Research and Development of Supramolecules as Anticancer Drugs

  • Chapter
  • First Online:
Pharmaceutical Applications of Supramolecules

Abstract

Cancer has a significant effect on society across the globe, specifically in the United States, which has the highest mortality rate. According to the National Cancer Institute, new cancer cases in the United States are expected to exceed 1,918,030 in 2022, with 609,360 fatalities. Despite the fact that several novel drugs have been identified, their in vivo efficacy is restricted due to their extremely lipophilic nature. Furthermore, anticancer drugs have severe toxic or adverse effects on normal cells or tissues. As a result, the quest for a safe and reliable drug entity is essential in order to enhance the drug bioavailability and avoid deleterious effects on normal cells. The supramolecular assembly can be considered such a novel anticancer drug entity to efficiently deliver the drugs with minimal side effects and maximal therapeutic efficacy. Supramolecules can include a variety of nanostructures, layer-by-layer assemblies, conjugates, etc. and offer a high quantitative drug loading and therapeutic release in established carrier degradation and clearance pathways. The modularity of supramolecules also makes it possible to integrate several drugs in a single platform for improved therapeutics outcomes. Supramolecules have tuneable size and shape, which may increase blood circulation, translocation and system efficacy. This chapter will provide a comprehensive insight into the development of various types of supramolecules for cancer therapy, their role in improving the performance of the therapy and regulatory status. Furthermore, the chapter will also shed a light on various targeting strategies that can facilitate the improved translation of supramolecules as anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bray F, Jemal A, Grey N, Ferlay J, Forman D (2012) Global cancer transitions according to the human development index (2008–2030): a population-based study. Lancet Oncol 13:790–801. https://doi.org/10.1016/S1470-2045(12)70211-5

    Article  Google Scholar 

  2. Dizon DS, Krilov L, Cohen E, Gangadhar T, Ganz PA, Hensing TA, Hunger S, Krishnamurthi SS, Lassman AB, Markham MJ (2016) Clinical cancer advances 2016: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol Off J Am Soc Clin Oncol 34:987. https://doi.org/10.1200/JCO.2015.65.8427

    Article  CAS  Google Scholar 

  3. Kumar N, Goel N (2022) Heterocyclic compounds: importance in anticancer drug discovery. Anticancer Agents Med Chem. https://doi.org/10.2174/1871520622666220404082648. Epub ahead of print

  4. Ventola CL (2017) Progress in nanomedicine: approved and investigational nanodrugs. Pharm Ther 42:742–755

    Google Scholar 

  5. Pucci C, Martinelli C, Ciofani G (2019) Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience 13:961. https://doi.org/10.3332/ecancer.2019.961

    Article  Google Scholar 

  6. Nurgali K, Jagoe RT, Abalo R (2018) Adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front Pharmacol 9:245. https://doi.org/10.3389/fphar.2018.00245

    Article  CAS  Google Scholar 

  7. Fahmy SA, Brüßler J, Alawak M, El-Sayed MMH, Bakowsky U, Shoeib T (2019) Chemotherapy based on supramolecular chemistry: a promising strategy in cancer therapy. Pharmaceutics 11:292. https://doi.org/10.3390/pharmaceutics11060292

    Article  CAS  Google Scholar 

  8. Zhou C, Gan L, Zhang Y, Zhang F, Wang G, ** L, Geng R (2009) Review on supermolecules as chemical drugs. Sci China Ser B Chem 52:415–458. https://doi.org/10.1007/s11426-009-0103-2

    Article  CAS  Google Scholar 

  9. Zhang Y, Ma S, Liu X, Xu Y, Zhao J, Si X, Li H, Huang Z, Wang Z, Tang Z (2021) Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy. Adv Mater 33:2007293. https://doi.org/10.1002/adma.202007293

    Article  CAS  Google Scholar 

  10. Lehn J (1988) Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel lecture). Angew Chem Int Ed Engl 27:89–112. https://doi.org/10.1002/anie.198800891

    Article  Google Scholar 

  11. Jiang X, He C, Lin W (2021) Supramolecular metal-based nanoparticles for drug delivery and cancer therapy. Curr Opin Chem Biol 61:143–153. https://doi.org/10.1016/j.cbpa.2021.01.005

    Article  CAS  Google Scholar 

  12. Steed JW, Atwood JL (2013) Supramolecular chemistry. Wiley

    Google Scholar 

  13. Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F (2021) Supramolecular cancer nanotheranostics. Chem Soc Rev 50:2839–2891. https://doi.org/10.1039/D0CS00011F

    Article  CAS  Google Scholar 

  14. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin− DNA adducts. Chem Rev 99:2467–2498. https://doi.org/10.1021/cr980421n

    Article  CAS  Google Scholar 

  15. Deng Y, Wang Y, Jia F, Liu W, Zhou D, ** Q, Ji J (2021) Tailoring supramolecular prodrug nanoassemblies for reactive nitrogen species-potentiated chemotherapy of liver cancer. ACS Nano 15:8663–8675. https://doi.org/10.1021/acsnano.1c00698

    Article  CAS  Google Scholar 

  16. Rottenberg S, Disler C, Perego P (2021) The rediscovery of platinum-based cancer therapy. Nat Rev Cancer 21:37–50. https://doi.org/10.1038/s41568-020-00308-y

    Article  CAS  Google Scholar 

  17. Yu G, Zhou X, Zhang Z, Han C, Mao Z, Gao C, Huang F (2012) Pillar [6] arene/paraquat molecular recognition in water: high binding strength, pH-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning. J Am Chem Soc 134:19489–19497. https://doi.org/10.1021/ja3099905

    Article  CAS  Google Scholar 

  18. Yu G, Ma Y, Han C, Yao Y, Tang G, Mao Z, Gao C, Huang F (2013) A sugar-functionalized amphiphilic pillar [5] arene: synthesis, self-assembly in water, and application in bacterial cell agglutination. J Am Chem Soc 135:10310–10313. https://doi.org/10.1021/ja405237q

    Article  CAS  Google Scholar 

  19. Xue M, Yang Y, Chi X, Yan X, Huang F (2015) Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications. Chem Rev 115:7398–7501. https://doi.org/10.1021/cr5005869

    Article  CAS  Google Scholar 

  20. Fabbrizzi L (2020) The origins of the coordination chemistry of alkali metal ions. ChemTexts 6:1–19

    Article  Google Scholar 

  21. Balaban TS, Tamiaki H, Holzwarth AR (2005) Chlorins programmed for self-assembly. Supermol Dye Chem:1–38. https://doi.org/10.1007/b137480

