Log in

Maximum correntropy-based pseudolinear Kalman filter for passive bearings-only target tracking

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

This paper proposes a new approach for solving the bearings-only target tracking (BoT) problem by introducing a maximum correntropy criterion to the pseudolinear Kalman filter (PLKF). PLKF has been a popular choice for solving BoT problems owing to the reduced computational complexity. However, the coupling between the measurement vector and pseudolinear noise causes bias in PLKF. To address this issue, a bias-compensated PLKF (BC-PLKF) under the assumption of Gaussian noise was formulated. However, this assumption may not be valid in most practical cases. Therefore, a bias-compensated PLKF with maximum correntropy criterion is introduced, resulting in two new filters: maximum correntropy pseudolinear Kalman filter (MC-PLKF) and maximum correntropy bias-compensated pseudolinear Kalman filter (MC-BC-PLKF). To demonstrate the performance of the proposed estimators, a comparative analysis assuming large outliers in the process and measurement model of 2D BoT is conducted. These large outliers are modeled as non-Gaussian noises with diverse noise distributions that combine Gaussian and Laplacian noises. The simulation results are validated using root mean square error (RMSE), average RMSE (ARMSE), percentage of track loss and bias norm. Compared to PLKF and BC-PLKF, all the proposed maximum correntropy-based filters (MC-PLKF and MC-BC-PLKF) performed with superior estimation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bar-Shalom, Y., Li, X. R., & Kirubarajan, T. (2001). Estimation with applications to tracking and navigation: Theory algorithms and software. Wiley.

    Google Scholar 

  2. Bar-Shalom, Y., Fortmann, T. E., & Cable, P. G. (1990). Tracking and data association. Acoustical Society of America.

    Book  Google Scholar 

  3. Nguyen, N. H., & Doğançay, K. (2017). Improved pseudolinear Kalman filter algorithms for bearings-only target tracking. IEEE Transactions on Signal Processing, 65(23), 6119–6134.

    Article  MathSciNet  Google Scholar 

  4. Radhakrishnan, R., Singh, A. K., Bhaumik, S., & Tomar, N. K. (2015). Quadrature filters for underwater passive bearings-only target tracking. In 2015 Sensor signal processing for defence (SSPD), pp. 1–5. IEEE.

  5. Kim, Y.-R., Park, S.-Y., & Park, C. (2013). Non-recursive estimation using a batch filter based on particle filtering. Computers and Mathematics with Applications, 66(10), 1905–1919.

    Article  MathSciNet  Google Scholar 

  6. Aidala, V. J. (1979). Kalman filter behavior in bearings-only tracking applications. IEEE Transactions on Aerospace and Electronic Systems, 1, 29–39.

    Article  Google Scholar 

  7. Ristic, B., Arulampalam, S., & Gordon, N. (2003). Beyond the Kalman filter: Particle filters for tracking applications. Artech House.

    Google Scholar 

  8. Julier, S., Uhlmann, J., & Durrant-Whyte, H. F. (2000). A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45(3), 477–482.

    Article  MathSciNet  Google Scholar 

  9. Julier, S. J., & Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 401–422.

    Article  Google Scholar 

  10. Haykin, S., & Arasaratnam, I. (2009). Cubature Kalman filters. IEEE Transactions on Automatic Control, 54(6), 1254–1269.

    Article  MathSciNet  Google Scholar 

  11. Arulampalam, M. S., Ristic, B., Gordon, N., & Mansell, T. (2004). Bearings-only tracking of manoeuvring targets using particle filters. EURASIP Journal on Advances in Signal Processing, 2004, 1–15.

    Article  Google Scholar 

  12. Jiang, H., & Cai, Y. (2020). Gaussian sum pseudolinear Kalman filter for bearings-only tracking. IET Control Theory and Applications, 14(3), 452–460.

    Article  MathSciNet  Google Scholar 

  13. Lin, X., Kirubarajan, T., Bar-Shalom, Y., & Maskell, S. (2002). Comparison of EKF, pseudomeasurement, and particle filters for a bearing-only target tracking problem. In Signal and data processing of small targets 2002, vol. 4728, pp. 240–250. SPIE

  14. Aidala, V. J., & Nardone, S. C. (1982). Biased estimation properties of the pseudolinear tracking filter. IEEE Transactions on Aerospace and Electronic Systems, 4, 432–441.

