Log in

Next-generation thin-film composite nanofiltration membranes for water remediation: a review

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

One of the most daunting challenges faced by the planet is a reliable and accessible supply of water in sufficient quantity. The membrane technology has emerged as a cost-effective alternative for water purification. One such pressure-driven membrane separation process is nanofiltration (NF), where the interfacial polymerization (IP) is predominantly used to prepare the thin polyamide selective layer. Over the last decade, a wide variety of novel/modified IP techniques have been explored to improve the performance of the polyamide (PA) thin-film composite and thin-film nanocomposite (TFN) membrane in both pressure-driven and osmotic driven applications. This paper explores different IP fabrication techniques viz. support-free IP technique, filtration-assisted IP technique, reverse IP technique, electrospray-based IP technique, etc. The thickness of the PA layer can be precisely monitored by many of these modified IP techniques. The incorporation of nanoparticles on the PA layer and membrane matrix could enhance the fouling resistance, increase the rejection efficiency and improve the water permeability. The efficiency of these membranes has been explored for the separation/removal of emerging contaminants, divalent/multi-valent ions, low molecular weight organics, micropollutants, and inorganic salts. Several advantages of these IP techniques are discussed in detail; however, the various associated challenges must be overcome before these techniques can be transferred from lab-scale to commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. M. V. Fanucchi, Drinking water and sanitation, in International Encyclopedia of Public Health (Second Edition), S. R. Quah, Ed., ed Oxford: Academic Press, 2017, pp. 350–360.

  2. P. O. Ukaogo, U. Ewuzie, and C. V. Onwuka, 21 - Environmental pollution: causes, effects, and the remedies, in Microorganisms for Sustainable Environment and Health, P. Chowdhary, A. Raj, D. Verma, and Y. Akhter, Eds., ed: Elsevier, 2020, pp. 419–429.

  3. C. Postigo, D. E. Martinez, S. Grondona, and K. S. B. Miglioranza, Groundwater pollution: sources, mechanisms, and prevention, in Encyclopedia of the Anthropocene, D. A. Dellasala and M. I. Goldstein, Eds., ed Oxford: Elsevier, 2018, pp. 87–96.

  4. D.M. Warsinger, S. Chakraborty, E.W. Tow, M.H. Plumlee, C. Bellona, S. Loutatidou et al., A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 81, 209–237 (2018)

    Article  CAS  Google Scholar 

  5. M. T. Amin, A. A. Alazba, and U. Manzoor, A review of removal of pollutants from water/wastewater using different types of nanomaterials, Advances in Materials Science and Engineering, vol. 2014, p. 825910, 2014.

  6. Z. Yang, Y. Zhou, Z. Feng, X. Rui, T. Zhang, Z. Zhang, A review on reverse osmosis and nanofiltration membranes for water purification. Polymers 11, 1252 (2019)

    Article  CAS  Google Scholar 

  7. K. Yamjala, M.S. Nainar, N.R. Ramisetti, Methods for the analysis of azo dyes employed in food industry – a review. Food Chem. 192, 813–824 (2016)

    Article  CAS  Google Scholar 

  8. R.P. Lively, D.S. Sholl, From water to organics in membrane separations. Nat. Mater. 16, 276–279 (2017)

    Article  CAS  Google Scholar 

  9. Z.-G. Wen, J.-H. Di, X.-Y. Zhang, Uncertainty analysis of primary water pollutant control in China’s pulp and paper industry. J. Environ. Manage. 169, 67–77 (2016)

    Article  CAS  Google Scholar 

  10. S. Bhattacharyya, P. Das, and S. Datta, Removal of ranitidine from pharmaceutical waste water using activated carbon (AC) prepared from waste lemon peel, in Waste Water Recycling and Management, Singapore, 2019, pp. 123–141.

  11. A. Moslehyani, A. F. Ismail, T. Matsuura, M. A. Rahman, and P. S. Goh, Chapter 3 - Recent progresses of ultrafiltration (UF) membranes and processes in water treatment, in Membrane Separation Principles and Applications, A. F. Ismail, M. A. Rahman, M. H. D. Othman, and T. Matsuura, Eds., ed: Elsevier, 2019, pp. 85–110.

  12. D. Zhao, S. Yu, A review of recent advance in fouling mitigation of NF/RO membranes in water treatment: pretreatment, membrane modification, and chemical cleaning. Desalin. Water Treat. 55, 870–891 (2015)

    Article  CAS  Google Scholar 

  13. A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: recent advances and future prospects. Desalination 356, 226–254 (2015)

    Article  CAS  Google Scholar 

  14. T. A. Siddique, N. K. Dutta, and N. Roy Choudhury, Nanofiltration for arsenic removal: challenges, recent developments, and perspectives, Nanomaterials (Basel), vol. 10, Jul 6 2020.