  22. Lou C, Boesen JT, Christensen NJ, Sørensen KK, Thulstrup PW, Pedersen MN, Giralt E, Jensen KJ, Wengel J (2020) Self-assembly of DNA–peptide supermolecules: coiled-coil peptide structures templated by d-DNA and l-DNA triplexes exhibit chirality-independent but orientation-dependent stabilizing cooperativity. Chem Eur J 26:5676–5684. https://doi.org/10.1002/chem.201905636

    Article  CAS  Google Scholar 

  23. Erdoğar N, Akkın S, Varan G, Bilensoy E (2021) Erlotinib complexation with randomly methylated β-cyclodextrin improves drug solubility, intestinal permeability, and therapeutic efficacy in non-small cell lung cancer. Pharm Dev Technol 26:797–806. https://doi.org/10.1080/10837450.2021.1946695

    Article  CAS  Google Scholar 

  24. Jia Y, Li J (2015) Molecular assembly of Schiff base interactions: construction and application. Chem Rev 115:1597–1621. https://doi.org/10.1021/cr400559g

    Article  CAS  Google Scholar 

  25. Loureiro DRP, Soares JX, Lopes D, Macedo T, Yordanova D, Jakobtorweihen S, Nunes C, Reis S, Pinto MMM, Afonso CMM (2018) Accessing lipophilicity of drugs with biomimetic models: a comparative study using liposomes and micelles. Eur J Pharm Sci 115:369–380. https://doi.org/10.1016/j.ejps.2018.01.029

    Article  CAS  Google Scholar 

  26. Fonseca C, Simoes S, Gaspar R (2002) Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release 83:273–286. https://doi.org/10.1016/s0168-3659(02)00212-2

    Article  CAS  Google Scholar 

  27. Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649–1659. https://doi.org/10.1016/j.addr.2004.02.014

    Article  CAS  Google Scholar 

  28. **ong H, Liu S, Wei T, Cheng Q, Siegwart DJ (2020) Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery in vivo. J Control Release 325:198–205. https://doi.org/10.1016/j.jconrel.2020.06.030

    Article  CAS  Google Scholar 

  29. Pooja D, Reddy TS, Kulhari H, Kadari A, Adams DJ, Bansal V, Sistla R (2020) N-acetyl-d-glucosamine-conjugated PAMAM dendrimers as dual receptor-targeting nanocarriers for anticancer drug delivery. Eur J Pharm Biopharm 154:377–386. https://doi.org/10.1016/j.ejpb.2020.07.020

    Article  CAS  Google Scholar 

  30. Wang Y, Huang D, Wang X, Yang F, Shen H, Wu D (2019) Fabrication of zwitterionic and pH-responsive polyacetal dendrimers for anticancer drug delivery. Biomater Sci 7:3238–3248. https://doi.org/10.1039/C9BM00606K

    Article  CAS  Google Scholar 

  31. Marcinkowska M, Stanczyk M, Janaszewska A, Sobierajska E, Chworos A, Klajnert-Maculewicz B (2019) Multicomponent conjugates of anticancer drugs and monoclonal antibody with PAMAM dendrimers to increase efficacy of HER-2 positive breast cancer therapy. Pharm Res 36:1–17. https://doi.org/10.1007/s11095-019-2683-7

    Article  CAS  Google Scholar 

  32. Mehta D, Leong N, McLeod VM, Kelly BD, Pathak R, Owen DJ, Porter CJH, Kaminskas LM (2018) Reducing dendrimer generation and PEG chain length increases drug release and promotes anticancer activity of PEGylated polylysine dendrimers conjugated with doxorubicin via a cathepsin-cleavable peptide linker. Mol Pharm 15:4568–4576. https://doi.org/10.1021/acs.molpharmaceut.8b00581

    Article  CAS  Google Scholar 

  33. Bhatt H, Kiran Rompicharla SV, Ghosh B, Torchilin V, Biswas S (2019) Transferrin/α-tocopherol modified poly (amidoamine) dendrimers for improved tumor targeting and anticancer activity of paclitaxel. Nanomedicine 14:3159–3176. https://doi.org/10.2217/nnm-2019-0128

    Article  CAS  Google Scholar 

  34. Ahmed KS, Shan X, Mao J, Qiu L, Chen J (2019) Derma roller® microneedles-mediated transdermal delivery of doxorubicin and celecoxib co-loaded liposomes for enhancing the anticancer effect. Mater Sci Eng C 99:1448–1458. https://doi.org/10.1016/j.msec.2019.02.095

    Article  CAS  Google Scholar 

  35. Bai C, Zheng J, Zhao L, Chen L, **ong H, McClements DJ (2018) Development of oral delivery systems with enhanced antioxidant and anticancer activity: coix seed oil and β-carotene coloaded liposomes. J Agric Food Chem 67:406–414. https://doi.org/10.1021/acs.jafc.8b04879

    Article  CAS  Google Scholar 

  36. Zhang D, Lv P, Zhou C, Zhao Y, Liao X, Yang B (2019) Cyclodextrin-based delivery systems for cancer treatment. Mater Sci Eng C 96:872–886. https://doi.org/10.1016/j.msec.2018.11.031

    Article  CAS  Google Scholar 

  37. Yallapu MM, Jaggi M, Chauhan SC (2010) β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B Biointerfaces 79:113–125. https://doi.org/10.1016/j.colsurfb.2010.03.039

    Article  CAS  Google Scholar 

  38. Frydman B, Bhattacharya S, Sarkar A, Drandarov K, Chesnov S, Guggisberg A, Popaj K, Sergeyev S, Yurdakul A, Hesse M (2004) Macrocyclic polyamines deplete cellular ATP levels and inhibit cell growth in human prostate cancer cells. J Med Chem 47:1051–1059. https://doi.org/10.1021/jm030437s

    Article  CAS  Google Scholar 

  39. Damiani E, Wallace HM (2018) Polyamines and cancer. Polyamines:469–488. https://doi.org/10.1007/978-1-4939-7398-9_39

  40. Zhang J, Qiu H, He T, Li Y, Yin S (2020) Fluorescent supramolecular polymers formed by crown ether-based host-guest interaction. Front Chem 8:560. https://doi.org/10.3389/fchem.2020.00560

    Article  CAS  Google Scholar 

  41. Pang L, Feng H, Zhong W, Dong H, Shen Y, Yu B, Cong H (2021) Design of crown ether-based micelles and their anti-tumor properties by perturbing potassium ion homeostasis. Mater Des:110159. https://doi.org/10.1016/j.matdes.2021.110159