    Article  Google Scholar 

  15. Dogancay, K. (2014). Self-localization from landmark bearings using pseudolinear estimation techniques. IEEE Transactions on Aerospace and Electronic Systems, 50(3), 2361–2368.

    Article  Google Scholar 

  16. Doğançay, K., & Arablouei, R. (2015). Selective angle measurements for a 3d-aoa instrumental variable TMA algorithm. In 2015 23rd European signal processing conference (EUSIPCO), pp. 195–199. IEEE.

  17. Nguyen, N. H., & Doğançay, K. (2017). Multistatic pseudolinear target motion analysis using hybrid measurements. Signal Processing, 130, 22–36.

    Article  Google Scholar 

  18. Xu, S., Doğançay, K., & Hmam, H. (2018). 3D AOA target tracking using distributed sensors with multi-hop information sharing. Signal processing, 144, 192–200.

    Article  Google Scholar 

  19. Nguyen, N. H., & Doğançay, K. (2016). Single-platform passive emitter localization with bearing and doppler-shift measurements using pseudolinear estimation techniques. Signal Processing, 125, 336–348.

    Article  Google Scholar 

  20. Kaba, U., & Temeltas, H. (2022). Generalized bias compensated pseudolinear Kalman filter for colored noisy bearings-only measurements. Signal Processing, 190, 108331.

    Article  Google Scholar 

  21. Fakoorian, S., Izanloo, R., Shamshirgaran, A., & Simon, D. (2019). Maximum correntropy criterion Kalman filter with adaptive kernel size. In 2019 IEEE national aerospace and electronics conference (NAECON), pp. 581–584. IEEE.

  22. Urooj, A., Dak, A., Ristic, B., & Radhakrishnan, R. (2022). 2D and 3D angles-only target tracking based on maximum correntropy Kalman filters. Sensors, 22(15), 5625.

    Article  Google Scholar 

  23. Liu, X., Qu, H., Zhao, J., & Chen, B. (2016). Extended Kalman filter under maximum correntropy criterion. In 2016 International joint conference on neural networks (IJCNN), pp. 1733–1737. IEEE.

  24. Liu, X., Chen, B., Xu, B., Wu, Z., & Honeine, P. (2017). Maximum correntropy unscented filter. International Journal of Systems Science, 48(8), 1607–1615.

    Article  MathSciNet  Google Scholar 

  25. Chen, B., Wang, X., Li, Y., & Principe, J. C. (2019). Maximum correntropy criterion with variable center. IEEE Signal Processing Letters, 26(8), 1212–1216.

    Article  Google Scholar 

  26. Shao, J., Chen, W., Zhang, Y., Yu, F., & Wang, J. (2022). Adaptive maximum correntropy based robust CKF with variational bayesian for covariance estimation. Measurement, 202, 111834.

    Article  Google Scholar 

  27. Dak, A., & Radhakrishnan, R. (2022). Non-iterative Cauchy kernel-based maximum correntropy cubature Kalman filter for non-gaussian systems. Control Theory and Technology, 20(4), 465–474.

    Article  MathSciNet  Google Scholar 

  28. Zhong, S., Peng, B., Ouyang, L., Yang, X., Zhang, H., & Wang, G. (2023). A pseudolinear maximum correntropy Kalman filter framework for bearings-only target tracking. IEEE Sensors Journal, 23(17), 19524–19538.

    Article  Google Scholar 

  29. Eltoft, T., Kim, T., & Lee, T.-W. (2006). On the multivariate Laplace distribution. IEEE Signal Processing Letters, 13(5), 300–303.

    Article  Google Scholar 

  30. **ng, J., Jiang, T., & Li, Y. (2022). q-Rényi kernel functioned Kalman filter for land vehicle navigation. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(11), 4598–4602.

    Google Scholar 

  31. Liu, W., Pokharel, P. P., & Principe, J. C. (2007). Correntropy: Properties and applications in non-gaussian signal processing. IEEE Transactions on Signal Processing, 55(11), 5286–5298.

