Log in

Harnessing the potential of thin film composite membranes for efficient treatment of aqueous streams containing polar aprotic organic solvents

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Designing high-permeance nanofiltration (NF) and reverse osmosis (RO) membranes without compromising their selectivity toward ions and small organic molecules is needed for the efficient separation of ions and molecules. Thin-film composite membranes derived from polyamide and used for water desalination have their limitation for organic solvent filtration because of the instability of the support membranes which serve as a foundation for the polyamide separation layer. Although pure organic solvent filtration demands designing new membranes, the aqueous mixture of organic solvents can be treated with these membranes, where the support membrane remains stable. This could open a new application area of the existing NF and RO membranes and expand their applications in the separation industry. Herein, we report the effect of solvent treatment on the desalination and molecular separation performance of a few commercial polyamide NF and RO membranes and their applications in aqueous mixtures of organic solvents containing up to 70% (v/v) of polar aprotic solvents. Upon solvent treatment, no significant reduction in the mean pore radius (0.72–0.69 nm) and the molecular weight cutoff was observed, while up to ~ 100% enhancement in water permeance was achieved without loss in the rejection of Na2SO4 (~ 99.3%) for NF and NaCl (~ 98%) for BWRO membranes. Molecular separation in aqueous mixtures of polar aprotic organic solvents signifies the utility of these membranes for the separation of small organics with a molecular weight of < 300 Da. The findings from an X-ray photoelectron spectroscopic study indicate that upon solvent treatment the chemical modification of the polyamide layer in the membranes is highly unlikely. Instead, the observed performance enhancement was coined to the physical restructuring of the polyamide layer and modifications at the interlayer. We expect such findings would find several new applications of the NF and RO membranes including desalination, wastewater treatment, and solvent recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References:

  • Abd-Elaty I, Kuriqi A, Shahawy AE (2022) Environmental rethinking of wastewater drains to manage environmental pollution and alleviate water scarcity. Nat Hazards 1–28

  • Ahmed SF, Mehejabin F, Momtahin A, Tasannum N, Faria NT, Mofijur M, Hoang AT, Vo D-VN, Mahlia T (2022) Strategies to improve membrane performance in wastewater treatment. Chemosphere 306:135527

    Article  CAS  PubMed  ADS  Google Scholar 

  • Campos SX, De Azevedo ER, Bonagamba TJ, Vieira EM, Bernardo LD (2007) Color removal by coagulation, flocculation and sedimentation from water containing humic substances with different apparent molecular sizes. J Water Supply: Res Technol—AQUA 56(5):327–333

    Article  CAS  Google Scholar 

  • Citulski JA, Farahbakhsh K (2010) Fate of endocrine-active compounds during municipal biosolids treatment: a review. Environ Sci Technol 44(22):8367–8376

    Article  CAS  PubMed  ADS  Google Scholar 

  • Detlev F, Petra M, Kathleen H, Marina L, Markus P (2012) High performance organic solvent nanofiltration membranes: Development and thorough testing of thin film composite membranes made of polymers of intrinsic microporosity (PIMs). J Membr Sci 401–402:222–231. https://doi.org/10.1016/j.memsci.2012.02.008

    Article  CAS  Google Scholar 

  • Gao F, Bai R, Ferlin F, Vaccaro L, Li M, Gu Y (2020) Replacement strategies for non-green dipolar aprotic solvents. Green Chem 22(19):6240–6257

    Article  CAS  Google Scholar 

  • Gao F, Chang H, Li J, Wang R, Gu Y (2023) Replacing polar aprotic solvents with water in organic synthesis. Curr Opin Green Sustain Chem 40:100774. https://doi.org/10.1016/j.cogsc.2023.100774

    Article  CAS  Google Scholar 

  • Gorgojo P, Jimenez-Solomon M, Livingston A (2014) Polyamide thin film composite membranes on cross-linked polyimide supports: Improvement of RO performance via activating solvent. Desalination 344:181–188

    Article  CAS  Google Scholar 

  • Hansen CM (1967) The three dimensional solubility parameter-key to paint component affinities. III. Independent calculation of the parameter components. J Paint Technol 39:511–520

    CAS  Google Scholar 

  • Hansen CM (2004) 50 Years with solubility parameters—past and future. Prog Org Coat 51(1):77–84