  42. Raval J, Trivedi R, Prajapati P (2021) Preparation, characterization, and in-vitro assessment of calixarene nanovesicles: a supramolecular based nano-carrier for paclitaxel drug delivery. Pharm Chem J:1–10. https://doi.org/10.1007/s11094-021-02461-6

  43. Lebrón JA, López-López M, García-Calderón CB, Rosado IV, Balestra FR, Huertas P, Rodik RV, Kalchenko VI, Bernal E, Moyá ML (2021) Multivalent calixarene-based liposomes as platforms for gene and drug delivery. Pharmaceutics 13:1250. https://doi.org/10.3390/pharmaceutics13081250

    Article  CAS  Google Scholar 

  44. Hayashida O, Nakamura Y (2013) Synthesis of water-soluble cyclophane pentamers using click chemistry as a multivalent host for daunorubicin and doxorubicin. Bull Chem Soc Jpn 86:223–229. https://doi.org/10.1246/bcsj.20120296

    Article  CAS  Google Scholar 

  45. Lyu Z, Ding L, Tintaru A, Peng L (2020) Self-assembling supramolecular dendrimers for biomedical applications: lessons learned from poly (amidoamine) dendrimers. Acc Chem Res 53:2936–2949. https://doi.org/10.1021/acs.accounts.0c00589

    Article  CAS  Google Scholar 

  46. Tarach P, Janaszewska A (2021) Recent advances in preclinical research using PAMAM dendrimers for cancer gene therapy. Int J Mol Sci 22:2912. https://doi.org/10.3390/ijms22062912

    Article  CAS  Google Scholar 

  47. Barat R, Legigan T, Tranoy-Opalinski I, Renoux B, Péraudeau E, Clarhaut J, Poinot P, Fernandes AE, Aucagne V, Leigh DA (2015) A mechanically interlocked molecular system programmed for the delivery of an anticancer drug. Chem Sci 6:2608–2613. https://doi.org/10.1039/C5SC00648A

    Article  CAS  Google Scholar 

  48. Dron PI, Fourmentin S, Cazier F, Landy D, Surpateanu G (2008) Cyclophanes or cyclodextrins: what is the best host for aromatic volatile organic compounds? Supramol Chem 20:473–477. https://doi.org/10.1080/10610270701358525

    Article  CAS  Google Scholar 

  49. Wüpper S, Lüersen K, Rimbach G (2021) Cyclodextrins, natural compounds, and plant bioactives—a nutritional perspective. Biomol Ther 11:401. https://doi.org/10.3390/biom11030401

    Article  CAS  Google Scholar 

  50. Popat A, Karmakar S, Jambhrunkar S, Xu C, Yu C (2014) Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids Surf B Biointerfaces 117:520–527. https://doi.org/10.1016/j.colsurfb.2014.03.005

    Article  CAS  Google Scholar 

  51. Gholibegloo E, Mortezazadeh T, Salehian F, Ramazani A, Amanlou M, Khoobi M (2019) Improved curcumin loading, release, solubility and toxicity by tuning the molar ratio of cross-linker to β-cyclodextrin. Carbohydr Polym 213:70–78. https://doi.org/10.1016/j.carbpol.2019.02.075

    Article  CAS  Google Scholar 

  52. Melo PS, Justo GZ, de Azevedo MBM, Durán N, Haun M (2003) Violacein and its β-cyclodextrin complexes induce apoptosis and differentiation in HL60 cells. Toxicology 186:217–225. https://doi.org/10.1016/s0300-483x(02)00751-5

    Article  CAS  Google Scholar 

  53. Chen X-Y, Yang H-W, Chi S-M, Yue L-L, Ruan Q, Lei Z, Zhu H-Y, Zhao Y (2021) Solubility and biological activity enhancement of docetaxel via formation of inclusion complexes with three alkylenediamine-modified β-cyclodextrins. RSC Adv 11:6292–6303. https://doi.org/10.1039/D0RA09720A

    Article  CAS  Google Scholar 

  54. Santos AC, Costa D, Ferreira L, Guerra C, Pereira-Silva M, Pereira I, Peixoto D, Ferreira NR, Veiga F (2021) Cyclodextrin-based delivery systems for in vivo-tested anticancer therapies. Drug Deliv Transl Res 11:49–71. https://doi.org/10.1007/s13346-020-00778-5

    Article  CAS  Google Scholar 

  55. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Nejati-Koshki K, Pashaei-Asl R (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9:1–10. https://doi.org/10.1186/1556-276X-9-247

    Article  CAS  Google Scholar 

  56. Alven S, Aderibigbe BA (2020) The therapeutic efficacy of dendrimer and micelle formulations for breast cancer treatment. Pharmaceutics 12:1212. https://doi.org/10.3390/pharmaceutics12121212

    Article  CAS  Google Scholar 

  57. Li D, Lin L, Fan Y, Liu L, Shen M, Wu R, Du L, Shi X (2021) Ultrasound-enhanced fluorescence imaging and chemotherapy of multidrug-resistant tumors using multifunctional dendrimer/carbon dot nanohybrids. Bioact Mater 6:729–739. https://doi.org/10.1016/j.bioactmat.2020.09.015

    Article  CAS  Google Scholar 

  58. Fernandes A, Viterisi A, Coutrot F, Potok S, Leigh DA, Aucagne V, Papot S (2009) Rotaxane-based propeptides: protection and enzymatic release of a bioactive pentapeptide. Angew Chem Int Ed 48:6443–6447. https://doi.org/10.1002/anie.200903215

    Article  CAS  Google Scholar 

  59. Zhao Y-L, Li Z, Kabehie S, Botros YY, Stoddart JF, Zink JI (2010) pH-operatednanopistons on the surfaces of mesoporous silica nanoparticles. J Am Chem Soc 132:13016–13025. https://doi.org/10.1021/ja105371u

    Article  CAS  Google Scholar 

  60. Ferris DP, Zhao Y-L, Khashab NM, Khatib HA, Stoddart JF, Zink JI (2009) Light-operated mechanized nanoparticles. J Am Chem Soc 131:1686–1688. https://doi.org/10.1021/ja807798g

    Article  CAS  Google Scholar 

  61. Clarke MJ, Zhu F, Frasca DR (1999) Non-platinum chemotherapeutic metallopharmaceuticals. Chem Rev 99:2511–2534. https://doi.org/10.1021/cr9804238