  15. M. Park and S. A. Snyder, Chapter 6 - Attenuation of contaminants of emerging concerns by nanofiltration membrane: rejection mechanism and application in water reuse, in Contaminants of Emerging Concern in Water and Wastewater, A. J. Hernández-Maldonado and L. Blaney, Eds., ed: Butterworth-Heinemann, 2020, pp. 177–206.

  16. D. Askenaizer, Drinking water quality and treatment, in Encyclopedia of Physical Science and Technology (Third Edition), R. A. Meyers, Ed., ed New York: Academic Press, 2003, pp. 651–671.

  17. B. Van der Bruggen, M. Mänttäri, M. Nyström, Drawbacks of applying nanofiltration and how to avoid them: a review. Sep. Purif. Technol. 63, 251–263 (2008)

    Article  Google Scholar 

  18. M.A. Abdel-Fatah, Nanofiltration systems and applications in wastewater treatment: review article. Ain Shams Engineering Journal 9, 3077–3092 (2018)

    Article  Google Scholar 

  19. R. Epsztein, E. Shaulsky, N. Dizge, D.M. Warsinger, M. Elimelech, Role of ionic charge density in donnan exclusion of monovalent anions by nanofiltration. Environ. Sci. Technol. 52, 4108–4116 (2018)

    Article  CAS  Google Scholar 

  20. Y. Liu, J. Zhu, J. Zheng, X. Gao, M. Tian, X. Wang, et al., Porous organic polymer embedded thin-film nanocomposite membranes for enhanced nanofiltration performance, Journal of Membrane Science, vol. 602, p. 117982, 2020.

  21. W. Lin, M. Li, Y. Wang, X. Wang, K. Xue, K. **ao, et al., Quantifying the dynamic evolution of organic, inorganic and biological synergistic fouling during nanofiltration using statistical approaches, Environment International, vol. 133, p. 105201, 2019.

  22. J. Glater, The early history of reverse osmosis membrane development. Desalination 117, 297–309 (1998)

    Article  CAS  Google Scholar 

  23. S. Loeb and S. Sourirajan, Sea water demineralization by means of an osmotic membrane, in Saline Water Conversion—II. vol. 38, ed: AMERICAN CHEMICAL SOCIETY, 1963, pp. 117–132.

  24. Y. Yu, Q.-Y. Wu, H.-Q. Liang, L. Gu, and Z.-K. Xu, Preparation and characterization of cellulose triacetate membranes via thermally induced phase separation, Journal of Applied Polymer Science, vol. 134, 2017.

  25. R.W. Holloway, A. Achilli, T.Y. Cath, The osmotic membrane bioreactor: a critical review. Environ. Sci.: Water Res. Technol. 1, 581–605 (2015)

    CAS  Google Scholar 

  26. E. Shaulsky, V. Karanikola, A.P. Straub, A. Deshmukh, I. Zucker, M. Elimelech, Asymmetric membranes for membrane distillation and thermo-osmotic energy conversion. Desalination 452, 141–148 (2019)

    Article  CAS  Google Scholar 

  27. H. Strathmann, Membrane technology and applications, 2nd ed., Richard W. Baker John Wiley & Sons, Ltd., UK (2004), Journal of Membrane Science - J MEMBRANE SCI, vol. 246, pp. 113–114, 2005.

  28. N.L. Le, S.P. Nunes, Materials and membrane technologies for water and energy sustainability. Sustain. Mater. Technol. 7, 1–28 (2016)

    CAS  Google Scholar 

  29. G.M. Geise, H.-S. Lee, D.J. Miller, B.D. Freeman, J.E. McGrath, D.R. Paul, Water purification by membranes: the role of polymer science. J. Polym. Sci., Part B: Polym. Phys. 48, 1685–1718 (2010)

    Article  CAS  Google Scholar 

  30. W.J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J.P. Chen, A.F. Ismail, A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res 80, 306–324 (2015)

    Article  CAS  Google Scholar 

  31. J.M. Gohil, A.K. Suresh, Chlorine attack on reverse osmosis membranes: mechanisms and mitigation strategies. J. Membr. Sci. 541, 108–126 (2017)

    Article  CAS  Google Scholar 

  32. F. Yan, H. Chen, Y. Lü, Z. Lü, S. Yu, M. Liu et al., Improving the water permeability and antifouling property of thin-film composite polyamide nanofiltration membrane by modifying the active layer with triethanolamine. J. Membr. Sci. 513, 108–116 (2016)

    Article  CAS  Google Scholar 

  33. B. Khorshidi, A. Bhinder, T. Thundat, D. Pernitsky, M. Sadrzadeh, Develo** high throughput thin film composite polyamide membranes for forward osmosis treatment of SAGD produced water. J. Membr. Sci. 511, 29–39 (2016)

    Article  CAS  Google Scholar 

  34. M. Simcik, M.C. Ruzicka, M. Karaszova, Z. Sedlakova, J. Vejrazka, M. Vesely et al., Polyamide thin-film composite membranes for potential raw biogas purification: experiments and modeling. Sep. Purif. Technol. 167, 163–173 (2016)

