Log in

Significance and strategies in develo** delivery systems for bio-macromolecular drugs

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Successful development of a new drug is prohibitively expensive, and is estimated to cost approximately $100—500 million US dollars for a single clinical drug. Yet, a newly developed drug can only enjoy its patent protection for 18 years, meaning that after this protected time period, any company can manufacture this product and thus the profit generated by this drug entity would reduce dramatically. Most critically, once a drug is being synthesized, its physical, chemical, and biological attributes such as bioavailability and in vivo pharmacokinetics are all completely fixed and cannot be changed. In principal and practice, only the application of an appropriately designed drug delivery system (DDS) is able to overcome such limitations, and yet the cost of develo** a novel drug delivery system is less than 10% of that of develo** a new drug. Because of these reasons, the new trend in pharmaceutical development has already begun to shift from the single direction of develo** new drugs in the past to a combined mode of develo** both new drugs and innovative drug delivery systems in this century. Hence, for develo** countries with relatively limited financial resources, a smart strategic move would be to focus on the development of new DDS, which has a significantly higher benefit/risk ratio when comparing to the development of a new drug.

Because of the unmatched reaction efficiency and a repetitive action mode, the therapeutic activity of a single bio-macromolecular drug (e.g., protein toxins, gene products, etc.) is equivalent to about 106–108 of that from a conventional small molecule anti-cancer agent (e.g., doxorubicin). Hence, bio-macromolecular drugs have been recognized around the world as the future “drug-ofchoice”. Yet, among the >10000 drugs that are currently available, only ∼150 of them belong to these biomacromolecular drugs (an exceedingly low 1.2%), reflecting the difficulties of utilizing these agents in clinical practice. In general, the bottleneck limitations of these biomacromolecular drugs are two-fold: (1) the absence of a preferential action of the drug on tumor cells as opposed to normal tissues, and (2) the lack of ability to cross the tumor cell membrane. In this review, we provide strategies of how to solve these problems simultaneously and collectively via the development of innovative drug delivery systems. Since worldwide progress on bio-macromolecular therapeutics still remains in the infant stage and thus open for an equal-ground competition, we wish that this review would echo the desire to industrialized countries such as China to set up its strategic plan on develo** delivery systems for these bio-macromolecular drugs, thereby realizing their clinical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen T M, Cullis P R. Drug delivery systems: entering the mainstream. Science, 2004, 303(5665): 1818–1822

    Article  CAS  Google Scholar 

  2. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 2002, 54(5): 631–651

    Article  CAS  Google Scholar 

  3. Dreher M R, Liu W, Michelich C R, Dewhirst M W, Yuan F, Chilkoti A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. Journal of the National Cancer Institute, 2006, 98(5): 335–344

    Article  CAS  Google Scholar 

  4. Maeda H, Seymour L W, Miyamoto Y. Conjugates of anticancer agents and polymers: Advantages of macromolecular therapeutics in vivo. Bioconjugate Chemistry, 2002, 3(5): 351–362

    Article  Google Scholar 

  5. Takakura Y, Hashida M. Macromolecular drug carrier systems in cancer chemotherapy: macromolecular prodrugs. Critical Reviews in Oncology/Hematology, 1995, 18(3): 207–231

    Article  CAS  Google Scholar 

  6. Defoort J P, Nardelli B, Huang W, Ho D D, Tam J P. Macromolecular assemblage in the design of a synthetic AIDS vaccine. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(9): 3879–3883

    Article  CAS  Google Scholar 

  7. Hamajima K, Bukawa H, Fukushima J, Kawamoto S, Kaneko T, Sekigawa K I, Tanaka S I, Tsukuda M, Okuda K. A macromolecular multicomponent peptide vaccine prepared using the glutaraldehyde conjugation method with strong immunogenicity for HIV-1. Clinical Immunology and Immunopathology, 1995, 77(3): 374–379

    Article  CAS  Google Scholar 

  8. Greenberg S, Frishman W. Co-enzyme Q10: A new drug for cardiovascular disease. The Journal of Clinical Pharmacology, 1990, 30(7): 596–608