    Article  CAS  Google Scholar 

  62. Ott I, Gust R (2007) Non platinum metal complexes as anti-cancer drugs. Arch Pharm 340:117–126. https://doi.org/10.1002/ardp.200600151

    Article  CAS  Google Scholar 

  63. Raynaud FI, Boxall FE, Goddard PM, Valenti M, Jones M, Murrer BA, Abrams M, Kelland LR (1997) Cis-amminedichloro (2-methylpyridine) platinum (II)(AMD473), a novel sterically hindered platinum complex: in vivo activity, toxicology, and pharmacokinetics in mice. Clin Cancer Res 3:2063–2074

    CAS  Google Scholar 

  64. Brabec V, Kašpárková J, Vrána O, Nováková O, Cox JW, Qu Y, Farrell N (1999) DNA modifications by a novel bifunctionaltrinuclear platinum phase I anticancer agent. Biochemistry 38:6781–6790. https://doi.org/10.1021/bi990124s

    Article  CAS  Google Scholar 

  65. Bagrova SG (2001) Results of phase II clinical trial of cycloplatam in refractory solid tumors. Vopr Onkologii 47:752–756

    CAS  Google Scholar 

  66. Johnstone TC, Lippard SJ (2015) Improvements in the synthesis and understanding of the Iodo-bridged intermediate en route to the Pt(IV) prodrug Satraplatin. Inorg Chim Acta 424:254–259. https://doi.org/10.1016/J.ICA.2014.08.047

    Article  CAS  Google Scholar 

  67. Descôteaux C, Provencher-Mandeville J, Mathieu I, Perron V, Mandal SK, Asselin É, Bérubé G (2003) Synthesis of 17β-estradiol platinum (II) complexes: biological evaluation on breast cancer cell lines. Bioorg Med Chem Lett 13:3927–3931. https://doi.org/10.1016/j.bmcl.2003.09.011

    Article  CAS  Google Scholar 

  68. Perron V, Rabouin D, Asselin E, Parent S, René C, Bérubé G (2005) Synthesis of 17β-estradiol-linked platinum (II) complexes and their cytocidal activity on estrogen-dependent and-independent breast tumor cells. Bioorg Chem 33:1–15. https://doi.org/10.1016/j.bioorg.2004.06.009

    Article  CAS  Google Scholar 

  69. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249. https://doi.org/10.1016/s1056-8719(00)00107-6

    Article  CAS  Google Scholar 

  70. Kumar N, Gupta S, Yadav TC, Pruthi V, Kumar PV, Goel N (2019) Extrapolation of phenolic compounds as multi-target agents against cancer and inflammation. J Biomol Struct Dyn 37:2355–2369. https://doi.org/10.1080/07391102.2018.1481457

    Article  CAS  Google Scholar 

  71. Batchelor HK, Marriott JF (2015) Paediatric pharmacokinetics: key considerations. Br J Clin Pharmacol 79:395–404. https://doi.org/10.1111/bcp.12267

    Article  CAS  Google Scholar 

  72. Kumar N, Goel N (2022) Recent development of imidazole derivatives as potential anticancer agents. Heterocyclic anticancer agents. De Gruyter, pp 267–305. https://doi.org/10.1515/9783110735772-008

  73. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm 420:1–10. https://doi.org/10.1016/j.ijpharm.2011.08.032

    Article  CAS  Google Scholar 

  74. Jensen KT, Blaabjerg LI, Lenz E, Bohr A, Grohganz H, Kleinebudde P, Rades T, Löbmann K (2016) Preparation and characterization of spray-dried co-amorphous drug–amino acid salts. J Pharm Pharmacol 68:615–624. https://doi.org/10.1111/jphp.12458

    Article  CAS  Google Scholar 

  75. Di Costanzo A, Angelico R (2019) Formulation strategies for enhancing the bioavailability of Silymarin: the state of the art. Molecules 24:2155. https://doi.org/10.3390/molecules24112155

    Article  CAS  Google Scholar 

  76. Wankar J, Kotla NG, Gera S, Rasala S, Pandit A, Rochev YA (2020) Recent advances in host–guest self-assembled cyclodextrin carriers: implications for responsive drug delivery and biomedical engineering. Adv Funct Mater 30:1909049. https://doi.org/10.1002/adfm.201909049

    Article  CAS  Google Scholar 

  77. Shimoda K, Kubota N (2011) Chemo-enzymatic synthesis of ester-linked docetaxel-monosaccharide conjugates as water-soluble prodrugs. Molecules 16:6769–6777. https://doi.org/10.3390/molecules16086769

    Article  CAS  Google Scholar 

  78. Polt R, Porreca F, Szabo LZ, Bilsky EJ, Davis P, Abbruscato TJ, Davis TP, Harvath R, Yamamura HI, Hruby VJ (1994) Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Proc Natl Acad Sci 91:7114–7118. https://doi.org/10.1021/ja0268635

    Article  CAS  Google Scholar 

  79. Rodriguez MC, Cudic M (2013) Optimization of physicochemical and pharmacological properties of peptide drugs by glycosylation. Methods Mol Biol 1081:107–136. https://doi.org/10.1007/978-1-62703-652-8-8

    Article  CAS  Google Scholar 

  80. Moradi SV, Hussein WM, Varamini P, Simerska P, Toth I (2016) Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem Sci 7:2492–2500. https://doi.org/10.1039/c5sc04392a

    Article  CAS  Google Scholar 

  81. Giorgioni G, Ruggieri S, Di Stefano A, Sozio P, Cinque B, Di Marzio L, Santoni G, Claudi F (2008) Glycosyl and polyalcoholic prodrugs of lonidamine. Bioorg Med Chem Lett 18:2445–2450. https://doi.org/10.1016/j.bmcl.2008.02.046

    Article  CAS  Google Scholar 

  82. Houba PHJ, Boven E, Van der Meulen-Muileman IH, Leenders RGG, Scheeren JW, Pinedo HM, Haisma HJ (2001) A novel doxorubicin-glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy: distribution and efficacy in experimental human ovarian cancer. Br J Cancer 84:550–557. https://doi.org/10.1054/bjoc.2000.1640

    Article  CAS  Google Scholar 

  83. Thomas M, Rivault F, Tranoy-Opalinski I, Roche J, Gesson J-P, Papot S (2007) Synthesis and biological evaluation of the suberoylanilidehydroxamic acid (SAHA) β-glucuronide and β-galactoside for application in selective prodrug chemotherapy. Bioorg Med Chem Lett 17:983–986. https://doi.org/10.1016/j.bmcl.2006.11.042