    Article  CAS  Google Scholar 

  35. M.J.T. Raaijmakers, N.E. Benes, Current trends in interfacial polymerization chemistry. Prog. Polym. Sci. 63, 86–142 (2016)

    Article  CAS  Google Scholar 

  36. C. Yu, H. Li, X. Zhang, Z. Lü, S. Yu, M. Liu et al., Polyamide thin-film composite membrane fabricated through interfacial polymerization coupled with surface amidation for improved reverse osmosis performance. J. Membr. Sci. 566, 87–95 (2018)

    Article  CAS  Google Scholar 

  37. P. Karami, B. Khorshidi, M. McGregor, J. T. Peichel, J. B. P. Soares, and M. Sadrzadeh, Thermally stable thin film composite polymeric membranes for water treatment: a review, Journal of Cleaner Production, vol. 250, p. 119447, 2020.

  38. W. J. Lau and A. Ismail, Progress in Interfacial Polymerization Technique on Composite Membrane Preparation, 2011.

  39. M. Q. Seah, W. J. Lau, P. S. Goh, H. H. Tseng, R. A. Wahab, and A. F. Ismail, Progress of interfacial polymerization techniques for polyamide thin film (nano)composite membrane fabrication: a comprehensive review, Polymers (Basel). 12 (2020)

  40. S. Nagandran, P. S. Goh, A. F. Ismail, T.-W. Wong, and W. R. Binti Wan Dagang, The recent progress in modification of polymeric membranes using organic macromolecules for water treatment. Symmetry 12 (2020)

  41. F. Liu, L. Wang, D. Li, Q. Liu, B. Deng, A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification. RSC Adv. 9, 35417–35428 (2019)

    Article  CAS  Google Scholar 

  42. A. Giwa, M. Ahmed, S.W. Hasan, Polymers for membrane filtration in water purification, in Polymeric Materials for Clean Water, R. ed. by Ed. Das (Springer International Publishing, Cham, 2019), pp. 167–190

    Chapter  Google Scholar 

  43. R. Castro-Muñoz, L.L. González-Melgoza, O. García-Depraect, Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water. Chemosphere 270, 129421 (2021)

    Article  Google Scholar 

  44. A. Rabajczyk, M. Zielecka, K. Cygańczuk, Ł. Pastuszka, and L. Jurecki, Nanometals-containing polymeric membranes for purification processes. Materials (Basel, Switzerland) 14, 513 (2021)

  45. K.C. Khulbe, T. Matsuura, Synthetic membrane characterisation – a review: part I. Membr. Technol. 2017, 7–12 (2017)

    Google Scholar 

  46. M. Khajouei, M. Peyravi, M. Jahanshahi, The potential of nanoparticles for upgrading thin film nanocomposite membranes – a review. J. Membr. Sci. Res. 3, 2–12 (2017)

    Google Scholar 

  47. A. Giwa, N. Akther, V. Dufour, S.W. Hasan, A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis. RSC Adv. 6, 8134–8163 (2016)

    Article  CAS  Google Scholar 

  48. S. Kheirieh, M. Asghari, and M. Afsari, Application and modification of polysulfone membranes. Rev. Chem. Eng. 34 (2017)

  49. B. Hu, L. Miao, Y. Zhao, and C. Lü, Azide-assisted crosslinked quaternized polysulfone with reduced graphene oxide for highly stable anion exchange membranes. J Membr. Sci 530 (2017)

  50. Y. Zhao, L. Dai, Q. Zhang, S. Zhou, S. Zhang, Chlorine-resistant sulfochlorinated and sulfonated polysulfone for reverse osmosis membranes by coating method. J. Colloid Interface Sci. 541, 434–443 (2019)

    Article  CAS  Google Scholar 

  51. I.L. Alsvik, M.-B. Hägg, Preparation of thin film composite membranes with polyamide film on hydrophilic supports. J. Membr. Sci. 428, 225–231 (2013)

    Article  CAS  Google Scholar 

  52. L.D. Ti**g, M. Yao, J. Ren, C.-H. Park, C.S. Kim, H.K. Shon, Nanofibers for water and wastewater treatment: recent advances and developments, in Water and Wastewater Treatment Technologies. ed. by X.-T. Bui, C. Chiemchaisri, T. Fujioka, S. Varjani (Springer Singapore, Singapore, 2019), pp. 431–468

    Google Scholar 

  53. M. Kadhom, B. Deng, Synthesis of high-performance thin film composite (TFC) membranes by controlling the preparation conditions: technical notes. J. Water Process Eng. 30, 100542 (2019)

    Article  Google Scholar 

  54. X. Li, Q. Li, W. Fang, R. Wang, W.B. Krantz, Effects of the support on the characteristics and permselectivity of thin film composite membranes. J. Membr. Sci. 580, 12–23 (2019)

    Article  CAS  Google Scholar 

  55. S.S. Shenvi, A.M. Isloor, A.F. Ismail, A review on RO membrane technology: developments and challenges. Desalination 368, 10–26 (2015)

    Article  CAS  Google Scholar 

  56. W. J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J. Paul Chen, and A. F. Ismail, A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches, Water Research, vol. 80, pp. 306–324, 2015.