    Article  CAS  Google Scholar 

  9. Torchilin V P. Targeting of drugs and drug carriers within the cardiovascular system. Advanced Drug Delivery Reviews, 1995, 17(1): 75–101

    Article  CAS  Google Scholar 

  10. Chang C-T L, Liou H-Y, Tang H L, Sung H Y. Activation, purification and properties of beta-amylase from sweet potatoes (Ipomoea batatas). Biotechnology and Applied Biochemistry, 1996, 24: 13–18

    CAS  Google Scholar 

  11. Noda T, Furuta S, Suda I. Sweet potato [beta]-amylase immobilized on chitosan beads and its application in the semi-continuous production of maltose. Carbohydrate Polymers, 2001, 44(3): 189–195

    Article  CAS  Google Scholar 

  12. Thorpe P E, Burrows F J. Antibody-directed targeting of the vasculature of solid tumors. Breast Cancer Research and Treatment, 1995, 36(2): 237–251

    Article  CAS  Google Scholar 

  13. Bandres E, Andion E, Escalada A, Honorato B, Catalan V, Cubedo E, Cordeu L, Garcia F, Zarate R, Zabalegui N, Garcia-Foncillas J. Gene expression profile induced by BCNU in human glioma cell lines with differential MGMT expression. Journal of Neuro-Oncology, 2005, 73(3): 189–198

    Article  CAS  Google Scholar 

  14. Buchner J, Pastan I, Brinkmann U. A method for increasing the yield of properly folded recombinant fusion proteins: Single-chain immunotoxins from renaturation of bacterial inclusion bodies. Analytical Biochemistry, 1992, 205(2): 263–270

    Article  CAS  Google Scholar 

  15. Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 2005, 33(20): e179

    Article  Google Scholar 

  16. Gibson U E, Heid C A, Williams P M. A novel method for real time quantitative RT-PCR. Genome Research, 1996, 6(10): 995–1001

    Article  CAS  Google Scholar 

  17. Siebert P D, Chenchik A, Kellogg D E, Lukyanov K A, Lukyanov S A. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Research, 1995, 23(6): 1087–1088

    Article  CAS  Google Scholar 

  18. Syrigos K N, Epenetos A A. Antibody directed enzyme prodrug therapy (ADEPT): A review of the experimental and clinical considerations. Anticancer Research, 1999, 19(1A): 605–613

    CAS  Google Scholar 

  19. Bagshawe K D. Antibody directed enzymes revive anti-cancer prodrugs concept. British Journal of Cancer, 1987, 56(5): 531–532

    Article  CAS  Google Scholar 

  20. Liang J F, Li Y T, Song H, Park Y J, Naik S S, Yang V C. ATTEMPTS: A heparin/protamine-based delivery system for enzyme drugs. Journal of Controlled Release, 2002, 78(1–3): 67–79

    Article  CAS  Google Scholar 

  21. Doxorubicin Hydrochloride. In: AHFS Drug Information, American Hospital Formulary Service, Bethesda, MD. 2001, 950–960

  22. Liang J F, Park Y J, Song H, Li Y T, Yang V C. ATTEMPTS: A heparin/protamine-based prodrug approach for delivery of thrombolytic drugs. Journal of Controlled Release, 2001, 72(1–3): 145–156

    Article  CAS  Google Scholar 

  23. Foldvari M, Mezei C, Mezei M. Intracellular delivery of drugs by liposomes containing P0 glycoprotein from peripheral nerve myelin into human M21 melanoma cells. Journal of Pharmaceutical Sciences, 1991, 80(11): 1020–1028

    Article  CAS  Google Scholar 

  24. McNeil P L, Murphy R F, Lanni F, Taylor D L. A method for incorporating macromolecules into adherent cells. The Journal of Cell Biology, 1984, 98(4): 1556–1564

    Article  CAS  Google Scholar 

  25. Chakrabarti R, Wylie D E, Schuster S M. Transfer of monoclonal antibodies into mammalian cells by electroporation. Journal of Biological Chemistry, 1989, 264(26): 15494–15500

    CAS  Google Scholar 

  26. Stenmark H, Moskaug J O, Madshus I H, Sandvig K, Olsnes S. Peptides fused to the amino-terminal end of diphtheria toxin are translocated to the cytosol. The Journal of Cell Biology, 1991, 113(5): 1025–1032