    Article  CAS  Google Scholar 

  • Jernej S, Brett P, Andrii K, Miha G, Blaž L (2022) A review of bio-refining process intensification in catalytic conversion reactions, separations and purifications of hydroxymethylfurfural (HMF) and furfural. Chem Eng J 429:132325. https://doi.org/10.1016/j.cej.2021.132325

    Article  CAS  Google Scholar 

  • Jiang Z, Karan S, Livingston AG (2018) Water transport through ultrathin polyamide nanofilms used for reverse osmosis. Adv Mater 30(15):1705973

    Article  Google Scholar 

  • Karan S, Jiang Z, Livingston AG (2015) Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348:1347–1351

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kavitha E, Poonguzhali E, Nanditha D, Kapoor A, Arthanareeswaran G, Prabhakar S (2022) Current status and future prospects of membrane separation processes for value recovery from wastewater. Chemosphere 291:132690

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kulkarni A, Mukherjee D, Gill WN (1996) Flux enhancement by hydrophilization of thin film composite reverse osmosis membranes. J Membr Sci 114(1):39–50

    Article  CAS  Google Scholar 

  • Li Y, Zhu J, Li S, Guo Z, Van der Bruggen B (2020) Flexible aliphatic–aromatic polyamide thin film composite membrane for highly efficient organic solvent nanofiltration. ACS Appl Mater Interfaces 12(28):31962–31974

    Article  CAS  PubMed  Google Scholar 

  • Liang B, Wang H, Shi X, Shen B, He X, Ghazi ZA, Khan NA, Sin H, Khattak AM, Li L (2018) Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration. Nat Chem 10(9):961–967

    Article  CAS  PubMed  Google Scholar 

  • Marchetti P, Solomon MFJ, Szekely G, Livingston AG (2014) Molecular separation with organic solvent nanofiltration: a critical review. Chem Rev 114(21):10735–10806

    Article  CAS  PubMed  Google Scholar 

  • Marcus C, Piers RJG, Ludmila GP, Andrew GL (2018) Roll-to-roll dip coating of three different PIMs for Organic Solvent Nanofiltration. J Membr Sci 558:52–63. https://doi.org/10.1016/j.memsci.2018.04.046

    Article  CAS  Google Scholar 

  • Michaels AS (1980) Analysis and prediction of sieving curves for ultrafiltration membranes: a universal correlation? Sep Sci Technol 15:1305–1322

    Article  CAS  Google Scholar 

  • Min Gyu S, Sang-Hee P, Soon ** K, Hyo-Eun K, Jong Bae P, Jung-Hyun L (2019) Facile performance enhancement of reverse osmosis membranes via solvent activation with benzyl alcohol. J Membr Sci 578:220–229. https://doi.org/10.1016/j.memsci.2019.02.027

    Article  CAS  Google Scholar 

  • Min Gyu S, Soon ** K, Hosik P, You-In P, Jung-Hyun L (2020) High-performance and acid-resistant nanofiltration membranes prepared by solvent activation on polyamide reverse osmosis membranes. J Membr Sci 595:117590. https://doi.org/10.1016/j.memsci.2019.117590

    Article  CAS  Google Scholar 

  • Mukherjee D, Kulkarni A, Gill WN (1996) Chemical treatment for improved performance of reverse osmosis membranes. Desalination 104(3):239–249

    Article  CAS  Google Scholar 

  • Narayan S, Muldoon J, Finn M, Fokin VV, Kolb HC, Sharpless KB (2005) “On water”: unique reactivity of organic compounds in aqueous suspension. Angew Chem 117(21):3339–3343

    Article  ADS  Google Scholar 

  • Puhan MR, Sutariya B, Karan S (2022) Revisiting the alkali hydrolysis of polyamide nanofiltration membranes. J Membr Sci 661:120887. https://doi.org/10.1016/j.memsci.2022.120887

    Article  CAS  Google Scholar 

  • Rao AP, Desai N, Rangarajan R (1997) Interfacially synthesized thin film composite RO membranes for seawater desalination. J Membr Sci 124(2):263–272

    Article  Google Scholar 

  • Ria M, Rachma W, Teguh A, Rininta Utami P, Mohammad JT (2020) Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks. Bioresour Technol 304:122998. https://doi.org/10.1016/j.biortech.2020.122998

    Article  CAS  Google Scholar 

  • Sarkar P, Modak S, Karan S (2021a) Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration. Adv Func Mater 31(3):2007054