  57. G.S. Lai, W.J. Lau, P.S. Goh, M. Karaman, M. Gürsoy, A.F. Ismail, Development of thin film nanocomposite membrane incorporated with plasma enhanced chemical vapor deposition-modified hydrous manganese oxide for nanofiltration process. Compos. Part B: Eng. 176, 107328 (2019)

    Article  CAS  Google Scholar 

  58. K.C. Wong, P.S. Goh, A.F. Ismail, Thin film nanocomposite: the next generation selective membrane for CO2 removal. J. Mater. Chem. A 4, 15726–15748 (2016)

    Article  CAS  Google Scholar 

  59. Q. Kong, H. Xu, C. Liu, G. Yang, M. Ding, W. Yang et al., Fabrication of high performance TFN membrane containing NH2-SWCNTs via interfacial regulation. RSC Adv. 10, 25186–25199 (2020)

    Article  CAS  Google Scholar 

  60. Z. Yang, H. Guo, Z.-K. Yao, Y. Mei, C.Y. Tang, Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes. Environ. Sci. Technol. 53, 5301–5308 (2019)

    Article  CAS  Google Scholar 

  61. D.L. Zhao, S. Japip, Y. Zhang, M. Weber, C. Maletzko, T.-S. Chung, Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: a review. Water Res. 173, 115557 (2020)

    Article  CAS  Google Scholar 

  62. D.L. Zhao, T.-S. Chung, Applications of carbon quantum dots (CQDs) in membrane technologies: a review. Water Res. 147, 43–49 (2018)

    Article  CAS  Google Scholar 

  63. Y. He, D.L. Zhao, T.-S. Chung, Na+ functionalized carbon quantum dot incorporated thin-film nanocomposite membranes for selenium and arsenic removal. J. Membr. Sci. 564, 483–491 (2018)

    Article  CAS  Google Scholar 

  64. Y. Mutharasi, N.J. Kaleekkal, T. Arumugham, F. Banat, M.S.R.S. Kapavarapu, Antifouling and photocatalytic properties of 2-D Zn/Al layered double hydroxide tailored low-pressure membranes. Chem. Eng. Process - Process Intensif. 158, 108191 (2020)

    Article  CAS  Google Scholar 

  65. P. Lu, W. Li, S. Yang, Y. Liu, Q. Wang, Y. Li, Layered double hydroxide-modified thin–film composite membranes with remarkably enhanced chlorine resistance and anti-fouling capacity. Sep. Purif. Technol. 220, 231–237 (2019)

    Article  CAS  Google Scholar 

  66. S.-Y. Kwak, S.H. Kim, S.S. Kim, Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ. Sci. Technol. 35, 2388–2394 (2001)

    Article  CAS  Google Scholar 

  67. M. Fathizadeh, A. Aroujalian, A. Raisi, Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J. Membr. Sci. 375, 88–95 (2011)

    Article  CAS  Google Scholar 

  68. H. Huang, X. Qu, X. Ji, X. Gao, L. Zhang, H. Chen et al., Acid and multivalent ion resistance of thin film nanocomposite RO membranes loaded with silicalite-1 nanozeolites. J. Mater. Chem. A 1, 11343–11349 (2013)

    Article  CAS  Google Scholar 

  69. M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Enhanced flow in carbon nanotubes. Nature 438, 44–44 (2005)

    Article  CAS  Google Scholar 

  70. Ihsanullah. Carbon nanotube membranes for water purification: developments, challenges, and prospects for the future. Sep. Purif. Technol. 209, 307–337 (2019)

  71. E. Mahmoudi, L.Y. Ng, W.L. Ang, Y.T. Chung, R. Rohani, A.W. Mohammad, Enhancing morphology and separation performance of polyamide 6,6 membranes by minimal incorporation of silver decorated graphene oxide nanoparticles. Sci. Rep. 9, 1216 (2019)

    Article  Google Scholar 

  72. M.H. Tajuddin, N. Yusof, N. Abdullah, M.N.Z. Abidin, W.N.W. Salleh, A.F. Ismail et al., Incorporation of layered double hydroxide nanofillers in polyamide nanofiltration membrane for high performance of salts rejections. J. Taiwan Inst. Chem. Eng. 97, 1–11 (2019)

    Article  CAS  Google Scholar 

  73. M. Wu, J. Yuan, H. Wu, Y. Su, H. Yang, X. You et al., Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability. J. Membr. Sci. 576, 131–141 (2019)