    Article  CAS  Google Scholar 

  27. Basu S K. Receptor-mediated endocytosis of macromolecular conjugates in selective drug delivery. Biochemical Pharmacology, 1990, 40(9): 1941–1946

    Article  CAS  Google Scholar 

  28. Wu G Y, Wu C H. Evidence for targeted gene delivery to Hep G2 hepatoma cells in vitro. Biochemistry, 1988, 27(3): 887–892

    Article  CAS  Google Scholar 

  29. Mellman I. Endocytosis and molecular sorting. Annual Review of Cell and Developmental Biology, 1996, 12(1): 575–625

    Article  CAS  Google Scholar 

  30. Wu A M, Yazaki P J. Designer genes: Recombinant antibody fragments for biological imaging. The Quarterly Journal of Nuclear Medicine, 2000, 44(3): 268–283

    CAS  Google Scholar 

  31. Jain R K, Cook A W, Steele E L. Haemodynamic and transport barriers to the treatment of solid tumours. International Journal of Radiation Biology, 1991, 60(1–2): 85–100

    Article  CAS  Google Scholar 

  32. Juweid M, Neumann R, Paik C, Perez-Bacete MJ, Sato J, van Osdol W, Weinstein J N. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Research, 1992, 52(19): 5144–5153

    CAS  Google Scholar 

  33. Fawell S, Seery J, Daikh Y, Moore C, Chen L L, Pepinsky B, Barsoum J. Tat-mediated delivery of heterologous proteins into cells. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(2): 664–668

    Article  CAS  Google Scholar 

  34. Jain R K, Baxter L T. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure. Cancer Research, 1988, 48: 7022–7032

    CAS  Google Scholar 

  35. Laguzza B C, Nichols C L, Briggs S L, Cullinan G J, Johnson D A, Starling J J, Baker A L, Bumol T F, Corvalan J R. New antitumor monoclonal antibody-vinca conjugates LY203725 and related compounds: Design, preparation, and representative in vivo activity. Journal of Medicinal Chemistry, 1989, 32(3): 548–555

    Article  CAS  Google Scholar 

  36. Trouet A, Masquelier M, Baurain R, Campeneere D D. A covalent linkage between daunorubicin and proteins that is stable in serum and reversible by lysosomal hydrolases, as required for a lysosomotropic drug-carrier conjugate: In vitro and in vivo studies. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(2): 626–629

    Article  CAS  Google Scholar 

  37. Schneck D, Butler F, Dugan W, Littrel D, Dorrbecker S. Phase I study with a murine monoclonal antibody-Vinca conjugate (KS1/4-DAVLB) in patients with adenocarcinomas. Antibody Immunoconjugates Radiopharmacology, 1989, 2: 93–100

    Google Scholar 

  38. Singh M, Ghose T, Kralovec J, Blair A H, Belitsky P. Inhibition of human renal cancer by monoclonal antibody-linked methotrexate in an ascites tumor model. Cancer Immunology, Immunotherapy, 1991, 32(5): 331–334

    Article  CAS  Google Scholar 

  39. Liu C, Tadayoni B M, Bourret L A, Mattocks K M, Derr S M, Widdison W C, Kedersha N L, Ariniello P D, Goldmacher V S, Lambert J M, Blattler W A, Chari R V. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(16): 8618–8623

    Article  CAS  Google Scholar 

  40. Bader H, Ringsdorf H, Schmidt B. Watersoluble polymers in medicine. Die Angewandte Makromolekulare Chemie, 1984, 123(1): 457–485

    Article  Google Scholar 

  41. Bagshawe K D. Antibody directed enzymes revive anti-cancer prodrugs concept. British Journal of Cancer, 1987, 56(5): 531–532

    Article  CAS  Google Scholar 

  42. Duncan R. Drug-polymer conjugates: Potential for improved chemotherapy. Drug Research, 1992, 3(3): 175–210

    CAS  Google Scholar 

  43. Maeda H, Seymour L W, Miyamoto Y. Conjugates of anticancer agents and polymers: Advantages of macromolecular therapeutics in vivo. Bioconjugate Chemistry, 1992, 3(5): 351–362

