157. DOI: https://doi.org/10.1016/j.jallcom.2019.152157.

    Article  Google Scholar 

  42. LI Yi-fei, WANG Li, ZHANG Gong, et al. Creep deformation related to γ′ phase cutting at high temperature of a [111] oriented nickel-base single crystal superalloy [J]. Materials Science and Engineering A, 2019, 763: 138162. DOI: https://doi.org/10.1016/j.msea.2019.138162.

    Article  Google Scholar 

  43. WU Yun-sheng, LIU Zhuang, QIN Xue-zhi, et al. Effect of initial state on hot deformation and dynamic recrystallization of Ni-Fe based alloy GH984G for steam boiler applications [J]. Journal of Alloys and Compounds, 2019, 795: 370–384. DOI: https://doi.org/10.1016/j.jallcom.2019.05.022.

    Article  Google Scholar 

  44. CORYELL S P, FINDLEY K O, MATAYA M C, et al. Evolution of microstructure and texture during hot compression of a Ni-Fe-Cr superalloy [J]. Metallurgical and Materials Transactions A, 2012, 43(2): 633–649. DOI: https://doi.org/10.1007/s11661-011-0889-3.

    Article  Google Scholar 

  45. POELT P, SOMMITSCH C, MITSCHE S, et al. Dynamic recrystallization of Ni-base alloys—Experimental results and comparisons with simulations [J]. Materials Science and Engineering A, 2006, 420(1–2): 306–314. DOI: https://doi.org/10.1016/j.msea.2006.01.076.

    Article  Google Scholar 

  46. MANDAL S, BHADURI A K, SUBRAMANYA S V. Influence of state of stress on dynamic recrystallization in a titanium-modified austenitic stainless steel [J]. Metallurgical and Materials Transactions A, 2012, 43(2): 410–414. DOI: https://doi.org/10.1007/s11661-011-1015-2.

    Article  Google Scholar 

  47. EVANS N D, MAZIASZ P J, SHINGLEDECKER J P, et al. Microstructure evolution of alloy 625 foil and sheet during creep at 750 °C [J]. Materials Science and Engineering A, 2008, 498(1–2): 412–420. DOI: https://doi.org/10.1016/j.msea.2008.08.017.

    Article  Google Scholar 

  48. LIN Yong-cheng, HE Dao-guang, CHEN Ming-song, et al. EBSD analysis of evolution of dynamic recrystallization grains and S phase in a nickel-based superalloy during hot compressive deformation [J]. Materials & Design, 2016, 97: 13–24. DOI: https://doi.org/10.1016/j.matdes.2016.02.052.

    Article  Google Scholar 

  49. GAO W, BELYAKOV A, MIURA H, et al. Dynamic recrystallization of copper polycrystals with different purities [J]. Materials Science and Engineering A, 1999, 265(1–2): 233–239. DOI: https://doi.org/10.1016/S0921-5093(99)00004-0.

    Article  Google Scholar 

  50. WANG Y, SHAO W Z, ZHEN L, et al. Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718 [J]. Materials Science and Engineering A, 2008, 486(1–2): 321–332. DOI: https://doi.org/10.1016/j.msea.2007.09.008.

    Article  Google Scholar 

  51. WU Yun-sheng, ZHANG Mai-cang, XIE **-shan, et al. Hot deformation characteristics and processing map analysis of a new designed nickel-based alloy for 700 °C A-USC power plant [J]. Journal of Alloys and Compounds, 2016, 656: 119–131. DOI: https://doi.org/10.1016/j.jallcom.2015.09.219.

    Article  Google Scholar 

  52. DUDOVA N, BELYAKOV A, SAKAI T, et al. Dynamic recrystallization mechanisms operating in a Ni-20%Cr alloy under hot-to-warm working [J]. Acta Materialia, 2010, 58(10): 3624–3632. DOI: https://doi.org/10.1016/j.actamat.2010.02.032.

    Article  Google Scholar 

  53. WANG M J, SUN C Y, FU M W, et al. Study on the dynamic recrystallization mechanisms of Inconel 740 superalloy during hot deformation [J]. Journal of Alloys and Compounds, 2020, 820: 153325. DOI: https://doi.org/10.1016/j.jallcom.2019.153325.

    Article  Google Scholar 

  54. PRADHAN S K, MANDAL S, ATHREYA C N, et al. Influence of processing parameters on dynamic recrystallization and the associated annealing twin boundary evolution in a nickel base superalloy [J]. Materials Science and Engineering A, 2017, 700: 49–58. DOI: https://doi.org/10.1016/j.msea.2017.05.109.

    Article  Google Scholar 

  55. WANG Y, SHAO W Z, ZHEN L, et al. Flow behavior and microstructures of superalloy 718 during high temperature deformation [J]. Materials Science and Engineering A, 2008, 497(1–2): 479–486. DOI: https://doi.org/10.1016/j.msea.2008.07.046.

    Article  Google Scholar 

  56. MAHAJAN S. Formation of annealing twins in f.c.c. crystals [J]. Acta Materialia, 1997, 45(6): 2633–2638. DOI: https://doi.org/10.1016/s1359-6454(96)00336-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WANG Yan-jiang provided the concept and edited the draft of manuscript. JIA Zhi conducted the literature review and wrote the first draft of the manuscript. GAO Ze-xi analyzed the measured data. LIU De-xue edited the draft of manuscript.

Corresponding authors

Correspondence to Zhi Jia  (贾智) or De-xue Liu  (刘德学).

Additional information

Conflict of interest

WANG Yan-jiang, JIA Zhi, GAO Ze-xi, and LIU De-xue declare that they have no conflict of interest.

Foundation item: Project(18JR3RA134) supported by the Science Foundation for Distinguished Young Scholars of Gansu Province, China; Project(CGZH001) supported by the Lanzhou University of Technology Support Plan for Excellent Young Scholars, China; Project(51665032) supported by the National Natural Science Foundation of China; Project(20YF8WA064) supported by the Key R&D Program of Gansu Province-International Cooperation Project, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yj., Jia, Z., Gao, Zx. et al. Continuous dynamic recrystallization nucleation mechanism and annealing twin evolution with respect to grain growth in a nickel-based superalloy. J. Cent. South Univ. 30, 49–60 (2023). https://doi.org/10.1007/s11771-022-5215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5215-2

Key words

关键词

Navigation