    Article  CAS  Google Scholar 

  74. Z. Zhang, G. Kang, H. Yu, Y. **, Y. Cao, Fabrication of a highly permeable composite nanofiltration membrane via interfacial polymerization by adding a novel acyl chloride monomer with an anhydride group. J. Membr. Sci. 570–571, 403–409 (2019)

    Article  Google Scholar 

  75. T.H. Lee, J.Y. Oh, S.P. Hong, J.M. Lee, S.M. Roh, S.H. Kim et al., ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: importance of particle deposition. J. Membr. Sci. 570–571, 23–33 (2019)

    Article  Google Scholar 

  76. W. Yan, M. Shi, Z. Wang, Y. Zhou, L. Liu, S. Zhao et al., Amino-modified hollow mesoporous silica nanospheres-incorporated reverse osmosis membrane with high performance. J. Membr. Sci. 581, 168–177 (2019)

    Article  CAS  Google Scholar 

  77. G.S. Lai, W.J. Lau, P.S. Goh, A.F. Ismail, N. Yusof, Y.H. Tan, Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance. Desalination 387, 14–24 (2016)

    Article  CAS  Google Scholar 

  78. M.R. Esfahani, S.A. Aktij, Z. Dabaghian, M.D. Firouzjaei, A. Rahimpour, J. Eke et al., Nanocomposite membranes for water separation and purification: fabrication, modification, and applications. Sep. Purif. Technol. 213, 465–499 (2019)

    Article  CAS  Google Scholar 

  79. M. Q. Seah, W. J. Lau, P. S. Goh, H.-H. Tseng, R. A. Wahab, and A. F. Ismail, Progress of interfacial polymerization techniques for polyamide thin film (nano)composite membrane fabrication: a comprehensive review. Polymers 12 (2020)

  80. Z. Zhang, Y. Qin, G. Kang, H. Yu, Y. **, and Y. Cao, Tailoring the internal void structure of polyamide films to achieve highly permeable reverse osmosis membranes for water desalination, Journal of Membrane Science, vol. 595, p. 117518, 2020.

  81. A. Saeedi-Jurkuyeh, A. J. Jafari, R. R. Kalantary, and A. Esrafili, A novel synthetic thin-film nanocomposite forward osmosis membrane modified by graphene oxide and polyethylene glycol for heavy metals removal from aqueous solutions, Reactive and Functional Polymers, vol. 146, p. 104397, 2020.

  82. Y. Zhang, H. Ruan, C. Guo, J. Liao, J. Shen, and C. Gao, Thin-film nanocomposite reverse osmosis membranes with enhanced antibacterial resistance by incorporating p-aminophenol-modified graphene oxide, Separation and Purification Technology, vol. 234, p. 116017, 2020.

  83. Z.-C. Ng, C.-Y. Chong, W.-J. Lau, M. Karaman, A.F. Ismail, Boron removal and antifouling properties of thin-film nanocomposite membrane incorporating PECVD-modified titanate nanotubes. J. Chem. Technol. Biotechnol. 94, 2772–2782 (2019)

    Article  CAS  Google Scholar 

  84. Q.-F. An, W.-D. Sun, Q. Zhao, Y.-L. Ji, and C.-J. Gao, Study on a novel nanofiltration membrane prepared by interfacial polymerization with zwitterionic amine monomers, Journal of Membrane Science, vol. 431, pp. 171–179, 2013/03/15/ 2013.

  85. K. C. Khulbe and T. Matsuura, Thin film composite and/or thin film nanocomposite hollow fiber membrane for water treatment, pervaporation, and gas/vapor separation, Polymers, vol. 10, 2018.

  86. W. Zhao, H. Liu, N. Meng, M. Jian, H. Wang, X. Zhang, Graphene oxide incorporated thin film nanocomposite membrane at low concentration monomers. J. Membr. Sci. 565, 380–389 (2018)

    Article  CAS  Google Scholar 

  87. C.Y. Chong, W.J. Lau, N. Yusof, G.S. Lai, N.H. Othman, T. Matsuura et al., Studies on the properties of RO membranes for salt and boron removal: influence of thermal treatment methods and rinsing treatments. Desalination 428, 218–226 (2018)

    Article  CAS  Google Scholar 

  88. S. Gholami, J. López, A. Rezvani, V. Vatanpour, and J. L. Cortina, Fabrication of thin-film nanocomposite nanofiltration membranes incorporated with aromatic amine-functionalized multiwalled carbon nanotubes. Rejection performance of inorganic pollutants from groundwater with improved acid and chlorine resistance, Chemical Engineering Journal, vol. 384, p. 123348, 2020.