    Article  CAS  Google Scholar 

  84. Fernández C, Nieto O, Fontenla JA, Rivas E, de Ceballos ML, Fernández-Mayoralas A (2003) Synthesis of glycosyl derivatives as dopamine prodrugs: interaction with glucose carrier GLUT-1. Org Biomol Chem 1:767–771. https://doi.org/10.1039/B212066F

    Article  Google Scholar 

  85. Fernández M, Javaid F, Chudasama V (2018) Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci 9:790–810. https://doi.org/10.1039/C7SC04004K

    Article  Google Scholar 

  86. Muthu MS, Kulkarni SA, Raju A, Feng S-S (2012) Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials 33:3494–3501. https://doi.org/10.1016/j.biomaterials.2012.01.036

    Article  CAS  Google Scholar 

  87. Zhang JA, Anyarambhatla G, Ma L, Ugwu S, Xuan T, Sardone T, Ahmad I (2005) Development and characterization of a novel Cremophor® EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur J Pharm Biopharm 59:177–187. https://doi.org/10.1016/j.ejpb.2004.06.009

    Article  CAS  Google Scholar 

  88. Harfouche R, Basu S, Soni S, Hentschel DM, Mashelkar RA, Sengupta S (2009) Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis. Angiogenesis 12:325. https://doi.org/10.1007/s10456-009-9154-4

    Article  CAS  Google Scholar 

  89. Monnaert V, Betbeder D, Fenart L, Bricout H, Lenfant AM, Landry C, Cecchelli R, Monflier E, Tilloy S (2004) Effects of γ-and hydroxypropyl-γ-cyclodextrins on the transport of doxorubicin across an in vitro model of blood-brain barrier. J Pharmacol Exp Ther 311:1115–1120. https://doi.org/10.1124/jpet.104.071845

    Article  CAS  Google Scholar 

  90. Jiang Y, Jiang X, Law K, Chen Y, Gu J, Zhang W, **n H, Sha X, Fang X (2011) Enhanced anti-tumor effect of 9-nitro-camptothecin complexed by hydroxypropyl-β-cyclodextrin and safety evaluation. Int J Pharm 415:252–258. https://doi.org/10.1016/j.ijpharm.2011.05.056

    Article  CAS  Google Scholar 

  91. Singh UV, Aithal KS, Udupa N (1997) Physicochemical and biological studies of inclusion complex of methotrexate with β-cyclodextrin. Pharm Pharmacol Commun 3:573–577. https://doi.org/10.1111/j.2042-7158.1997.tb00499.x

    Article  CAS  Google Scholar 

  92. Lahiani-Skiba M, Bounoure F, Fessi H, Skiba M (2011) Effect of cyclodextrins on lonidamine release and in-vitro cytotoxicity. J Incl Phenom Macrocycl Chem 69:481–485. https://doi.org/10.1007/s10847-010-9872-7

    Article  CAS  Google Scholar 

  93. Yavuz B, Bilensoy E, Vural İ, Şumnu M (2010) Alternative oral exemestane formulation: improved dissolution and permeation. Int J Pharm 398:137–145. https://doi.org/10.1016/j.ijpharm.2010.07.046

    Article  CAS  Google Scholar 

  94. Béni S, Szakács Z, Csernák O, Barcza L, Noszál B (2007) Cyclodextrin/imatinib complexation: binding mode and charge dependent stabilities. Eur J Pharm Sci 30:167–174. https://doi.org/10.1016/j.ejps.2006.10.008

    Article  CAS  Google Scholar 

  95. Balaji A, Pandey VP, Srinath MS, Manavalan R (2009) Synthesis and characterization studies of cisplatin/hydroxypropyl-β-cyclodextrin complex. Pharmacologyonline 1:1135–1143

    Google Scholar 

  96. Elgindy N, Elkhodairy K, Molokhia A, Elzoghby A (2010) Lyophilization monophase solution technique for improvement of the physicochemical properties of an anticancer drug, flutamide. Eur J Pharm Biopharm 74:397–405. https://doi.org/10.1016/j.ejpb.2009.11.011

    Article  CAS  Google Scholar 

  97. Bilensoy E, Cırpanlı Y, Şen M, Doğan AL, Çalış S (2007) Thermosensitive mucoadhesive gel formulation loaded with 5-Fu: cyclodextrin complex for HPV-induced cervical cancer. J Incl Phenom Macrocycl Chem 57:363–370. https://doi.org/10.1007/s10847-006-9259-y

    Article  CAS  Google Scholar 

  98. Rezaei A, Varshosaz J, Fesharaki M, Farhang A, Jafari SM (2019) Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges. Int J Nanomedicine 14:4589. https://doi.org/10.2147/IJN.S206350

    Article  CAS  Google Scholar 

  99. Liu Y, Chen X, Ding J, Yu L, Ma D, Ding J (2017) Improved solubility and bioactivity of camptothecin family antitumor drugs with supramolecular encapsulation by water-soluble pillar [6] arene. ACS Omega 2:5283–5288. https://doi.org/10.1021/acsomega.7b01032

    Article  CAS  Google Scholar 

  100. Meka AK, Jenkins LJ, Dàvalos-Salas M, Pujara N, Wong KY, Kumeria T, Mariadason JM, Popat A (2018) Enhanced solubility, permeability and anticancer activity of vorinostat using tailored mesoporous silica nanoparticles. Pharmaceutics 10:283. https://doi.org/10.3390/pharmaceutics10040283

    Article  CAS  Google Scholar 

  101. Jayan H, Leena MM, Sundari SKS, Moses JA, Anandharamakrishnan C (2019) Improvement of bioavailability for resveratrol through encapsulation in zein using electrospraying technique. J Funct Foods 57:417–424. https://doi.org/10.1016/j.jff.2019.04.007

    Article  CAS  Google Scholar 

  102. Sayed E, Karavasili C, Ruparelia K, Haj-Ahmad R, Charalambopoulou G, Steriotis T, Giasafaki D, Cox P, Singh N, Giassafaki L-PN (2018) Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation. J Control Release 278:142–155. https://doi.org/10.1016/j.jconrel.2018.03.031

    Article  CAS  Google Scholar 

  103. Sharma D, Satapathy BK (2021) Fabrication of optimally controlled electrosprayed polymer-free nano-particles of curcumin/β-cyclodextrin inclusion complex. Colloids Surf A Physicochem Eng Asp 618:126504. https://doi.org/10.1016/j.colsurfa.2021.126504