    Article  CAS  Google Scholar 

  • Sarkar P, Modak S, Ray S, Adupa V, Reddy KA, Karan S (2021b) Fast water transport through sub-5 nm polyamide nanofilms: the new upper-bound of the permeance–selectivity trade-off in nanofiltration. J Mater Chem A 9(36):20714–20724

    Article  CAS  Google Scholar 

  • Sarkar P, Ray S, Sutariya B, Chaudhari JC, Karan S (2021c) Precise separation of small neutral solutes with mixed-diamine-based nanofiltration membranes and the impact of solvent activation. Sep Purif Technol 279:119692

    Article  CAS  Google Scholar 

  • Shi X, Zhang Z, Yin C, Zhang X, Long J, Zhang Z, Wang Y (2022) Design of three-dimensional covalent organic framework membranes for fast and robust organic solvent nanofiltration. Angew Chem Int Ed 61(36):e202207559

    Article  CAS  ADS  Google Scholar 

  • Shin MG, Kwon SJ, Park H, Park Y-I, Lee J-H (2020) High-performance and acid-resistant nanofiltration membranes prepared by solvent activation on polyamide reverse osmosis membranes. J Membr Sci 595:117590

    Article  CAS  Google Scholar 

  • Shin MG, Seo JY, Park H, Park Y-I, Lee J-H (2021) Overcoming the permeability-selectivity trade-off of desalination membranes via controlled solvent activation. J Membr Sci 620:118870

    Article  CAS  Google Scholar 

  • Solomon MFJ, Bhole Y, Livingston AG (2012) High flux membranes for organic solvent nanofiltration (OSN)—Interfacial polymerization with solvent activation. J Membr Sci 423:371–382

    Article  Google Scholar 

  • Solomon MFJ, Bhole Y, Livingston AG (2013) High flux hydrophobic membranes for organic solvent nanofiltration (OSN)—Interfacial polymerization, surface modification and solvent activation. J Membr Sci 434:193–203

    Article  Google Scholar 

  • Sutariya B, Karan S (2022) A realistic approach for determining the pore size distribution of nanofiltration membranes. Sep Purif Technol 293:121096. https://doi.org/10.1016/j.seppur.2022.121096

    Article  CAS  Google Scholar 

  • Thompson KA, Mathias R, Kim D, Kim J, Rangnekar N, Johnson J, Hoy SJ, Bechis I, Tarzia A, Jelfs KE (2020) N-Aryl–linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science 369(6501):310–315

    Article  CAS  PubMed  Google Scholar 

  • Vandezande P, Gevers LEM, Vankelecom IFJ (2008) Solvent resistant nanofiltration: separating on a molecular level. Chem Soc Rev 37:365–405

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Thies-Weesie DM, Bosman ED, van Steenbergen MJ, van den Dikkenberg J, Shi Y, Lammers T, van Nostrum CF, Hennink WE (2022) Tuning the size of all-HPMA polymeric micelles fabricated by solvent extraction. J Control Release 343:338–346

    Article  CAS  PubMed  Google Scholar 

  • Werber JR, Bull SK, Elimelech M (2017) Acyl-chloride quenching following interfacial polymerization to modulate the water permeability, selectivity, and surface charge of desalination membranes. J Membr Sci 535:357–364

    Article  CAS  Google Scholar 

  • Yuyan H, **li Z, Chang S, Ayang Z, Chengying B, Wei L (2016) Thin film composite nanofiltration membrane prepared by the interfacial polymerization of 1,2,4,5-benzene tetracarbonyl chloride on the mixed amines cross-linked poly(ether imide) support. J Membr Sci 520:19–28. https://doi.org/10.1016/j.memsci.2016.07.050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SK acknowledges the financial support from the Science and Engineering Research Board, Department of Science and Technology, Government of India (project grant number: CRG/2021/004893 and STR/2022/000042). All authors acknowledge the technical support from the Centralized Instrumental Facility, CSIR-CSMCRI, Bhavnagar. A PRIS number CSIR-CSMCRI – 74/2023 has been assigned for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Karan.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, A., Puhan, M.R., Vasave, D.B. et al. Harnessing the potential of thin film composite membranes for efficient treatment of aqueous streams containing polar aprotic organic solvents. Chem. Pap. 78, 793–808 (2024). https://doi.org/10.1007/s11696-023-03121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-03121-7

Keywords

Navigation