  89. S.W. Lin, A.V. Martínez-Ayala, S. Pérez-Sicairos, R.M. Félix-Navarro, Preparation and characterization of low-pressure and high MgSO4 rejection thin-film composite NF membranes via interfacial polymerization process. Polym. Bull. 76, 5619–5632 (2019)

    Article  CAS  Google Scholar 

  90. W. Shao, C. Liu, H. Ma, Z. Hong, Q. **e, Y. Lu, Fabrication of pH-sensitive thin-film nanocomposite nanofiltration membranes with enhanced performance by incorporating amine-functionalized graphene oxide. Appl. Surf. Sci. 487, 1209–1221 (2019)

    Article  CAS  Google Scholar 

  91. G.S. Lai, W.J. Lau, P.S. Goh, A.F. Ismail, Y.H. Tan, C.Y. Chong et al., Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation. Chem. Eng. J. 344, 524–534 (2018)

    Article  CAS  Google Scholar 

  92. J. Zhu, S. Yuan, A. Uliana, J. Hou, J. Li, X. Li et al., High-flux thin film composite membranes for nanofiltration mediated by a rapid co-deposition of polydopamine/piperazine. J. Membr. Sci. 554, 97–108 (2018)

    Article  CAS  Google Scholar 

  93. Y. Pan, R. Xu, Z. Lü, S. Yu, M. Liu, C. Gao, Enhanced both perm-selectivity and fouling resistance of poly(piperazine-amide) nanofiltration membrane by incorporating sericin as a co-reactant of aqueous phase. J. Membr. Sci. 523, 282–290 (2017)

    Article  CAS  Google Scholar 

  94. J. Yin, G. Zhu, B. Deng, Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 379, 93–101 (2016)

    Article  CAS  Google Scholar 

  95. Z. Wang, Z. Wang, S. Lin, H. **, S. Gao, Y. Zhu et al., Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nat. Commun. 9, 2004 (2018)

    Article  Google Scholar 

  96. M.-B. Wu, Y. Lv, H.-C. Yang, L.-F. Liu, X. Zhang, Z.-K. Xu, Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances. J. Membr. Sci. 515, 238–244 (2016)

    Article  CAS  Google Scholar 

  97. S. Al Aani, A. Haroutounian, C. J. Wright, and N. Hilal, Thin film nanocomposite (TFN) membranes modified with polydopamine coated metals/carbon-nanostructures for desalination applications, Desalination, vol. 427, pp. 60–74, 2018.

  98. G.S. Lai, W.J. Lau, P.S. Goh, Y.H. Tan, B.C. Ng, A.F. Ismail, A novel interfacial polymerization approach towards synthesis of graphene oxide-incorporated thin film nanocomposite membrane with improved surface properties. Arab. J. Chem. 12, 75–87 (2019)

    Article  CAS  Google Scholar 

  99. J. Zhu, J. Hou, S. Yuan, Y. Zhao, Y. Li, R. Zhang et al., MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance. Journal of Materials Chemistry A 7, 16313–16322 (2019)

    Article  CAS  Google Scholar 

  100. Y. Ren, J. Zhu, S. Cong, J. Wang, B. Van der Bruggen, J. Liu et al., High flux thin film nanocomposite membranes based on porous organic polymers for nanofiltration. J. Membr. Sci. 585, 19–28 (2019)

    Article  CAS  Google Scholar 

  101. M. Wu, T. Ma, Y. Su, H. Wu, X. You, Z. Jiang et al., Fabrication of composite nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property. J. Membr. Sci. 544, 79–87 (2017)

    Article  CAS  Google Scholar 

  102. L. Shen, W.-S. Hung, J. Zuo, X. Zhang, J.-Y. Lai, Y. Wang, High-performance thin-film composite polyamide membranes developed with green ultrasound-assisted interfacial polymerization. J. Membr. Sci. 570–571, 112–119 (2019)

    Article  Google Scholar 

  103. L. Shen, W.-s. Hung, J. Zuo, L. Tian, M. Yi, C. Ding, et al., Effect of ultrasonication parameters on forward osmosis performance of thin film composite polyamide membranes prepared with ultrasound-assisted interfacial polymerization, Journal of Membrane Science, vol. 599, p. 117834, 2020.

  104. T.J. Mason, Ultrasound in synthetic organic chemistry. Chem. Soc. Rev. 26, 443–451 (1997)

    Article  CAS  Google Scholar 

  105. K. Suslick and G. Price, Application of ultrasound to materials chemistry, Annual Review of Materials Science, vol. 29, pp. 295–326, 08/01 1999.