    Article  CAS  Google Scholar 

  104. Parvathaneni V, Elbatanony RS, Shukla SK, Kulkarni NS, Kanabar DD, Chauhan G, Ayehunie S, Chen Z-S, Muth A, Gupta V (2021) Bypassing P-glycoprotein mediated efflux of afatinib by cyclodextrin complexation–evaluation of intestinal absorption and anti-cancer activity. J Mol Liq 327:114866. https://doi.org/10.3390/ijms22094783

    Article  CAS  Google Scholar 

  105. Bukhari SZ, Zeth K, Iftikhar M, Rehman M, Munir MU, Khan WS, Ihsan A (2021) Supramolecular lipid nanoparticles as delivery carriers for non-invasive cancer theranostics. Curr Res Pharmacol Drug Discov 2:100067. https://doi.org/10.1016/j.crphar.2021.100067

    Article  Google Scholar 

  106. He Q, Chen J, Yan J, Cai S, **ong H, Liu Y, Peng D, Mo M, Liu Z (2020) Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci 15:416–448. https://doi.org/10.1016/j.ajps.2019.08.003

    Article  Google Scholar 

  107. Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, Shabafrouz K, Ribi C, Cairoli A, Guex-Crosier Y, Kuntzer T, Michielin O, Peters S, Coukos G, Spertini F, Thompson JA, Obeid M (2019) Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol 16:563–580. https://doi.org/10.1038/s41571-019-0218-0

    Article  CAS  Google Scholar 

  108. Luan F, He X, Zeng N (2020) Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J Pharm Pharmacol 72:1491–1512. https://doi.org/10.1111/jphp.13339

    Article  CAS  Google Scholar 

  109. Varma MV, Steyn SJ, Allerton C, El-Kattan AF (2015) Predicting clearance mechanism in drug discovery: extended clearance classification system (ECCS). Pharm Res 32:3785–3802. https://doi.org/10.1007/s11095-015-1749-4

    Article  CAS  Google Scholar 

  110. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B (2017) The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull 7:339–348. https://doi.org/10.15171/apb.2017.041

    Article  CAS  Google Scholar 

  111. Veselov VV, Nosyrev AE, Jicsinszky L, Alyautdin RN, Cravotto G (2022) Targeted delivery methods for anticancer drugs. Cancers (Basel) 14:622. https://doi.org/10.3390/cancers14030622

    Article  CAS  Google Scholar 

  112. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 12:7291–7309. https://doi.org/10.2147/IJN.S146315

    Article  Google Scholar 

  113. Kumar K, Chawla R (2021) Nanocarriers-mediated therapeutics as a promising approach for treatment and diagnosis of lung cancer. J Drug Deliv Sci Technol 65:102677. https://doi.org/10.3390/cancers13030400

    Article  CAS  Google Scholar 

  114. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  Google Scholar 

  115. Rosenblum D, Peer D (2014) Omics-based nanomedicine: the future of personalized oncology. Cancer Lett 352:126–136. https://doi.org/10.1016/j.canlet.2013.07.029

    Article  CAS  Google Scholar 

  116. Onzi G, Guterres SS, Pohlmann AR, Frank LA (2021) Active targeting of nanocarriers. In: The ADME encyclopedia. Springer, Cham. https://doi.org/10.1007/978-3-030-51519-5_109-1

  117. Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M (2021) Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int J Nanomedicine 16:1313–1330. https://doi.org/10.2147/IJN.S289443

    Article  Google Scholar 

  118. Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR, Farokhzad OC (2008) Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 8:1063–1070. https://doi.org/10.1517/14712598.8.8.1063

    Article  CAS  Google Scholar 

  119. Yu BO, Tai HC, Xue W, Lee LJ, Lee RJ (2010) Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 27:286–298. https://doi.org/10.3109/09687688.2010.521200

    Article  CAS  Google Scholar 

  120. Talekar M, Kendall J, Denny W, Garg S (2011) Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anticancer Drugs 22:949–962. https://doi.org/10.1097/CAD.0b013e32834a4554

    Article  CAS  Google Scholar 

  121. Glazer ES, Massey KL, Zhu C, Curley SA (2010) Pancreatic carcinoma cells are susceptible to noninvasive radio frequency fields after treatment with targeted gold nanoparticles. Surgery 148:319–324. https://doi.org/10.1016/j.surg.2010.04.025

    Article  Google Scholar 

  122. Glazer ES, Zhu C, Massey KL, Thompson CS, Kaluarachchi WD, Hamir AN, Curley SA (2010) Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles. Clin Cancer Res 16:5712–5721. https://doi.org/10.1158/1078-0432.CCR-10-2055

    Article  CAS  Google Scholar 

  123. Cherukuri P, Curley SA (2010) Use of nanoparticles for targeted, noninvasive thermal destruction of malignant cells. Cancer Nanotechnol:359–373. https://doi.org/10.1007/978-1-60761-609-2_24

  124. Marty C, Langer-Machova Z, Sigrist S, Schott H, Schwendener RA, Ballmer-Hofer K (2006) Isolation and characterization of a scFv antibody specific for tumor endothelial marker 1 (TEM1), a new reagent for targeted tumor therapy. Cancer Lett 235:298–308. https://doi.org/10.1016/j.canlet.2005.04.029

    Article  CAS  Google Scholar 

  125. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1:1–12. https://doi.org/10.1038/natrevmats.2016.14

    Article  CAS  Google Scholar 

  126. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64:1020–1037. https://doi.org/10.1016/s1734-1140(12)70901-5

    Article  CAS  Google Scholar 

  127. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951. https://doi.org/10.1038/nbt.3330

    Article  CAS  Google Scholar 

  128. Zhao Z, Ukidve A, Krishnan V, Mitragotri S (2019) Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev 143:3–21. https://doi.org/10.1016/j.addr.2019.01.002

    Article  CAS  Google Scholar 

  129. Decuzzi P, Pasqualini R, Arap W, Ferrari M (2009) Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 26:235–243. https://doi.org/10.1007/s11095-008-9697-x

    Article  CAS  Google Scholar 

  130. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Åberg C, Mahon E, Dawson KA (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8:137–143. https://doi.org/10.1021/ar500190q

    Article  CAS  Google Scholar 

  131. Arvizo RR, Miranda OR, Moyano DF, Walden CA, Giri K, Bhattacharya R, Robertson JD, Rotello VM, Reid JM, Mukherjee P (2011) Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One 6:e24374. https://doi.org/10.1371/journal.pone.0024374