    Article  CAS  Google Scholar 

  44. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. Journal of Controlled Release, 2000, 65(1–2): 271–284

    Article  CAS  Google Scholar 

  45. Seymour L W. Passive tumor targeting of soluble macromolecules and drug conjugates. Critical Reviews in Therapeutic Drug Carrier Systems, 1992, 9(2): 135–187

    CAS  Google Scholar 

  46. Moreira J N, Gaspar R, Allen T M. Targeting Stealth liposomes in a murine model of human small cell lung cancer. Biochimica et Biophysica Acta, 2001, 1515(2): 167–176

    Article  CAS  Google Scholar 

  47. Kopecek J, Kopeckova P, Minko T, Lu Z R. HPMA copolymeranticancer drug conjugates: Design, activity, and mechanism of action. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50(1): 61–81

    Article  CAS  Google Scholar 

  48. Rowley G L, Rubenstein K E, Huisjen J, Ullman E F. Mechanism by which antibodies inhibit hapten-malate dehydrogenase conjugates. An enzyme immunoassay for morphine. Journal of Biological Chemistry, 1975, 250(10): 3759–3766

    CAS  Google Scholar 

  49. Green M, Loewenstein P M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat transactivator protein. Cell, 1988, 55(6): 1179–1188

    Article  CAS  Google Scholar 

  50. Frankel A D, Pabo C O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55(6): 1189–1193

    Article  CAS  Google Scholar 

  51. Angelastro J M, Canoll P D, Kuo J, Weicker M, Costa A, Bruce J N, Greene L A. Selective destruction of glioblastoma cells by interference with the activity or expression of ATF5. Oncogene, 2006, 25(6): 907–916

    Article  CAS  Google Scholar 

  52. Derossi D, Joliot A H, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry, 1994, 269(14): 10444–10450

    CAS  Google Scholar 

  53. Elliott G, O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 1997, 88(2): 223–233

    Article  CAS  Google Scholar 

  54. Futaki S, Nakase I, Suzuki T, Youjun Z, Sugiura Y. Translocation of branched-chain arginine peptides through cell membranes: Flexibility in the spatial disposition of positive charges in membranepermeable peptides. Biochemistry, 2002, 41(25): 7925–7930

    Article  CAS  Google Scholar 

  55. Park Y J, Chang L C, Liang J F, Moon C, Chung C P, Yang V C. Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular low protein delivery: In vitro and in vivo study. FASEB Journal, 2005, 19(11): 1555–1557

    CAS  Google Scholar 

  56. Chang L C, Lee H F, Yang Z Q, Yang V C. Low molecular weight protamine (LMWP) as nontoxic heparin/LMWH antidote (I): Preparation and characterization. AAPS PharmSci, 2001, 3(2): E17

    CAS  Google Scholar 

  57. Chang L C, Liang J F, Lee H F, Lee LM, Yang V C. Low molecular weight protamine (LMWP) as nontoxic heparin/LMWH antidote (II): In vitro evaluation of efficacy and toxicity. AAPS PharmSci, 2001, 3(2): E18

    CAS  Google Scholar 

  58. Lee L M, Chang L C, Wrobleski S, Wakefield TW, Yang V C. Low molecular weight protamine as nontoxic heparin/LMWH antidote (III): Preliminary in vivo evaluation of efficacy and toxicity using a canine model. AAPS PharmSci, 2001, 3(2): E19

    CAS  Google Scholar 

  59. Schwarze S R, Dowdy S F. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends in Pharmacological Sciences, 2000, 21(2): 45–48

    Article  CAS  Google Scholar 

  60. Becker-Hapak M, McAllister S S, Dowdy S F. TAT-mediated protein transduction into mammalian cells. Methods (San Diego, Calif.), 2001, 24(3): 247–256

    Article  CAS  Google Scholar 

  61. Torchilin V P, Rammohan R, Weissig V, Levchenko T S. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(15): 8786–8791

    Article  CAS  Google Scholar 

  62. Josephson L, Tung C H, Moore A, Weissleder R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjugate Chemistry, 1999, 10(2): 186–191