  106. T. Tsuru, S. Sasaki, T. Kamada, T. Shintani, T. Ohara, H. Nagasawa et al., Multilayered polyamide membranes by spray-assisted 2-step interfacial polymerization for increased performance of trimesoyl chloride (TMC)/m-phenylenediamine (MPD)-derived polyamide membranes. J. Membr. Sci. 446, 504–512 (2013)

    Article  CAS  Google Scholar 

  107. L. Shan, J. Gu, H. Fan, S. Ji, G. Zhang, Microphase diffusion-controlled interfacial polymerization for an ultrahigh permeability nanofiltration membrane. ACS Appl. Mater. Interfaces. 9, 44820–44827 (2017)

    Article  CAS  Google Scholar 

  108. J.B. Morales-Cuevas, S. Pérez-Sicairos, S.W. Lin, M.I. Salazar-Gastélum, Evaluation of a modified spray-applied interfacial polymerization method for preparation of nanofiltration membranes. J. Appl. Polym. Sci. 136, 48129 (2019)

    Article  Google Scholar 

  109. A. Jaworek, A.T. Sobczyk, Electrospraying route to nanotechnology: an overview. J. Electrostat. 66, 197–219 (2008)

    Article  CAS  Google Scholar 

  110. M. Yanilmaz, Y. Lu, M. Dirican, K. Fu, X. Zhang, Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. J. Membr. Sci. 456, 57–65 (2014)

    Article  CAS  Google Scholar 

  111. X.-H. Ma, Z. Yang, Z.-K. Yao, H. Guo, Z.-L. Xu, C.Y. Tang, Interfacial polymerization with electrosprayed microdroplets: toward controllable and ultrathin polyamide membranes. Environ. Sci. Technol. Lett. 5, 117–122 (2018)

    Article  CAS  Google Scholar 

  112. S. Yang, J. Wang, L. Fang, H. Lin, F. Liu, and C. Y. Tang, Electrosprayed polyamide nanofiltration membrane with intercalated structure for controllable structure manipulation and enhanced separation performance, Journal of Membrane Science, vol. 602, p. 117971, 2020.

  113. J. Chen, J. Zhang, X. Wu, X. Cui, W. Li, H. Zhang et al., Accurately controlling the hierarchical nanostructure of polyamide membranes via electrostatic atomization-assisted interfacial polymerization. Journal of Materials Chemistry A 8, 9160–9167 (2020)

    Article  CAS  Google Scholar 

  114. Q. An, W.-S. Hung, S.-C. Lo, Y.-H. Li, M. De Guzman, C.-C. Hu et al., Comparison between free volume characteristics of composite membranes fabricated through static and dynamic interfacial polymerization processes. Macromolecules 45, 3428–3435 (2012)

    Article  CAS  Google Scholar 

  115. S. O. Mbam, S. E. Nwonu, O. A. Orelaja, U. S. Nwigwe, and X.-F. Gou, Thin-film coating; historical evolution, conventional deposition technologies, stress-state micro/nano-level measurement/models and prospects projection: a critical review, Materials Research Express, vol. 6, p. 122001, 2019.

  116. M.F. Jimenez-Solomon, Q. Song, K.E. Jelfs, M. Munoz-Ibanez, A.G. Livingston, Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat Mater 15, 760–767 (Jul 2016)

    Article  CAS  Google Scholar 

  117. E. P. Chan, J.-H. Lee, J. Y. Chung, and C. M. Stafford, An automated spin-assisted approach for molecular layer-by-layer assembly of crosslinked polymer thin films, Review of Scientific Instruments, vol. 83, p. 114102, 2012.

  118. X. Kang, X. Liu, J. Liu, Y. Wen, J. Qi, and X. Li, Spin-assisted interfacial polymerization strategy for graphene oxide-polyamide composite nanofiltration membrane with high performance, Applied Surface Science, vol. 508, p. 145198, 2020.

  119. S. Kaur, S. Sundarrajan, R. Gopal, S. Ramakrishna, Formation and characterization of polyamide composite electrospun nanofibrous membranes for salt separation. J. Appl. Polym. Sci. 124, E205–E215 (2012)

    Article  CAS  Google Scholar 

  120. H. Mahdavi, M. Moslehi, A new thin film composite nanofiltration membrane based on PET nanofiber support and polyamide top layer: preparation and characterization. J. Polym. Res. 23, 257 (2016)

    Article  Google Scholar 

  121. O. Qanati, A. Ahmadi, M. S. Seyed dorraji, M. H. Rasoulifard, and V. Vatanpour, Thin-film nanofiltration membrane with monomers of 1,2,4,5-benzene tetracarbonyl chloride and ethylene diamine on electrospun support: preparation, morphology and chlorine resistance properties, Polymer Bulletin, vol. 75, pp. 3407–3425, 2018.

  122. X. Wang, T.-M. Yeh, Z. Wang, R. Yang, R. Wang, H. Ma et al., Nanofiltration membranes prepared by interfacial polymerization on thin-film nanofibrous composite scaffold. Polymer 55, 1358–1366 (2014)

    Article  CAS  Google Scholar 

  123. H. Yan, X. Miao, J. Xu, G. Pan, Y. Zhang, Y. Shi et al., The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes. J. Membr. Sci. 475, 504–510 (2015)

    Article  CAS  Google Scholar 

  124. K. Shen, C. Cheng, T. Zhang, and X. Wang, High performance polyamide composite nanofiltration membranes via reverse interfacial polymerization with the synergistic interaction of gelatin interlayer and trimesoyl chloride, Journal of Membrane Science, vol. 588, p. 117192, 2019.