    Article  CAS  Google Scholar 

  132. Yao C, Wang P, Zhou L, Wang R, Li X, Zhao D, Zhang F (2014) Highly biocompatible zwitterionic phospholipids coated upconversion nanoparticles for efficient bioimaging. Anal Chem 86:9749–9757. https://doi.org/10.1021/ac5023259

    Article  CAS  Google Scholar 

  133. Sakariassen KS, Bolhuis PA, Sixma JJ (1980) Platelet adherence to subendothelium of human arteries in pulsatile and steady flow. Thromb Res 19:547–559

    Article  CAS  Google Scholar 

  134. Decuzzi P, Lee S, Bhushan B, Ferrari M (2005) A theoretical model for the margination of particles within blood vessels. Ann Biomed Eng 33:179–190. https://doi.org/10.1007/s10439-005-8976-5

    Article  CAS  Google Scholar 

  135. Shah S, Liu Y, Hu W, Gao J (2011) Modeling particle shape-dependent dynamics in nanomedicine. J Nanosci Nanotechnol 11:919–928. https://doi.org/10.1166/jnn.2011.3536

    Article  CAS  Google Scholar 

  136. Tan J, Shah S, Thomas A, Ou-Yang HD, Liu Y (2013) The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid Nanofluidics 14:77–87. https://doi.org/10.1007/s10404-012-1024-5

    Article  CAS  Google Scholar 

  137. Charoenphol P, Huang RB, Eniola-Adefeso O (2010) Potential role of size and hemodynamics in the efficacy of vascular-targeted spherical drug carriers. Biomaterials 31:1392–1402. https://doi.org/10.1016/j.biomaterials.2009.11.007

    Article  CAS  Google Scholar 

  138. Yokoi K, Kojic M, Milosevic M, Tanei T, Ferrari M, Ziemys A (2014) Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Cancer Res 74:4239–4246. https://doi.org/10.1158/0008-5472.CAN-13-3494

    Article  CAS  Google Scholar 

  139. Yokoi K, Tanei T, Godin B, van de Ven AL, Hanibuchi M, Matsunoki A, Alexander J, Ferrari M (2014) Serum biomarkers for personalization of nanotherapeutics-based therapy in different tumor and organ microenvironments. Cancer Lett 345:48–55. https://doi.org/10.1016/j.canlet.2013.11.015

    Article  CAS  Google Scholar 

  140. Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4:806–813. https://doi.org/10.1038/nrc1456

    Article  CAS  Google Scholar 

  141. Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, Yong E-L, Xu HE, Melcher K (2013) Structural basis for molecular recognition of folic acid by folate receptors. Nature 500:486–489. https://doi.org/10.1038/nature12327

    Article  CAS  Google Scholar 

  142. Assaraf YG, Leamon CP, Reddy JA (2014) The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updat 17:89–95. https://doi.org/10.1016/j.drup.2014.10.002

    Article  Google Scholar 

  143. Watanabe K, Kaneko M, Maitani Y (2012) Functional coating of liposomes using a folate–polymer conjugate to target folate receptors. Int J Nanomedicine 7:3679. https://doi.org/10.2147/IJN.S32853

    Article  CAS  Google Scholar 

  144. Zhang X, Chen X, Guo Y, Jia H-R, Jiang Y-W, Wu F-G (2020) Endosome/lysosome-detained supramolecular nanogels as an efflux retarder and autophagy inhibitor for repeated photodynamic therapy of multidrug-resistant cancer. Nanoscale Horizons 5:481–487. https://doi.org/10.1039/C9NH00643E

    Article  CAS  Google Scholar 

  145. Wang H, Wu H, Yi Y, Xue K-F, Xu J-F, Wang H, Zhao Y, Zhang X (2021) Self-motivated supramolecular combination chemotherapy for overcoming drug resistance based on acid-activated competition of host–guest interactions. CCS Chem:1413–1425. https://doi.org/10.31635/ccschem.021.202100964

  146. Guan X, Chen Y, Wu X, Li P, Liu Y (2019) Enzyme-responsive sulfatocyclodextrin/prodrug supramolecular assembly for controlled release of anti-cancer drug chlorambucil. Chem Commun 55:953–956. https://doi.org/10.1039/C8CC09047E

    Article  CAS  Google Scholar 

  147. Chen W, He J, Li H, Li X, Tian W (2020) A quinolone derivative-based organoplatinum(II) metallacycle supramolecular self-delivery nanocarrier for combined cancer therapy. Supramol Chem 32:597–604. https://doi.org/10.1080/10610278.2020.1846739

    Article  CAS  Google Scholar 

  148. Chen C, Chen Y, Dai X, Li J, Jia S, Wang S, Liu Y (2021) Multicharge b-cyclodextrin supramolecular assembly for ATP capture and drug release. https://doi.org/10.1039/D1CC00292A

  149. Bai Y, Liu C-P, Chen D, Liu C-F, Zhuo L-H, Li H, Wang C, Bu H-T, Tian W (2020) β-Cyclodextrin-modified hyaluronic acid-based supramolecular self-assemblies for pH-and esterase-dual-responsive drug delivery. Carbohydr Polym 246:116654. https://doi.org/10.1016/j.carbpol.2020.116654

    Article  CAS  Google Scholar 

  150. Cheng H-B, Cui Y, Wang R, Kwon N, Yoon J (2019) The development of light-responsive, organic dye based, supramolecular nanosystems for enhanced anticancer therapy. Coord Chem Rev 392:237–254. https://doi.org/10.1021/acs.chemmater.9b00439

    Article  CAS  Google Scholar 

  151. Abd Ellah NH, Taylor L, Ayres N, Elmahdy MM, Fetih GN, Jones HN, Ibrahim EA, Pauletti GM (2016) NF-κB decoy polyplexes decrease P-glycoprotein-mediated multidrug resistance in colorectal cancer cells. Cancer Gene Ther 23:149–155. https://doi.org/10.1038/cgt.2016.17

    Article  CAS  Google Scholar 

  152. Zheng W, Cao C, Liu Y, Yu Q, Zheng C, Sun D, Ren X, Liu J (2015) Multifunctional polyamidoamine-modified selenium nanoparticles dual-delivering siRNA and cisplatin to A549/DDP cells for reversal multidrug resistance. Acta Biomater 11:368–380. https://doi.org/10.1016/j.actbio.2014.08.035