    Article  MathSciNet  Google Scholar 

  32. Souza, C. R. (2010). Kernel functions for machine learning applications. Creative Commons Attribution-Noncommercial-Share Alike, 3(29), 1–1.

    Google Scholar 

  33. Chen, B., Liu, X., Zhao, H., & Principe, J. C. (2017). Maximum correntropy Kalman filter. Automatica, 76, 70–77.

    Article  MathSciNet  Google Scholar 

  34. Liu, X., Qu, H., Zhao, J., Yue, P., & Wang, M. (2016). Maximum correntropy unscented Kalman filter for spacecraft relative state estimation. Sensors, 16(9), 1530.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

These authors contributed equally to this work.

Corresponding author

Correspondence to Rahul Radhakrishnan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

This work was supported by the Core Research Grant, CRG/2022/001997, Science and Engineering Research Board, Government of India.

Appendix A. Derivation of pseudolinear measurement equation

Appendix A. Derivation of pseudolinear measurement equation

The bearing measurement model given in Eq. (3) is

$$\begin{aligned} \tilde{z}_k= \beta _k+v_k, ~~ \text{ where } ~~ \beta _k=\text{ tan}^{-1}({\Delta x_k,}{\Delta {y_k}}). \end{aligned}$$
(A1)

The term \(\beta _k\) is the true measurement and it is also represented as \(z_k\). Hence, the measured bearing is given as

$$\begin{aligned} \tilde{z}_k=z_k+v_k, ~~ \text{ where } ~~ z_k=\beta _k=\text{ tan}^{-1}({\Delta x_k,}{\Delta {y_k}}). \end{aligned}$$
(A2)

To obtain the linearized model of the measurement equation,

$$\begin{aligned} \sin {v_k}\!=\!\sin {(\tilde{z}_k-z_k)}\!=\!\sin {\tilde{z}_k}\cos {z_k}\!-\!\cos {\tilde{z}_k}\sin {z_k}. \end{aligned}$$

Then, using the trigonometric relations from Eq. (A2) as \(\cos {z_k}=\Delta y/\Vert d_k\Vert \), \(\sin {z_k}=\Delta x/\Vert d_k \Vert \) and \({\Delta x_k,}= x^t_k-x^o_k\), \({\Delta {y_k}}= y^t_k-y^o_k\)

$$\begin{aligned}&\sin {v_k}=\sin {\tilde{z}_k}(\Delta y/\Vert d_k \Vert )-\cos {\tilde{z}_k}(\Delta x/\Vert d_k \Vert ), \\&\Vert d_k \Vert \sin {v_k}=\sin {\tilde{z}_k}(y^t_k-y^o_k)-\cos {\tilde{z}_k}(x^t_k-x^o_k), \\&-x^t_k\cos {\tilde{z}_k} +y^t_k\sin {\tilde{z}_k} \\&\quad =-x^o_k\cos {\tilde{z}_k}+y^o_k\sin {\tilde{z}_k}+\Vert d_k \Vert \sin {v_k}. \end{aligned}$$

With further simplifications, the pseudolinear measurement equation can be written as

$$\begin{aligned} \begin{aligned}&u_k' X^o_k=u_k' M X^t_k+\eta _k, \\&Z_k=H_k X^t_k+\eta _k, \end{aligned} \end{aligned}$$
(A3)

where

$$\begin{aligned} u_k'=[-\cos (\tilde{z}_k)~~\sin (\tilde{z}_k)],~~ M=\begin{bmatrix} 1 &{}0 &{} 0 &{} 0\\ 0 &{} 1 &{} 0 &{} 0 \end{bmatrix} \end{aligned}$$

such that \(H_k=u_k'M= [-\cos (\tilde{z}_k) \ \sin (\tilde{z}_k) \ 0 \ 0],\) \( \eta _k=\) \(\Vert d_k\Vert \sin (v_k).\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urooj, A., Radhakrishnan, R. Maximum correntropy-based pseudolinear Kalman filter for passive bearings-only target tracking. Control Theory Technol. 22, 269–281 (2024). https://doi.org/10.1007/s11768-024-00212-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-024-00212-y

Keywords

Navigation