  125. J.S. Trivedi, D.V. Bhalani, G.R. Bhadu, S.K. Jewrajka, Multifunctional amines enable the formation of polyamide nanofilm composite ultrafiltration and nanofiltration membranes with modulated charge and performance. Journal of Materials Chemistry A 6, 20242–20253 (2018)

    Article  CAS  Google Scholar 

  126. S. Karan, Z. Jiang, A.G. Livingston, Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347 (2015)

    Article  CAS  Google Scholar 

  127. Y. Cui, X.-Y. Liu, T.-S. Chung, Ultrathin polyamide membranes fabricated from free-standing interfacial polymerization: synthesis, modifications, and post-treatment. Ind. Eng. Chem. Res. 56, 513–523 (2017)

    Article  CAS  Google Scholar 

  128. Z.-Y. Ma, X. Zhang, C. Liu, S.-N. Dong, J. Yang, G.-P. Wu et al., Polyamide nanofilms synthesized via controlled interfacial polymerization on a “jelly” surface. Chem. Commun. 56, 7249–7252 (2020)

    Article  CAS  Google Scholar 

  129. C. Jiang, L. Zhang, P. Li, H. Sun, Y. Hou, Q.J. Niu, Ultrathin film composite membranes fabricated by novel in situ free interfacial polymerization for desalination. ACS Appl Mater Interfaces 12, 25304–25315 (2020)

    Article  CAS  Google Scholar 

  130. R. Zhang, S. Yu, W. Shi, J. Zhu, B. Van der Bruggen, Support membrane pore blockage (SMPB): an important phenomenon during the fabrication of thin film composite membrane via interfacial polymerization. Sep. Purif. Technol. 215, 670–680 (2019)

    Article  CAS  Google Scholar 

  131. J. Zhu, J. Hou, R. Zhang, S. Yuan, J. Li, M. Tian et al., Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration. Journal of Materials Chemistry A 6, 15701–15709 (2018)

    Article  CAS  Google Scholar 

  132. S.-J. Park and J.-H. Lee, Fabrication of high-performance reverse osmosis membranes via dual-layer slot coating with tailoring interfacial adhesion," Journal of Membrane Science, vol. 614, p. 118449, 2020.

  133. G.S. Lai, W.J. Lau, S.R. Gray, T. Matsuura, R.J. Gohari, M.N. Subramanian et al., A practical approach to synthesize polyamide thin film nanocomposite (TFN) membranes with improved separation properties for water/wastewater treatment. Journal of Materials Chemistry A 4, 4134–4144 (2016)

    Article  CAS  Google Scholar 

  134. J. Nambikkattu, J. Jose, and N. Jacob Kaleekkal, Tailoring the performance of thin-film composite membrane using ZIF-8 for wastewater treatment, Materials Today: Proceedings, 2021/03/13/ 2021.

  135. C. Jarusutthirak, S. Mattaraj, R. Jiraratananon, Influence of inorganic scalants and natural organic matter on nanofiltration membrane fouling. J. Membr. Sci. 287, 138–145 (2007)

    Article  CAS  Google Scholar 

  136. A.J.C. Semiao, G. Gazzola, O. Habimana, R. Heffernan, C. Murphy, E. Casey, Understanding the mechanisms of biofouling on nanofiltration membranes: effect of the biofilm structure on solute removal. Procedia Engineering 44, 1557–1560 (2012)

    Article  Google Scholar 

  137. D. Pichardo-Romero, Z. Garcia-Arce, A. Zavala-Ramírez, and R. Castro-Muñoz, Current advances in biofouling mitigation in membranes for water treatment: an overview, Processes, vol. 8, p. 182, 02/05 2020.

  138. S. Chellam, C. Serra, M. Wiesner, Estimating costs for integrated membrane systems. Journal American Water Works Association - J AMER WATER WORK ASSN 90, 96–104 (1998)

    Article  CAS  Google Scholar 

  139. J. Nambikkattu, N.J. Kaleekkal, J.P. Jacob, Metal ferrite incorporated polysulfone thin-film nanocomposite membranes for wastewater treatment. Environ. Sci. Pollut. Res. 28, 11915–11927 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare the partial financial support from DST-SERB project under start-up research grant (SRG/2019/000028) to Dr. Noel Jacob Kaleekkal by the Department of Science and Technology- Science and Engineering Research Board, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Noel Jacob Kaleekkal.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaskar, V.V., Kaleekkal, N.J. Next-generation thin-film composite nanofiltration membranes for water remediation: a review. emergent mater. 5, 1373–1390 (2022). https://doi.org/10.1007/s42247-021-00273-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00273-8

Keywords

Navigation