    Article  CAS  Google Scholar 

  153. Liu P, Situ J-Q, Li W-S, Shan C-L, You J, Yuan H, Hu F-Q, Du Y-Z (2015) High tolerated paclitaxel nano-formulation delivered by poly (lactic-co-glycolic acid)-g-dextran micelles to efficient cancer therapy. Nanomedicine: nanotechnology. Biol Med 11:855–866. https://doi.org/10.1016/j.nano.2015.02.002

    Article  CAS  Google Scholar 

  154. Zhang P, Ling G, Pan X, Sun J, Zhang T, Pu X, Yin S, He Z (2012) Novel nanostructured lipid-dextran sulfate hybrid carriers overcome tumor multidrug resistance of mitoxantrone hydrochloride. Nanomed Nanotechnol Biol Med 8:185–193. https://doi.org/10.1016/j.nano.2011.06.007

    Article  CAS  Google Scholar 

  155. Elumalai R, Patil S, Maliyakkal N, Rangarajan A, Kondaiah P, Raichur AM (2015) Protamine-carboxymethyl cellulose magnetic nanocapsules for enhanced delivery of anticancer drugs against drug resistant cancers. Nanomed Nanotechnol Biol Med 11:969–981. https://doi.org/10.1016/j.nano.2015.01.005

    Article  CAS  Google Scholar 

  156. Anselmo AC, Mitragotri S (2019) Nanoparticles in the clinic: an update. Bioeng Transl Med 4:e10143. https://doi.org/10.1002/btm2.10143

    Article  Google Scholar 

  157. Triton TR, Yee G (1982) The anticancer agent adriamycin can be actively cytotoxic without entering cells. Science 217:248–250. https://doi.org/10.1126/science.7089561

    Article  CAS  Google Scholar 

  158. Henry-Toulmé N, Grouselle M, Ramaseilles C (1995) Multidrug resistance bypass in cells exposed to doxorubicin-loaded nanospheres: absence of endocytosis. Biochem Pharmacol 50:1135–1139. https://doi.org/10.1016/0006-2952(95)00226-p

    Article  Google Scholar 

  159. Chen X, Zhang X, Guo Y, Zhu Y, Liu X, Chen Z, Wu F (2019) Supramolecular nanogels: smart supramolecular “Trojan Horse”-inspired nanogels for realizing light-triggered nuclear drug influx in drug-resistant cancer cells. Adv Funct Mater 29:1970085. https://doi.org/10.1002/adfm.201807772

    Article  CAS  Google Scholar 

  160. Wang L, Liu Z, He S, He S, Wang Y (2021) Fighting against drug-resistant tumors by the inhibition of γ-glutamyl transferase with supramolecular platinum prodrug nano-assemblies. J Mater Chem B 9:4587–4595. https://doi.org/10.1039/D1TB00149C

    Article  CAS  Google Scholar 

  161. Cheng H, Fan X, Wang X, Ye E, Loh XJ, Li Z, Wu Y-L (2018) Hierarchically self-assembled supramolecular host–guest delivery system for drug resistant cancer therapy. Biomacromolecules 19:1926–1938. https://doi.org/10.1021/acs.biomac.7b01693

    Article  CAS  Google Scholar 

  162. d’Avanzo N, Torrieri G, Figueiredo P, Celia C, Paolino D, Correia A, Moslova K, Teesalu T, Fresta M, Santos HA (2021) LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. Int J Pharm 597:120346. https://doi.org/10.1016/j.ijpharm.2021.120346

    Article  CAS  Google Scholar 

  163. Rolle F, Bincoletto V, Gazzano E, Rolando B, Lollo G, Stella B, Riganti C, Arpicco S (2020) Coencapsulation of disulfiram and doxorubicin in liposomes strongly reverses multidrug resistance in breast cancer cells. Int J Pharm 580:119191. https://doi.org/10.1016/j.ijpharm.2020.119191

    Article  CAS  Google Scholar 

  164. Liu Y, Qiu N, Shen L, Liu Q, Zhang J, Cheng YY, Lee KH, Huang L (2020) Nanocarrier-mediated immunogenic chemotherapy for triple negative breast cancer. J Control Release 323:431–441. https://doi.org/10.1016/j.jconrel.2020.04.040

    Article  CAS  Google Scholar 

  165. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37. https://doi.org/10.1038/nrc.2016.108

    Article  CAS  Google Scholar 

  166. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancer. J Clin Oncol 23:7794–7803. https://doi.org/10.1200/JCO.2005.04.937

    Article  CAS  Google Scholar 

  167. Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, Stuart RK, Strickland SA, Hogge D, Solomon SR (2016) Final results of a phase III randomized trial of CPX-351 versus 7+ 3 in older patients with newly diagnosed high risk (secondary) AML. https://doi.org/10.1200/JCO.2016.34.15_suppl.7000

  168. Batist G, Sawyer M, Gabrail N, Christiansen N, Marshall JL, Spigel DR, Louie A (2008) A multicenter, phase II study of CPX-1 liposome injection in patients (pts) with advanced colorectal cancer (CRC). J Clin Oncol 26:4108. https://doi.org/10.1200/jco.2008.26.15_suppl.4108

    Article  Google Scholar 

  169. Awada A, Bondarenko IN, Bonneterre J, Nowara E, Ferrero JM, Bakshi AV, Wilke C, Piccart M, CT4002 Study Group (2014) A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol 25:824–831. https://doi.org/10.1371/journal.pone.0154009

    Article  CAS  Google Scholar 

  170. Burris HA, Wang JS-Z, Johnson ML, Falchook GS, Jones SF, Strickland DK, Greenlees C, Brugger W, Charlton J, Pease E (2017) A phase I, open-label, first-time-in-patient dose escalation and expansion study to assess the safety, tolerability, and pharmacokinetics of nanoparticle encapsulated Aurora B kinase inhibitor AZD2811 in patients with advanced solid tumours. J Clin Oncol 35. https://doi.org/10.1200/JCO.2017.35.15_suppl.TPS2608

  171. Lamb YN, Scott LJ (2017) Liposomal irinotecan: a review in metastatic pancreatic adenocarcinoma. Drugs 77:785–792. https://doi.org/10.1007/s40265-017-0741-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahmeshwar Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manjit, Mishra, B. (2022). Research and Development of Supramolecules as Anticancer Drugs. In: Goel, N., Kumar, N. (eds) Pharmaceutical Applications of Supramolecules. Springer, Cham. https://doi.org/10.1007/978-3-031-21900-9_3

Download citation

Publish with us

Policies and ethics

Navigation