    Article  CAS  Google Scholar 

  63. Schwarze S R, Ho A, Vocero-Akbani A, Dowdy S F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science, 1999, 285(5433): 1569–1572

    Article  CAS  Google Scholar 

  64. Suzuki T, Futaki S, Niwa M, Tanaka S, Ueda K, Sugiura Y. Possible existence of common internalization mechanisms among argininerich peptides. Journal of Biological Chemistry, 2002, 277(4): 2437–2443

    Article  CAS  Google Scholar 

  65. Fawell S, Seery J, Daikh Y, Moore C, Chen L L, Pepinsky B, Barsoum J. Tat-mediated delivery of heterologous proteins into cells. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(2): 664–668

    Article  CAS  Google Scholar 

  66. Pastan I, Chaudhary V, FitzGerald D J. Recombinant toxins as novel therapeutic agents. Annual Review of Biochemistry, 1992, 61(1): 331–354

    Article  CAS  Google Scholar 

  67. Tsui B, Singh V K, Liang J F, Yang V C. Reduced reactivity towards anti-protamine antibodies of a low molecular weight protamine analogue. Thrombosis Research, 2001, 101(5): 417–420

    Article  CAS  Google Scholar 

  68. Liang J F, Zhen L, Chang L C, Yang V C. A less toxic heparin antagonist—low molecular weight protamine. Biochemistry (Moscow), 2003, 68(1): 116–120

    Article  CAS  Google Scholar 

  69. Chertok B, David A E, Moffat B A, Yang V C. Substantiating in vivo magnetic brain tumor targeting of cationic iron oxide nanocarriers via adsorptive surface masking. Biomaterials, 2009, 30(35): 6780–6787

    Article  CAS  Google Scholar 

  70. Yu F, Yang V C. Size-tunable synthesis of stable superparamagnetic iron oxide nanoparticles for potential biomedical applications. Journal of Biomedical Materials Research Part A, 2010, 92(4): 1468–1475

    Google Scholar 

  71. Yu F, Zhang L, Huang Y, Sun K, David A E, Yang V C. The magnetophoretic mobility and superpara-magnetism of core-shell iron oxide nanoparticles with dual targeting and imaging functionality. Biomaterials, 2010, 31(22): 5842–5848

    Article  CAS  Google Scholar 

  72. Huang Y, Park Y S, Wang J, Moon C, Kwon Y M, Chung H S, Park Y J, Yang V C. ATTEMPTS system: A macromolecular prodrug strategy for cancer drug delivery. Current Pharmaceutical Design, 2010, 16(21): 2369–2376

    Article  CAS  Google Scholar 

  73. Chertok B, David A E, Yang V C. Brain tumor targeting of magnetic nanoparticles for potential drug delivery: effect of administration route and magnetic field topography. Journal of Controlled Release, 2011, 155(3): 393–399

    Article  CAS  Google Scholar 

  74. Chertok B, David A E, Yang V C. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials, 2010, 31(24): 6317–6324

    Article  CAS  Google Scholar 

  75. Chertok B, David A E, Moffat B A, Yang V C. Substantiating in vivo magnetic brain tumor targeting of cationic iron oxide nanocarriers via adsorptive surface masking. Biomaterials, 2009, 30(35): 6780–6787

    Article  CAS  Google Scholar 

  76. Chertok B, Cole A J, David A E, Yang V C. Comparison of electron spin resonance spectroscopy and inductively-coupled plasma optical emission spectroscopy for biodistribution analysis of iron-oxide nanoparticles. Molecular Pharmaceutics, 2010, 7(2): 375–385

    Article  CAS  Google Scholar 

  77. Chertok B, David A E, Yang V C. Magnetically-enabled and MRmonitored selective brain tumor protein delivery in rats via magnetic nanocarriers. Biomaterials, 2011, 32(26): 6245–6253

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, H., Liang, Q., Shin, M.C. et al. Significance and strategies in develo** delivery systems for bio-macromolecular drugs. Front. Chem. Sci. Eng. 7, 496–507 (2013). https://doi.org/10.1007/s11705-013-1362-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-013-1362-1

Keywords

Navigation